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Stabilizing synchrony by 
inhomogeneity
Ehsan Bolhasani1,2 & Alireza Valizadeh1,2

We show that for two weakly coupled identical neuronal oscillators with strictly positive phase 
resetting curve, isochronous synchrony can only be seen in the absence of noise and an arbitrarily 
weak noise can destroy entrainment and generate intermittent phase slips. Small inhomogeneity–
mismatch in the intrinsic firing rate of the neurons–can stabilize the phase locking and lead to more 
precise relative spike timing of the two neurons. The results can explain how for a class of neuronal 
models, including leaky integrate-fire model, inhomogeneity can increase correlation of spike trains 
when the neurons are synaptically connected.

Synchronization is observed frequently in the vast variety of physical, chemical, industrial, and biological 
complex systems, from coupled pendulum clocks to neuronal populations in the nervous system1–6. In 
these systems, ability to exhibit synchronous or phase locked oscillations is the foundation of the emer-
gent behaviors which are the basis for the functionality of the system. While the existence of robust syn-
chronization is important in real systems with different sources of noise and uncertainties in parameters, 
robustness and stability of this behavior is of a central importance.

Recordings of multi-neuron spike trains have revealed significant interdependencies between the firing 
of different neurons in a population7–12. Synchronous oscillations are found in many brain regions and 
excessive synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson’s disease13. 
The functional role of the correlation in neural coding has been debated in recent years14–17. Synchrony 
itself may encode information directly6,10,12,18,19 and may underly feature binding20. Synchronous firing 
of the neurons in one region serves to reliably transmit signals to upstream regions21–23 and synchrony 
between different regions can prepare dynamic channels for communication24–26. Beyond their functional 
role, it is also important to understand how correlation and synchrony depend on the biophysical param-
eters of the neurons and the network.

In a population of neurons, correlation between the spike trains of any two neurons can arise from the 
shared input they receive27–29, or from the presence of direct synaptic connections between neurons30–32. 
In both cases the collective state of the system depends on the parameters of the neurons, e.g., the type 
of excitability of the neurons33, and the parameters of the connections such as delay34. Physiological 
heterogeneity can destabilize both coupling-induced and correlation-induced synchronization35–37. In 
the classical models of synchronization, collective state of a system of coupled oscillators is determined 
by the outcome of rivalry between synchronizing effect of connections and desynchronizing effect of 
inhomogeneity2, but there are examples of the systems in which synchrony is enhanced by inhomogene-
ity38–41. Recently we have shown that small inhomogeneity can increase correlation between spike trains 
of two coupled neurons42. In this study we develope a framework for the correlation of weakly coupled 
phase oscillators with a given phase sensitivity when they are driven by small amplitude noises. We show 
that for identical pulse coupled type-I oscillators, synchronized state can be seen in the absence of noise, 
but it is destroyed by an arbitrarily weak noise. Small inhomogeneity can stabilize phase locking by pro-
viding an asymmetric basin of attraction around the stable phase-locked state. Increasing inhomogeneity 
the effective basin of attraction of the locked state increases and the systems shows more robust locking. 
This results in a sharper probability distribution function (PDF) for the time difference between spiking 
of two neurons in the presence of weak noise. We have also shown that while for the model neurons with 
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biologically realistic phase response curve (PRC), the time difference between the spikes of two neurons 
in the stable state increases with inhomogeneity, in the case of the leaky integrate-fire (LIF) neurons, they 
lock in almost zero phase lag for sufficiently small values of inhomogeneity. By solving Fokker-Planck 
equation we also find the most probable phase difference between spike times of the two neurons and 
will show that it does not coincide with the stable point of the deterministic equations. Although the 
synchrony in the general can be assigned both to the inphase firing and to the firing of the neurons with 
a non-zero phase lag, in the following we call the latter case by “phase-locked” state and use the term 
“synchronized” for inphase firing of the neurons.

Methods
Our model comprises two bidirectionally coupled neuronal oscillators receiving suprathreshold constant 
currents (I1 and I2 with mismatch Δ I) as well as small amplitude independent stochastic inputs. The 
evolution of the state vector of the oscillators Xi, i =  1,2 can be described by
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where F governs the internal dynamics of the neurons, G determines the synaptic connections, ξ is 
Gaussian white noise with zero mean and unit variance, and ε and σ are small values which scale strength 
of the couplings and the stochastic inputs, respectively. We assume that the unperturbed systems 
= ( )X F Xi i  have asymptotically stable limit cycles, ( ) = ( + )X t X t T0 0 , so that a phase variable can be 

defined in the neighborhood of the limit cycle. In the regime of weak coupling and weak noise we can 
apply the standard phase reduction2,43 to the Langevin equations above. The system can be described by 
a set of Itô stochastic differential equations (see supplementary material):
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where Z(θ) is the infinitesimal phase-response curve (PRC)44. We assume that the natural frequencies 
have a small difference ω1 −  ω2 =  Δ ω and the noise and the coupling influence only the first (voltage) 
variable of the state vector of the neural oscillators. In our model the neurons communicate via pulsatile 
signals ( )δ= ∑ −G t tij n j

n , where δ is Dirac’s delta function and t j
n is the instant of nth firing of the neu-

ron j. These pulses idealize the communication signals which are short compared to the intrinsic time 
scale of the oscillators and are used to model diverse systems such as populations of flashing fireflies, 
plate tectonics in earthquakes, and the networks of spiking neurons in the brain45–49. It is assumed that 
the coupling and noise terms are of the same order, sufficiently weak such that the phase representation 
for the intrinsic dynamics of isolated oscillators remains valid for the coupled noise-driven oscillators. 
Using the method of averaging50 we derive the equation of motion for the phase difference φ =  θ1 −  θ2 
(see supplementary material):
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averaging the noisy phase equations2. Here η ( ) =
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1 2  is itself a Gaussian white noise with zero 

mean and unit variance.

Results
For two coupled neuronal oscillators, described by Eq. (1) we study the distribution of the phase differ-
ences in the regime of weak coupling and weak noise. In this regime dynamics of each neuron can be 
described by single phase variable and the phase difference of the neurons obeys Langevin equation (3). 
We restrict the study to type-I oscillators and first we discuss on the deterministic version of Eq. (3) with 
D =  0. If H is an even function of φ, e.g. for the quadratic integrate-fire (QIF) oscillators51, the effective 
coupling term would be Δ gH(φ) with Δ g =  g21 −  g12. In this case the effective coupling strength is deter-
mined by the difference of the two connection strengths and the symmetric connection has no effect on 
the relative dynamics of the oscillators. For the oscillators with an oblique PRC, e.g. the LIF oscillators, 
the coupling term can be non-zero for symmetric connections (see supplementary material Fig. S1).

The fixed point of Eq. (3) with D =  0 is the solution of Δ ω =  g12H(φ) −  g21H(− φ). For QIF oscillators 
Z(φ) =  1 −  cos(φ) with asymmetric connections Δ g ≠ 0, when the oscillators are identical Δ ω =  0, the 
zero-lag synchrony φ ≠ 0 is a fixed point, but the system is in the point of a saddle-node bifurcation. Such 
fixed points are unstable, but in φ π( ∈ , ))( )S [0 21 , when no other fixed points are present in the phase 
space, they attract all the points in the phase space in infinite time52. Consequently, in the absence of 
noise the oscillators can synchronize isochronously but a weak noise can destroy synchrony and lead to 
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phase slips. Mismatch in the intrinsic firing rates of the neurons, stabilizes the fixed point through a 
saddle-node bifurcation while moves the fixed point away from zero. For small mismatch, this provides 
an asymmetric basin of attraction which is vulnerable to sufficiently large perturbations in one direction 
around the fixed point. In the presence of noise the system shows epochs of intermittent locking between 
which the relative phase of the oscillators slips by one cycle, while the mean escape time from locked 
state increases with frequency mismatch (see Fig. 1A,B). This increase in the escape time, is related to 
expansion of the effective basin of attraction of the stable fixed point of the system. The maximum mean 
escape time is seen in a certain value of mismatch (Fig. 1C) and further increase of the mismatch shrinks 
the basin of the attraction of the fixed point in the opposite side which decreases the escape time. For 
larger mismatch ω φ φΔ > ( ) − (− ){ }Max g H g H12 21

, the fixed point corresponding to 1:1 locked state 
will disappear through another saddle-node bifurcation (see supplementary material Fig. S1). Two points 
are worthy of note about generality of the above arguments: First, for the biological neuronal models, 
PRC is zero near the spike time of the neuron and for type-I neurons with a well-behaved non-negative 
PRC, this means that the slope of the PRC has opposite signs in the two sides of the spike time which is 
usually is taken as phase zero. Therefore, for a coupled pair of such neurons (when the neurons are 
identical), the synchronized state is a fixed point which is attracting but is not stable and the above 
arguments hold for all the neuronal models which have this property, e.g., Wang-Bazsaki (WB) neu-
rons53. Second, for the type-II oscillators the PRC has negative and positive parts and this means that a 
well-behaved PRC has at least one zero-crossing point with negative slope and there exists a stable 
phase-locked fixed point for coupled identical type-II oscillators. For such systems small inhomogeneity 
does not change the stability of the fixed point but it can expand or shrink its basin of attraction.

To give more concrete results on the impact of the inhomogeneity on the correlation of the spike 
trains of the neuronal oscillators in presence of noise, we derive the Fokker-Planck equation for the 
distribution of the phase differences of two neurons, described by Eq. (3). We rewrite Eq. (3) in a more 
closed form

Figure 1.  (A,B) Representative examples of the evolution of the phase difference of two neurons for three 
different values of mismatch in intrinsic frequencies. Larger values of mismatch have led to fewer phase 
slips. In (A) neurons are phase oscillators with canonical type-I phase sensitivity and in (B) the results are 
presented for LIF neurons. (C) The mean escape time is plotted against frequency mismatch. Increasing 
effective coupling constant Δ g =  g1 −  g2 the maximum escape time is seen in larger values of frequency 
mismatch. In (D) the ratio of the firing rates of the coupled neurons is plotted. For large values of mismatch 
the fixed point of 1:1 locking vanishes.
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where ρ(φ,t) is the distribution of the phase differences. Stationary solution of this equation with periodic 
boundary condition is:
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is the ratio of noise intensity to the coupling strength54.

Figure  2A shows the steady state phase difference distribution for different values of the frequency 
mismatch for QIF neuronal oscillators. It can be seen that the distribution becomes narrower (with a 
more pronounced peak) with increasing frequency mismatch while the neurons remain in 1:1 locked 
state, i.e. for the mismatch in the range ≤ ≤ωΔ

Δ
0

g T
2

0
. This reflects a larger basin of attraction for the 

locked state when mismatch is increased from zero. Most robust locking occurs for =ωΔ
Δg T

2

0
 when the 

basin of attraction is symmetric around the stable fixed point. Furthermore, the asymmetry of the basin 
of attraction causes the distribution of the phase differences not to peak in the fixed point of the deter-
ministic equation, determined by φΓ( ) =⁎ 0. In turn, in presence of noise the location of maximum 
phase difference satisfies,
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which is derived by taking the derivative of ρ(φ) with respect to φ, equal to zero. The location of the 
most probable phase difference as a function of mismatch, determined by Eq. (7), is plotted in Fig. 2C 
for different values of the noise amplitude as well as for the noiseless system which coincides with the 
location of the fixed point. Presence of noise inclines the distribution to larger phase differences for small 
values of frequency mismatch. The maximum difference between the location of most probable phase 
difference between noiseless state and noisy state is seen near =ωΔ

Δ
0 or

g
2

T0
 which reflects the most 

Figure 2.  (A) The steady state phase difference distributions ρ(φ) for three levels of heterogeneity. 
Distributions have become narrower as mismatch is increased. Solid lines show the analytic result Eq. (6) 
and the bar graph presents the numerical results by direct integration of Eq. (2). Dashed vertical lines show 
the position of the fixed points of deterministic equations. (B) The maximum value of ρ(φ) is plotted against 

frequency mismatch for two different values of the ratio of noise strength to effective coupling α =
σ

Δ
φD

g

2

. (C) 
The most probable phase difference (shown by dashed line in A) is shown for three values of α . In the 
presence of noise (α  ≠ 0) the most probable phase difference is different from the fixed point of the 
deterministic equations (black curve α  =  0).
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asymmetric basin of attraction for the locked state and in turn the locations coincide when φ* =  π/2 
where the basin of attraction is symmetric.

Pfeuty et al.55 have introduced a variable Si(t) which is equal to 1/δ when a neuron has fired a spike 
in a time bin of size δ about time t and is equal to 0 otherwise55. For sufficiently small δ the time average 
of Si is the average firing rate of neuron i. It is shown that the normalized cross-correlogram (CC) of 
this variable which is the probability of the firing of the neuron 2 in a time bin of size δ and the delay τ 
after a spike of neuron 1, is related to the phase difference probability distribution function ρ(φ) through

ρ
τ

τ
τ








= ( ) =

( ) ( + )

( ) ( ) ( )T
C

S t S t
S t S t 80

1 2

1 2

where …  indicates averaging over time. A peak in CC at a time lag τ shows phase locking of the activity 
of the neurons. The sharper CC is indicator of a tighter locking. To illustrate this effect we provide an 
expression for the maximum value of the distribution function (or CC) as a function of frequency 
mismatch:
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The above equation is the same as Eq. (7) by substituting ρ(φ*) with ( )ωΔΔC
g

. Figure 2B shows maxi-
mum value of cross-correlation versus frequency mismatch for two canonical type-I phase oscillators for 
different values of noise to coupling ratio which is resulted from direct integration of Eq. (7). The result 
shows that the maximum cross-correlation of the spike trains of the oscillators would be also maximum 
when the neurons are not identical. This is a consequence of more precise relative spike timing of the 
two neurons in presence of inhomogeneity. In Fig. 3 we have shown the cross-correlogram for LIF oscil-
lators and also for the WB model neurons. While for both the models small inhomogeneity increases 
correlation of the spike trains, for the WB model neurons inhomogeneity also moves the maximum 
correlation to the non-zero phase lags similar to the canonical type-I phase oscillators.

Discussion
While disorder usually acts against synchrony in the networks of coupled autonomous oscillators, there 
are intriguing examples in which a source of disorder enhances order in the behavior of a dynamical 
system by enhancing the response of the system to the external signal as a resonance-like behavior38–40,56. 
As an example of the order induced by inhomogeneity, in this study we have shown that in a minimum 

Figure 3.  The cross-correlogram of spike trains of two neurons C(τ) shows that in presence of the 
firing rate mismatch cross correlation is increased. The left panel shows the results for LIF neurons and 
the level of maximum correlation is shown in the inset to highlight the increase due to the inhomogeneity. 
In the right panel the results are presented for two Wang-Buzsaki (WB) neurons. The parameters for both 
simulations are given in the supplemantary material.
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system of two synaptically connected neuronal oscillators, more precise relative spike timing can be 
achieved when the neurons receive different levels of inputs and have different intrinsic firing rates. 
It is shown that inhomogeneity can increase the effective basin of attraction of the fixed point which 
determines the phase locked state and hence makes the locking more robust against noise. Consequently, 
cross-correlation of spike trains of the noise driven neurons increases in presence of mismatch in intrin-
sic firing rates of neurons.

While the results are presented for neuronal oscillators, they can find application in general context 
of coupled limit cycle oscillators. Our analytic results showed that for a class of coupled limit cycle 
oscillators with non-nagetive phase response curves, the locked state is more robust against noise when 
the osillators are not indentical, provided that the PRC is zero for certain values of the phase of the 
oscillators. For type-II oscillators the PRC takes both negative and postive values and the phase-locked 
state would be stable for two coupled identical oscillators. In this case small inhomogeneity does not 
change the stability of the fixed point corresponding to the locked state, although it can still increase 
the correlation of the spike trains of the neurons by expanding the basin of attraction of the fixed-point.

It has been shown that the complete synchonization is possible for coupled chaotic oscillators when 
they are identical and coupled by instantaneous connections57,58. Presence of inhomogeneity and delayed 
connections lead to other types of synchrony such as phase or lag synchronization58,59. To the best of our 
knowledge, the notion of PRCs is not extended to the chaotic oscillators but our results may be applicable 
to the certain types of the chaotic oscillators which endergo phase advance due to the external excita-
tions, like type-I limit cycle oscillators. Since the dynamics of the chaotic oscillators is similar to the noisy 
limit cycle oscillators, we expect the possibility of the enhacement of the synchrony by inhomogeneity 
for chaotic oscillators, even in the absence of any external noise.
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