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Sleep loss appears to affect the capacity for performance and access to energetic resources.

This paper reviews research examining the physical substrates referred to as resource

capacity, the role of sleep in protecting that capacity and the reaction of the system as it

attempts to respond with effort to overcome the limitations on capacity caused by sleep

loss. Effort is the extent to which an organism will exert itself beyond basic levels of

functioning or attempt alternative strategies to maintain performance. The purpose of this

review is to bring together research across sleep disciplines to clarify the substrates that

constitute and influence capacity for performance, consider how the loss of sleep

influences access to those resources, examine cortical, physiological, perceptual, beha-

vioral and subjective effort responses and consider how these responses reflect a system

reacting to changes in the resource environment. When sleep deprived, the ability to

perform tasks that require additional energy is impaired and the ability of the system to

overcome the deficiencies caused by sleep loss is limited. Taking on tasks that require

effort including school work, meal preparation, pulling off the road to nap when driving

drowsy appear to be more challenging during sleep loss. Sleep loss impacts the effort-

related choices we make and those choices may influence our health and safety.

& 2014 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Definition of effort

Recent research has begun to clarify how sleep loss affects
capacity and access to energetic resources. Investigators
across the sub-fields of sleep research have also identified
cortical, physiological, perceptual, behavioral and subjective
effort responses that reflect a system attempting to function
normally in a resource environment changed by sleep loss.
This research enhances our understanding of the physical
substrates referred to as resource capacity, identifies how
sleep protects that capacity and illuminates the impact of
sleep loss on the normal utilization of those resources.
ep. Production and Hosti
licenses/by-nc-nd/3.0/).

ruch.cuny.edu
According to Kahneman [50] the extent to which a person
can attend to or engage in activity is limited by a physiolo-
gical maximal processing capacity. Information processing of
differing types requires varying levels of attention and
engagement and each makes unique demands on the limited
processing capacity from moment to moment. Effort is an
attempt by the system to meet the needs of the organism.
When the system meets the organism’s basic information
processing needs it is operating under automatic control and
though effort is needed, it is low and strain is not detected by
the person. Increased time on task, time pressure and off-
task distractions require resources in excess of that needed
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for basic information processing. When this happens, the
person attempts to maintain performance by applying addi-
tional effort and further engaging the system. If resources are
depleted or unavailable the person becomes fatigued or
exhausted, reduces engagement and eventually gives up [1].

Speed of performance [75], work rates ([17,24,98] [87]), num-
ber of problems attempted [4,13,41]; Webb and Levy, 1984) and
choice of tasks of various degrees of difficulty [7,79] have been
used to determine performance effort. The subjective experi-
ence of effort is the sense of perceived exertion when perform-
ing beyond the fulfillment of basic task requirements [55] and
the available energetic resources.

This review [6,96] will explore our current understanding
of capacity, particularly with a focus on energy, how sleep
loss affects energy resources and how effort is applied to
maintain performance. In particular it will review research
contributing to our understanding of capacity, how energy
availability is affected by sleep loss, the cortical and physio-
logical outcomes that influence capacity, the perceptual
changes in task difficulty in response to sleep loss, how
compensatory behavior has been applied in response to the
limitations imposed by sleep loss, and the subjective experi-
ence of effort under sleep loss conditions.
2. Historical background—Capacity, sleep loss
and effort

The impact of sleep loss on the availability of resources and
the application of effort to accomplish goals has been of
interest since the early days of sleep research. Researchers
studying sleep deprivation approached the topic in three
primary ways. They considered how performance was main-
tained through compensatory effort and evaluated the sub-
jective reports of the expenditure of effort under conditions
of sleep loss. The absence of performance deficits following
sleep loss was considered to result from the application of
compensatory effort [25,34,76] and assumed that without
additional effort directed toward alert and focused engage-
ment, poor performance would result. In one early study, the
author and his wife, the only participants in the study,
reported that they had to apply greater effort to perform
efficiently on days following sleep loss. They proposed that
voluntary ‘effort’ compensated for the subjective experience
of impairment and surmised that expended effort increased
in proportion to the amount of sleep lost. To prevent impair-
ment on mental arithmetic, a person having slept 6 h instead
of 8 would have to apply 25% greater “energy expenditure”
[57].
3. Theoretical and applied value of examining
capacity, sleep loss and effort

3.1. Theoretical value

Research in the area of sleep and effort has both theoretical
and applied value. Such research enhances our understand-
ing of the substrates that constitute and influence capacity
for performance and clarifies the role of sleep in protecting
those resources. Experimental work in this area helps also
helps us consider the attempted compensatory responses
and the interaction between genetic, cortical, physiological,
perceptual and behavioral systems when sleep loss impacts
the system.

3.2. Applied value

Adults and children delay sleep and curtail the sleep period
deliberately by extending time at work, completing home-
work assignments and participating in computer and web-
based activities [62,63]. Others lose sleep due to insomnia,
apnea or medical conditions that interfere with sleep.
Approximately 70% of US adults feel they get less sleep than
they need and sleep an average of 6.5 h during the week but
feel they need 7 h to function well (Sleep in America Poll,
2014). Adolescents (10–17 years) need 9 h of sleep [15] but over
half of the 15–17 year olds, almost a third of the 12–14 year
olds and 8% of the 6–11 year olds sleep 7 h or less (Sleep in
America Poll, 2013). Overall, adults and children sleep less
than they need and that loss of sleep influences the choices
they make. When adolescent athletes, for example, had less
sleep they had poorer mood and considered their drills in
sports practice to be more difficult, and when they had more
frequent awakenings they avoided the most challenging
exercises [30]. Children and adolescents who have insuffi-
cient sleep may experience classroom work as more difficult
than they would if they had sufficient sleep. Enhanced
perceptions of difficulty may lead to decisions to work on
easier tasks. Such perceptions and choices could influence
students’ educational growth.

Health-related choices made by adults in a preliminary
study, were also affected by previous nights’ sleep. Adults
reporting problems with sleep latency, awakenings and total
sleep time in comparison to those with no sleep problems
were more likely to eat restaurant-prepared or fast-food
rather than food made at home [27,29]. Meals prepared out
of the home may require less effort but may be less healthful
than meals prepared at home. Over time, persons with
restricted sleep may have weight or health problems related
to the reduced effort they expended by choosing to purchase
rather than prepare their meals.

A dangerous outcome of sleep loss is the impact it has on
a driver’s ability to stay awake. The risk of car crashes with
injuries has been associated with the loss of sleep [19]. In
comparison to people who sleep eight or more hours, those
who sleep 6 to 7 h are twice as likely, and those who sleep
less than 5 h are four to five times as likely to be involved in a
crash [91]. Many drivers drive when they are tired and 11%
reported having nodded off or fallen asleep while driving
within the past 12 months [93]. The drivers report having
been aware of being tired before the crash. Their attempts to
compensate for the fatigue was insufficient to overcome the
limitations imposed by sleep loss and they did not expend
the effort needed to locate a place to nap and delay arrival at
their destinations.

Research exploring the effects of sleep loss on the capacity
to perform, perception of task difficulty and willingness to
engage may lead to a greater understanding of the limits
caused by insufficient sleep on the performance of activities
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at home, school and work. persist at difficult tasks at home,
at school and Such investigations may lead to the develop-
ment of strategies to promote educational success, healthy
choices and public safety.
4. Hypotheses regarding capacity, sleep loss
and effort

Robinson and Hermann [76] hypothesized that sleep loss
negatively affected one’s ability to perform and that addi-
tional effort through “muscular or ideational means” was
necessary and responsible for the maintenance of perfor-
mance when sleep was absent.

Two more recent hypotheses have attempted to explain
the role of effort under sleep loss conditions. The first
hypothesis posits that sleep loss causes sleepiness, impairs
the arousal mechanism and reduces the supply of energy
needed to power arousal, perceptual processes, motivation
and effort. The outcome of this arousal deficit is a reduction
in the desire to perform, a decrease in effort and performance
impairments [101,102]. Sleepiness and the urge for sleep
caused by sleep loss compete with interest in completing
tasks [5], but motivational factors such as feedback can
restore arousal, energy and motivation, and impact effort
and performance at least for a short-time [81,54] as cited by
Odle-Dusseau et al. [65]).

A second hypothesis suggests that energy resources and
capacity are lost during sleep deprivation and these losses are
responsible for the observed performance deficits. Under
well-rested circumstances, the brain consumes the resources
necessary to attend to, process and react to stimulation.
However, under the influence of a stressor, such as the loss
of sleep, the energy supply required for high quality perfor-
mance is insufficient or unavailable. The effort mechanism
can compensate for an insufficient energy supply if the
person is aware of their current or potentially substandard
performance. This awareness either leads to the mobilization
of additional resources needed to sustain performance or the
reduction of demands so that the discrepancy between the
intention to perform well and actual performance will be
aligned [89,50]). Hockey et al. [43] applying this model,
proposed that when stress and fatigue caused by sleep loss
threatens performance, participants will shift to less-
demanding tasks to accommodate the decreased capacity.

The first hypothesis suggests that sleep loss affects the
arousal system which affects attention. The predominant
desire to sleep interferes with both the motivation to perform
and performance. In the second, it is the organism’s access to
a robust energy system which is impaired. These two theories
are not mutually exclusive. It is possible that sleep loss
compromises access to or the availability of resources which
fuel both attention and performance.

This review will consider energy availability at the source
of capacity and it will explore how sleep loss impacts that
energy. The cortical, physiological, perceptual, behavioral and
subjective effort responses to the sleep loss induced limita-
tions on capacity availability will be considered.
5. Capacity and sleep loss

5.1. Capacity, energy, body temperature and sleep loss

Sleep serves an important function in energy balance by
reducing daily energy demands and conserving energy stores.
Unlike wakefulness, during sleep energy expenditure caused
by heat use and loss is limited by behavioral adaptations
including the selection of sleep locations that minimize heat
exchange with the environment and the assumption of
species-specific heat-conserving postures. The conservation
of energy within the sleep period also occurs through a
reduction in muscle activity including an overall decline in
muscle tension during non-Rapid Eye Movement (nREM)
sleep and the inhibition of muscular activity during Rapid
Eye Movement (REM) sleep [86].

Thermoregulation which requires significant energy to
maintain high body temperatures during wakefulness is
altered during sleep. In comparison to wakefulness the
temperature set-point is reduced in nREM sleep and tem-
perature is unregulated during REM sleep. Such body tem-
perature alterations during sleep result in considerable
energy savings [92].

The loss of sleep affects the ability to use energy to
maintain normal body temperature. The loss of even a few
hours of sleep has been shown to cause a drop in core body
temperature in humans [84] and participants have reported
feeling cold, added clothing and increased the ambient heat
[46]. Sleep deprivation in rats resulted in an inability to retain
body heat, an increase in energy expenditure, and an increase
in food consumption [74]. The sleep deprivation alterations in
energy use have been considered responsible for the observed
decreases in body weight and the increases in food consump-
tion [9,10]. Instead of conserving energy during sleep in the
absence of sleep human subjects have been shown to use one
third more energy [49].

Sleep loss affects the body’s ability to store energy and
control its availability. Sleep restricted for five days has been
shown to result in a 40% slower insulin response and a
reduction in the acute insulin response to glucose by 30%
[85]. Gherlin, a hormone that stimulates appetite and Leptin,
a hormone that inhibits appetite, are both involved in energy
regulation and food intake [86]. After two nights of sleep
limited to 4 h in bed Gherlin is increased by 28% and Leptin is
decreased by 18% and appetites for high calorie foods is
increased [87]. Sleep loss appears to create a physiological
cascade in response to the detection of energy depletion.
Instead of storing energy, energy becomes easily accessible
and hormones signal that energy stores need immediate
replacement.

5.2. Capacity, energy metabolism, oxidative stress
and sleep loss

During wakefulness mitochondrial activity demands high
levels of energy production. The metabolism of glycogen
and other sources of stored energy results in the generation
of oxidants or free radicals, and the non-radical products of
oxygen and nitrogen. Sleep permits the removal of brain
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oxidants including reactive oxygen species (ROS) and reactive
nitrogen species (RNS) that accumulate during wakefulness
[37]. Without the removal of these oxidants an imbalance
between oxidant production and antioxidant defenses occurs
leaving the brain in a state of hypermetabolism [33] and
oxidative stress [40,95,51].

Sleep deprivation engenders an antioxidant response
which is dependent on various factors including the duration
of the sleep deprivation, brain area involved and the parti-
cular antioxidant. Increased antioxidant responses have been
observed in the cortex, hippocampus, basal forebrain, brain-
stem and cerebellum of rats with short term (6 h) total sleep
deprivation and decreased antioxidant responses in the
hippocampus and brainstem with longer term (5–11 days)
sleep deprivation [73]. With extended sleep deprivation the
anti-oxidant imbalance can lead to cell death in rats [33].
Acute short term sleep loss may elicit an increase in anti-
oxidant responses that serve to protect performance and
prevent initial deterioration in working memory and beha-
vior, however, the antioxidant response under long term
sleep loss conditions appears to be inadequate to offset the
presence and impact of these free radicals.

The imbalance between oxidant production and antiox-
idant defenses during sleep deprivation affects areas outside
of the brain. Animals deprived of five days of sleep have
shown oxidative stress in the liver with a decrease of 30% in
antioxidants catalase and glutathione peroxidase resulting in
increased cell membrane damage and permeability [33].

5.3. Capacity, genetic transcription and sleep

Gene expression in the brain is as extensive and specific
during sleep as it is during wakefulness. The increase in
particular gene expression during wakefulness appears to aid
the brain in meeting waking energy demands, high synaptic
excitatory transmission, high transcriptional activity, and
the need for synaptic potentiation in the acquisition of new
information. The increase in selected gene transcription
during sleep appears to support brain protein synthesis and
synaptic membrane maintenance [18]. Specific gene expres-
sion is dependent on the wake state or the sleep state and
during that state proteins needed for that state are upregu-
lated. Therefore, during sleep deprivation the upregulation of
proteins needed for a variety of functions including protein
synthesis and synaptic membrane maintenance may not
occur.

5.4. Capacity, energy homeostasis, locus coeruleus
and sleep loss

Locus coeruleus neurons (LC) which contain norepinephrine
discharge at high rates during wakefulness, greatly reduced
rates during non-rapid eye movement sleep (NREM) and near
quiescence during REM sleep [3]. LC neurons maintain control
of the awake state, attention, response to stress, novelty and
inflammation, and response to behavioral needs [66] and as a
result have significant metabolic demands during wakeful-
ness [59].

Mitochondrial sirtuin (SirT3) a protein encoded by the
SIRT3 gene [103] is an important regulator of overall energy
homeostasis [2]. SirT3 coordinates mitochondrial energy
production and oxidation-reduction (redox) responses [8].
During short-term sleep loss, the metabolic needs of locus
coeruleus neurons appear to be protected by the activation of
the mitochondrial SirT3 [103]. Short-term sleep loss upregu-
lates SirT3 and antioxidants in the locus coeruleus maintain
energy homeostasis. However, sleep loss is a stressor to the
locus coeruleus, and with extended sleep loss the adaptive
mitochondrial metabolic responses fail. With longer term
sleep loss SirT3 activity is reduced followed by an increased
production of LC superoxides, LC mitochondrial protein
acetylation and the loss of LC neurons through apoptosis
[103].

5.5. Capacity—Astrocytes meeting energy needs

Glial cells include astrocytes and microglia. During periods of
increased energy needs especially during wakefulness nor-
epinephrine causes astrocytes, primarily through their adre-
nergic receptors, to anticipate and meet energy demands and
maintain consistent ATP levels. The α1, α2 and β1 adrenergic
receptors of astrocytes are involved in ion homeostasis,
neurotransmitter clearance, and energy distribution with
the β-adrenergic receptors responsible for eliciting the break-
down of glycogen during increased local neuronal activity
[66]. Astrocytes release ATP which is quickly hydrolyzed to
adenosine leading to the suppression of excitatory synaptic
transmission and decreased arousal [67]. Extended wakeful-
ness and the absence of sleep creates a mounting urge to
sleep which appears to be controlled, at least in part, by
adenosine affected by the astrocytes [39]. Greater sleep loss
involves greater energy metabolism and increased adenosine
in the system.

5.6. Capacity—Removal of waste during sleep

The waste products of neuronal activity accumulate during
wakefulness. Included among these products is Aβ-amyloid
(Aβ-) implicated in neurodegenerative diseases. During sleep
cortical interstitial space increases by more than 60% and
permits the convective exchange of cerebral spinal fluid and
interstitial fluid surrounding brain cells, resulting in the
removal of these interstitial waste products [102]. The
absence of such waste removal from the brain’s interstitial
space appears to lead to an overload of intracellular calcium
concentrations [56] and the interference with synaptic trans-
mission [68]. The restriction of sleep appears to prevent the
effective clearance of toxic waste from the system and
impedes normal neuronal performance.

5.7. Capacity—Summary

Sleep permits the storage of energy and supports normal
thermoregulation. The absence of sleep prevents energy
savings and instead energy stores meant for normal waking
activity are used during the sleep deprivation period. Ther-
moregulation which is dependent on the available energy
supply is severely challenged and in rats studied attempts are
made to compensate by increasing caloric intake however the
animal does not store energy, loses weight and dies.
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LC neurons are responsible for wakefulness and the SIRT3
gene regulates overall energy homeostasis and the oxidation-
reduction process. With extended loss of sleep the LC mito-
chondrial metabolic responses fail interfering with normal
energy control and the anti-oxidant process. The generation
of energy results in the production of waste materials
including oxidants. During sleep cortical interstitial space
increases and the convective exchange of cerebral spinal fluid
and interstitial fluid surrounding brain cells results in the
removal this waste. Sleep loss prevents the increase in
interstitial space and the effective clearance of toxic waste
impeding effective neuronal performance. Extended sleep
loss results in an oxidant imbalance and cell death. Access
to and normal use of energy stores is severely impaired by
extended sleep loss.
6. Sleep loss, cortical changes and effort

The changes in cortical activation under the constraints of sleep
deprivation and in response to external task demands have
been the focus of scientific inquiry. This research identifies
changes in cortical brain activity during sleep loss and strategies
the brain uses to compensate for and maintain performance.
6.1. Sleep loss, global brain activity and effort

Global EEG activity has been thought to be marker of cortical
activation in relation to effort. A decrease in high alpha
power on the EEG was found to predict a decrease in global
subjective vigor, which included a measure of subjective
effort. These decreases in alpha power were not related to
changes in reaction time [60] suggesting that decreases in
high alpha power may be experienced as a reduction in vigor
and effort in advance of its impact on behavior.

Functional magnetic resonance imaging (fMRI) maps
dynamic changes in blood oxygen levels in the brain. Since
changes in blood oxygen levels reflect neural activity in the
structural region in which they occur fMRI maps provide an
opportunity to observe localized brain activity. Using this
technology, mental operations and functions can be asso-
ciated with particular structural activity. Global cortical acti-
vation as assessed by functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG) helps to identify
how the brain responds when effort is applied and how
individuals differ in their effort-related engagement when
sleep deprived. Cortical activation as measured by the fMRI
has been related to fatigue vulnerability. Using (fMRI) greater
baseline cortical activation was associated greater tolerance
for sleep deprivation in vigilance tasks [14].

The decline in left parietal activity has also been identified
as one specific marker of the vulnerability to fatigue and sleep
loss. Those with the greatest reductions in left parietal activa-
tion had the greatest variability in reaction time. This decline in
activation of the left parietal area from wakefulness to sleep
loss states and within the sleep loss assessments was consis-
tent within participants suggesting individual differences in
attention and vulnerability to sleep loss [61].
6.2. Sleep loss, the prefrontal cortex and effort

The identification of specific locations of cortical activation
during sleep loss may clarify where in the brain compensa-
tory actions occur to maintain performance. Increased acti-
vation of the prefrontal cortex (PFC) and bilateral parietal
lobes, and decreased activation in the temporal lobes was
found in participants deprived of 35 h of sleep while perform-
ing a memory recall task. PFC activation was associated with
reported of sleepiness. Subjective reports of effort and per-
ceived task difficulty were collected after the completion of
the fMRI and memory task assessment and did not seem to
be correlated with changes in brain activation [21]. Similarly,
the fMRI changes in response to difficult words in a verbal
learning task showed an increased activation in the bilateral
inferior frontal gyrus, bilateral dorsolateral prefrontal cortex,
and bilateral inferior parietal lobe following TSD compared
with activation following a normal night of sleep. Better free
recall of the difficult words was related to increased cerebral
responses within the left inferior and superior parietal lobes
and left inferior frontal gyrus.

When sleep deprived participants are asked to respond to
tasks of high levels of difficulty without the opportunity to select
tasks of lower levels of difficulty, some brain areas appear to
increase neuronal activation possibly to compensate for the
limitations imposed by sleep deprivation in verbal learning [22]
and logical reasoning experiments [23].

Relative reductions in ventromedial prefrontal metabolic
activity in risky decision making situations were found when
participants were deprived of one night of sleep suggesting that
the ventromedial prefrontal area may be particularly vulnerable
to sleep deprivation [53]. Similarly, sleep deprivation appears to
affect task switching, which requires effort to accommodate
new informational and environmental demands. Since the
prefrontal cortex controls task switching, it has been suggested
that the resources normally available to the prefrontal cortex
are limited and not well compensated when participants are
sleep deprived [20].

6.3. Sleep loss, the locus coeruleus, the nucleus accumbens
and effort

Increasing time spent awake has been linked to increased
extracellular levels of adenosine in the basal forebrain. The
presence of adenosine causes a reduction in EEG arousal and
alertness [71] and the limitations it places on arousal may
contribute to impairments in the application of effort. The
presence of increasing quantities of adenosine in other brain
locations interferes with dopamine transmission and with
effortful performance as well. One such structure is the
nucleus accumbens, where adenosine and dopamine appear
to interact to regulate functions that require effort. The shell
subregion of the nucleus accumbens receives moderately
dense input from norepinephrine neurons [11] and lesions
of locus coeruleus neurons influences the time course of
recovery of baseline levels of extracellular dopamine [52]. In
addition, norepinephrine derived from the LC produces an
inhibition of the accumbens neurons which receive input
from the hippocampus [94]. Salamone and his colleagues [80]
reported that in rats, depletion or antagonism of dopamine in
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the nucleus accumbens resulted in a greater sensitivity to
increases in response costs and the reallocation of instru-
mental behavior away from more difficult tasks and toward
the selection of easier ones. Since dopamine in the nucleus
accumbens has a role in controlling effort applied to perfor-
mance [80] it is possible that the apoptosis of locus coeruleus
neurons caused by sleep loss induced oxidative stress may
affect the release of dopamine in the nucleus accumbens.
The amygdala, anterior cingulate cortex and ventral pallidum
have also been identified in effort regulation though how
sleep loss influences the functions of these structures with
regard to effort has not been elucidated.
7. Sleep loss, physiology and effort

The changes to the energy supply and energy accessibility
caused by sleep loss impact physiological functioning. These
physiological changes reflect a system attempting to maintain
normal functioning and performance under energy limitations.

The availability of energy resources likely affects the body’s
ability to expend effort. One means by which energy is released
is through glucose metabolism. Glucose utilization as reflected
by plasma glucose levels was reduced during the 24 h sleep
deprivation period and was associated with decreases in a
composite of self-reported alertness items including a measure
of subjective effort. The greatest decreases in brain glucose
utilization were found in those who felt least alert across the
night. Changes in glucose levels were not correlated with vigi-
lance performance, however [60]. In another study, sleep depri-
vation with 48 h with continuous work had no effect on resting
blood glucose levels, however, participants perceived increases
in imposed work load and reduced their walking pace [77].

Cardiovascular activity makes energy available throughout
the system. Systolic blood pressure has been suggested to reflect
increased effort. In a series of studies by Gendolla and colleagues,
improved performance on tasks rated as difficult was positively
correlated with changes in systolic blood pressure (SBP) and with
the personal meaningfulness of the task [35]. In addition,
insomniacs, those reporting chronically insufficient sleep,
showed higher systolic blood pressure reactivity during a mem-
ory task than non-insomniacs, suggesting that those who get
insufficient sleep apply greater cardiological effort when per-
forming on tasks [82]. Other researchers who assessed heart rate
reactivity in response to performance during sleep loss found
phasic heart rate deceleration in persons who experienced 32 h
of sleep deprivation and received feedback for their reaction time
performance (Steyvers, 1987). However, neither fatigue nor
anticipated effort has been found to be predictive of cardiovas-
cular reactivity [36].
8. Perception

The increased reports of fatigue and changes in the perception
of task difficulty with sleep deprivation may result from a finely-
tuned mechanism by which the organism assesses its state,
determines the resources needed to complete the task, and
decides whether those resources are available or accessible or
whether those resources need to be used or conserved for tasks
of higher priority. When deprived of sleep for 48 h and required
to perform continuous work, participants perceived that the
work load had increased and reduced their walking pace in
response [77]. Similarly, in a study of physically fit athletes,
researchers found an increase in perception of task difficulty
following fatigue [72]. Adolescent athletes who had insufficient
sleep reported poorer mood and considered their drills in sports
practice to be more difficult, and those with frequent awaken-
ings avoided the most challenging exercises [30].
9. Objective effort with sleep loss

9.1. Objective measures of effort with sleep loss

The speed of task completion is considered representative of
effort and motivation [75]. Under sleep loss conditions, reduc-
tions in work rates ([17]; Donnell, 1969; [99]) and the number of
solutions participants attempt in response to experimenter-
generated problems have been reported [4, 11, 38, Webb and
Levy, 1984]. More direct indices of effort are choice preference
[7,79] and opportunities to shift between varying effort-requiring
work choices [45]. Using these strategies, the behavioral effects
of sleep loss have been assessed by offering participants
opportunities to select tasks of varying degrees of difficulty.
When choices have been presented sleep deprived participants
select less difficult math addition problems [31], less challenging
non-academic tasks [28] and only the high priority tasks from a
selection of both low and high priority offerings [43]. Time spent
in daily routine activities which require additional energy
decreases including time spent reading for school, dressing
neatly and dressing fashionably following a night of sleep loss
[31,28]. In addition, following sleep deprivation participants are
more likely to break the rules of the task suggesting the
adoption of expeditious task completionmethods which include
the use of heuristics or strategies that limit expended energy
and effort [64]. Social loafing involves impaired performance
when one works in a group in comparison to performance when
one works individually [58]. It is suggested that effort is reduced
when one believes others in the group will make equal or
greater contributions to the outcome. In an assessment of the
influence of sleep deprivation on social loafing, sleep deprived
participants whose answers were combined to form a group
score and knew that the group outcome rather than their own
individual performance would be evaluated, completed fewer
trials and had more incorrect responses than those who were
sleep deprived and worked individually [44].

9.2. Maintenance of objective effort

Continued effort and engagement on a task following sleep
loss can be maintained if the task qualities help sustain
arousal, and motivational elements such as incentives and
feedback are included ([99,47,88, 90]), task material is of
interest to the participant [6,96], involve games that include
high sensory stimulation, competition and motor output
[26,38,97,100] or electric shock [83]. In one study, participants
who actively controlled task events showed high levels of
reported effort over the three work sessions. However, when
the task was under experimenter control, reported effort was
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not sustained past the first two sessions. Participants who
experienced both experimenter control and sleep deprivation
had slower reaction times and increases in premature
responding [43]. In addition, when participants are aware
they are entering the last assessment session or that the
sleep deprivation experience is about to come to an end
performance improvement is common [41]. Often, the final
assessment session follows the study’s longest period of
sleep deprivation. The awareness of the upcoming comple-
tion of the sleep deprivation experience stimulates motiva-
tion, effort and performance.

The extent to which these task-related factors facilitate
behavior and maintain performance under sleep deprivation
conditions is limited. In one study, feedback decreased reac-
tion time but did not increase accuracy (Steyvers, 1987). In
another study, incentive maintained vigilance at baseline
levels following one day of sleep deprivation though increas-
ing incentives were unable to sustain baseline performance
past 36 h of sleep deprivation [47]. In the absence of task
qualities that stimulate engagement, subjective reports of
motivation for both vigilance and cognitive tasks have been
found to decrease over the course of the sleep deprivation
period while reports of expended effort have been found to
increase over this period [65].
10. Subjective effort with sleep loss

10.1. Subjective effort measurement

Effort under sleep loss conditions is most frequently assessed
through self-report measurement. Participants are asked to
report their experience with regard to the effort they
expended. Often a Likert scale is used in which respondents
indicate the effort applied to the previous task by choosing a
number ranging from 1 to 10 on symmetric agree-disagree
scales or on computerized visual analogue scales with effort
represented on a 100 mm line. The wording of the questions
regarding the subjective effort varies between laboratories.
Participants have been requested to estimate the difficulty of
the upcoming task and their anticipated success on the task
(Gendolla et al., 2011), their effort during the task (Drum-
mond, 2000, 2005; [64,70]; Odle-Dusseau et al. [65,31]; Hockey
et al., 1996) [42], the effort required by the task [22], task
difficulty [21,22], the demanding nature of the task [43], effort
involved in maintaining primary work goals or performance
[43] concentration on the task [70,22,43] motivation to per-
form the task well (Drummond, 2005 [22]; Odle-Dusseau et al.
[65]) and estimated performance [70].

10.2. Subjective report of effort applied to performance

Reports of effort applied to performance on reaction time,
vigilance, short-term memory, math addition and complex
cognitive tasks under sleep loss conditions have been col-
lected. The experience of increased effort has been reported
by participants deprived of 24 h of sleep on cognitive vigi-
lance tasks [70], complex cognitive tasks [43] and tasks
involving physical work [77]. Participants in one study
reported increasing effort and decreasing motivation over
the course of the sleep deprivation period. The less partici-
pants wanted to participate the more effort they believed
they were expending [65]. When increased subjective effort
has been reported, objective task performance during sleep
deprivation has not necessarily been maintained or improved
over the baseline condition or in comparison to a rested
control group on vigilance [65], cognitive reasoning [69] or on
complex defensive maneuvers [16]. In addition, increased
effort and motivation has not been related to improved
performance on cognitive-vigilance tasks (Olde-Dusseau and
Pilcher, 2010). Participant reports of having expended effort at
levels reported when feeling rested and refreshed may reflect
a personality style that results in consistent engagement in
effort expended or of relative effort expended. For example,
regardless of the resource limitations imposed by the sleep
deprived state the person may think she is exerting her
maximal effort given how she feels at that moment.

Sleep deprived participants do not always report increased
effort when compared with those who are rested. No differ-
ences in reports of effort have been be found following
addition tasks [31], memory tasks [21,64] and reaction time
tasks [64] and simple arithmetic, object naming and story-
telling [64]. No differences in reported effort with sleep loss
may reflect participants’ continued effort as they attempt to
maintain task accuracy in a compromised state.

The absence of differences in effort reports when the
rested and sleep deprived states are compared could also be
a function of the means by which subjective effort is mea-
sured. The particular effort questions used can affect
reported effort. The experience of effort is abstract and also
depends on the participant’s idiosyncratic physical and
emotional sensations. Participants may conjure a sense of
the minimum and maximum effort they could expend at that
instant, and compare their sensations and current behavior
with what they feel they want to do or can do at that
moment. The determination of effort to be expended is not
made in comparison to some fixed idea of minimum and
maximum quantities. Likely, the subjective minimum and
maximum effort one can expend at that moment shifts
according to an algorithm which includes the interpretation
of the effort question being asked, the demands of the task,
past experience with that task, the considered importance of
the task, the person’s current state of resource availability
and the emotional and physical sensations that reflect
resource availability.

Researchers’ interpretations effort responses also require
consideration. Reports of increased effort by those deprived
of sleep could have several interpretations. The person may
perceive a change in resource availability and tasks thought
to be simple when resources were available are now per-
ceived to be more difficult since current resources are sensed
to be insufficient. Reports of increased effort could also reflect
the determination to use voluntary, focused and alternative
strategies to engage cortical and physiological resource
reserves.

The report of reduced effort could reflect the sense that the
task demands require more work than the person can produce
at that time and a decision to reduce or withdraw effort given
the limited resources. Alternatively, a reduction in reported
effort could indicate the task was perceived as insufficiently
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challenging or captivating to maintain effort. The relationship
between sleep loss and effort reports would be better under-
stood if researchers agreed upon a set of uniform questions
clarified with specific instructions to be used across laboratories,
under various conditions and tested for reliability. Such con-
sistency in measurement might result in a consistent metric by
which participants can share their experience of effort and by
which researchers can understand that experience.

10.3. The timing of the subjective effort assessment

The variability in the delay between the performance of a
task when effort is expended and the time at which the effort
questions are asked also may be responsible for the variation
in self-reported effort found between studies. Mood and
fatigue self-reports show more negative responses if the
subjective assessment is conducted within the work period
than if the assessment occurs after the work period has been
completed or during a rest break [41]. This may be the case for
reported effort as well. Drummond et al. [21], for example,
found no changes in reports of effort in participants deprived
of 35 h of sleep assessed for their perception of effort and task
difficulty more than 10 min after performance on the learning
task. In another study, when the subjective ratings of effort
followed the completion of a battery of memory and reaction
time tasks, it was unclear whether the participants deprived
of over 30 h of hours of sleep could fully recall their effort and
no difference between the rested and sleep deprived groups
was found on reported effort [64]. The absence of sleep loss-
induced effort report differences could be a function of
interference with and the loss of memory for the effort
expended.

10.4. The relationship between subjective experience
and objective effort

The measurement of both subjective and objective effort in
sleep deprivation studies is infrequent. Reports of sleepiness
and fatigue were associated with the selection of lower
difficulty tasks [31], reading less for school following a night
of sleep loss [28] and greatest social loafing impairment [44].
In another sleep deprivation study engagement in the high
priority tasks continued while performance on lower priority
tasks decreased and subjective effort increased [43].
11. Individual differences

Hockey et al. [43] found that while some participants reported
exerting less effort, most reported expending more effort
when sleep deprived than when fully rested. In a study of
two medical residents monitored for physiological and effort
over a three month period, one resident’s report showed no
relationship between subjective effort and cortisol, and adre-
naline and reported low workload, high levels of support and
control, low levels of fatigue and anxiety and high levels of
positive affective states. In comparison, data collected from
the second resident showed relationships between subjective
effort and cortisol, between subjective effort and noradrena-
line, and perceived work demands, fatigue, subjective effort
and adrenaline [42]. One marker of vulnerability to sleep
deprivation, a decrease in left parietal activation, has been
correlated with within subject variability of reaction times
[61]. Genetic differences may account for the differences in
vulnerability to sleep deprivation and the ability of the
system to compensate for the limitations caused by sleep
loss. A comparison of three mice strains found differences in
the distribution of sleep and the time course of slow wave
activity in response to sleep deprivation [48]. In addition,
species differences in attention, learning ability, memory and
cortical responsiveness to exogenous substances suggests
unique genetic sensitivities to stress on the system’s capa-
city. For example, in rats attention and memory behavior [12]
and learning to press a lever for food when amphetamine
injected into the nucleus accumbens [78] differs depending
on the species. Mice show species-specific responses to
scopolamine with regard to speed of response and spatial
recognition memory [32]. Such strain differences support the
genetic basis of sleep loss vulnerability and suggest the
existence of genetically determined differences in effort
expenditure in response to sleep loss.
12. Summary

Sleep loss appears to affect access to energetic resources and
the capacity for performance. Cortical, physiological, percep-
tual, behavioral and subjective responses reflect a system
reacting to changes in the resource environment caused by
the absence of sleep. This paper reviews research examining
the physical substrates referred to as resource capacity, the
role of sleep in protecting that capacity and how the system
attempts to respond with effort to overcome the limitations
on capacity caused by sleep loss.

Effort is the extent to which an organism will exert itself
beyond basic levels of functioning or attempt alternative strate-
gies to maintain performance. The subjective report of effort is
the participant’s experience of that exertion. Sleep deprivation
creates limitations on the ability to perform consistently and at
non-sleep deprived and rested levels. The purpose of this review
is to bring together research across sleep disciplines to clarify the
substrates that constitute and influence the capacity for perfor-
mance, consider the various roles sleep plays in protecting those
resources, review how effort is objectively measured and experi-
enced in response to the limitations on the resources caused by
sleep loss.

Children and adults in the United States feel they get less
sleep than they need and the loss of sleep influences the
choices they make. Sleep loss appears to influence ability to
apply sufficient effort needed to live healthy, safe and
focused lives. Car crashes, for example, have been associated
with loss of sleep. Though drivers report knowing they were
sleepy before the crash, they report not taking the time or
making the effort to nap and delay the arrival at their
destination. Adolescent athletes, when sleep impaired con-
sider their practice drills to be more difficult and avoid the
most challenging maneuvers. Adults who report sleep pro-
blems appear to eat restaurant-prepared or fast food rather
than food made at home. Through a growing appreciation of
the role of sleep in effort expenditure and the limits of effort
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when capacity is compromised, the public will be better
positioned to develop strategies for better sleep and for the
promotion of sleep-related educational, health and
safety goals.
12.1. Capacity

An early hypothesis proposed that sleep loss negatively
affected one’s ability to perform and that additional effort
was necessary for the maintenance of performance. A more
recent theory based on attention suggests that sleep loss
specifically impairs the arousal mechanism and reduces the
supply of energy needed to power arousal, perceptual pro-
cesses, motivation and effort. A second theory suggests that
capacity in the form of energy resources is lost during sleep
deprivation and this loss is responsible for the observed
performance deficits. When the capacity is sufficiently
reduced effort can no longer be applied and there is a shift
to less-demanding tasks.

Capacity includes the body’s stored and available energy.
Sleep results in both a reduction in performance-based
energy demands and thermoregulatory needs. In the absence
of sleep, energy is not stored and instead one third more
energy is used. Waking mitochrondrial activity requires con-
siderable energy demand and high levels of energy metabo-
lism in the mitochondria results in the production of brain
oxidants that can damage cells. The sleep process initiates an
antioxidant response removing brain oxidants that accumu-
late during wakefulness.

Locus coeruleus neurons (LC) maintain control of arousal and
response to behavioral needs. Mitochondrial sirtuin (SirT3) is a
protein encoded by the SIRT3 gene which coordinates mitochon-
drial energy production, regulates energy homeostasis and con-
trols oxidation-reduction (redox) responses. Extended sleep loss
reduces SirT3 activity, and increases the production of LC
superoxides and the loss of LC neurons..

Astrocytes, a type of glial cell anticipate and meet energy
demands and maintain consistent ATP levels. The effects of
sleep deprivation on the arousal system seem to be con-
trolled, at least in part, by adenosine affected by the astro-
cytes. Greater time spent awake is linked to neuronal
metabolic activity, increased extracellular levels of adenosine
in the basal forebrain and a reduction in EEG arousal and
alertness. The nucleus accumbens, adenosine and dopamine
appear to interact to regulate functions that require effort. A
depletion or antagonism of dopamine in the nucleus accum-
bens leads to a greater sensitivity to response costs and the
reallocation of instrumental behavior away from more diffi-
cult tasks and toward the selection of easier ones. Apoptosis
of locus coeruleus neurons caused by sleep loss induced
oxidative stress may affect the release of dopamine in the
nucleus accumbens thereby affecting effort behavior.

Waking neuronal activity also involves the production of
waste. During sleep the cortical interstitial space increases by
more than 60% and permits the convective exchange of
cerebral spinal fluid and the removal of interstitial waste
products. In the absence of sleep, such waste removal does
not occur and an overload of toxic material can interfere with
synaptic transmission.
12.2. Cortical changes with sleep loss

Cortical changes reflect energetic and resource limitations
imposed by sleep loss and in some cases mirror experienced
vigor and effort. Greater baseline cortical activation is asso-
ciated greater tolerance for sleep loss and reductions in high
alpha power on the EEG is associated with decreases in global
subjective vigor including subjective effort.

Brain areas not typically associated with tasks appear to
become activated under sleep deprivation conditions. Func-
tional magnetic resonance imaging studies have identified
decrements in left parietal activity and reductions in ventro-
medial prefrontal metabolic activity as indicators of vulner-
ability to sleep loss. Increased activation of the prefrontal
cortex and bilateral parietal lobes appear to be associated
with reports of sleepiness, with better recall of difficult words
related to increased responsiveness within the left inferior
and superior parietal lobes and left inferior frontal gyrus.

12.3. Physiological changes with sleep loss

Physiological changes reflect a system that seems to be
working to maintain performance. Increased plasma glucose
levels has been associated with decreases in a composite of
self-reported alertness items including a measure of subjec-
tive effort and may reflect decreased cerebral glucose utiliza-
tion found during the sleep deprivation period. In contrast, in
a separate study resting blood glucose levels were unchanged
during sleep loss, though participants perceived increases in
imposed work load and reduced their walking pace.

Cardiovascular activity makes energy available through-
out the system. Those who get insufficient sleep appear to
apply greater cardiac effort when performing tasks. Insom-
niacs showed higher systolic blood pressure reactivity during
a memory task than non-insomniacs and changes in systolic
blood pressure was positively correlated with improved
performance on tasks rated as difficult. Phasic heart rate
deceleration has also been found in persons who experienced
sleep deprivation and received feedback for their reaction
time performance.

12.4. Perception and sleep loss

The organism assesses its state, determines the resources
needed to complete the task, considers the accessibility of those
resources or whether those resources need to be used for tasks of
higher priority. Without changes in the task requirements sleep
deprived participants, have perceived increases in work load,
and physically fit but fatigued athletes have reported increases in
the perception of the difficulty of a task.

12.5. Objective measures of effort and sleep loss

Sleep deprivation results in objective changes in effort including
reductions in the speed of task completion, work rates and the
number of solutions attempted. A preference for lower effort
tasks, less challenging non-academic tasks, and the selection of
only high priority tasks have been observed. With regard to daily
functioning, reductions have been found in time spent in daily
routine activities, reading for school, and dressing less neatly
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and less fashionably following a night of sleep loss. Sleep
deprived persons are also more likely to break the rules of the
task suggesting the adoption of heuristics which limit expended
energy and effort and in socially-based tasks, sleep deprived
participants use social loafing in a group setting to conserve
energy.

12.6. Subjective effort with sleep loss

Subjective effort is assessed by asking participants to report
their experience of the effort they expended. The wording of
the questions regarding subjective effort expended varies
between laboratories with each question tapping into slightly
different self-report information.

During or following sleep deprivation, participants have
reported increased effort on cognitive vigilance tasks, complex
cognitive tasks and tasks involving physical work. Feelings of
decreasing motivation and increasing effort over the course of
the sleep deprivation period have been described. Reports of
increased subjective effort have not necessarily lead to the
maintenance or improvement of objective performance and
reports of decreased subjective effort have preceded impair-
ments in performance on a vigilance task. Reports of sleepiness
and fatigue have been associated with the selection of lower
difficulty tasks. In applied settings, though effort reports of
participants who had less sleep than they needed were equiva-
lent to those of participants who were rested, those who had
less sleep reported greater sleepiness and fatigue, read less for
school, selected less demanding academic and non-academic
tasks and had increased reaction times. Effort reports have been
found to be unchanged or reduced during sleep deprivation on
vigilance tasks, addition tasks and memory tasks and those
tasks have shown impairments in recall memory, simple
arithmetic, object naming and storytelling.

The differences in effort reports between studies may be a
function of the methods by which subjective effort is mea-
sured, the particular language used to assess the experience
of effort and the abstract nature of the experience of effort. In
addition, how one answers the effort question is based on a
person’s idiosyncratic physical and emotional sensations.

In addition, the demands of the task, the considered impor-
tance of the task, the perceived connection between their effort
and the outcome, and context in which the report effort is being
given impacts the effort response.

The reports of effort appear to be ephemeral, may be
difficult to remember and could depend on the timing of the
subjective effort assessment. An understanding of partici-
pants’ experience of effort would be better understood if
researchers agreed upon a set of uniform questions, asked at
particular time in the assessment and clarified with specific
instructions and tested for reliability.

12.7. Individual differences

Sleep loss affects humans differently with some showing
greater vulnerability in reaction times and decreased activa-
tion in the left parietal areas. Similarly, different participants
respond to the sleep deprivation experience with varying
exertion. Most participants report having expended more
effort when sleep deprived than when fully rested, but some
report having exerting less. Comparisons of the performance
of rodent species suggest differences in response to sleep loss
as well as differences in learning, attention and memory.
These findings suggest genetically based differences in capa-
city and ability to compensate for changed internal and
external environments.
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