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Today, HIV-infected children who have access to treatment face a chronic rather than a progressive and fatal disease. As a result,
new challenges are emerging in the field. Recent lines of evidence outline several factors that can differently affect the ability of
the immune system to fully reconstitute and to mount specific immune responses in children receiving HAART. In this paper,
we review the underlying mechanisms of immune reconstitution after HAART initiation among vertically HIV-infected children
analyzing the possible causes of suboptimal responses.

1. Introduction

Highly active antiretroviral treatment (HAART) has dramat-
ically changed the course of HIV infection, allowing control
of viral replication and the restoration of immune function
[1]. However, the success currently experienced in many
patients receiving HAART remains far from universal or
permanent. Children who have been highly compliant to
HAART at younger ages frequently present adherence prob-
lems during adolescence [2]. Recent data clearly show how,
after five years of continuous HAART, vertically HIV-in-
fected children are at a high risk of developing triple-class
virological failure [3]. New lines of evidence outline several
factors that can differently affect the ability of the immune
system to fully reconstitute and maintain specific immune
responses in children under HAART. A better understanding
of how HAART affects immunity is needed. Here, we review
present knowledge regarding immunity in HIV-infected
children, exploring the impact of HIV viral load, HAART,
timing of initiation, and age on B- and T-cell recovery and
maintenance. In addition, we describe immune responses to

vaccinations as a model system to review possible causes of
immune memory dysfunction and suboptimal reconstitu-
tion in vertically HIV-infected children on HAART.

2. T-Cell Compartment and HAART

With initiation of HAART, immune activation declines in
parallel to the reconstitution of naı̈ve and memory T-cell
subsets [3–6]. Apparently, three mechanisms play a key role
in T cell immune reconstitution process in HIV-infected
individuals. De novo production by the thymus plays a
crucial role in the rise of mostly naı̈ve CD4+ in younger
patients [6–9], whereas an increase in CD4+ T cell half-life
and homeostatic proliferation by the residual memory CD4+

T cells are predominant mechanisms in older subjects [10].
The ability of the immune system to develop and maintain
specific immune responses will depend on the predominance
of one of these mechanisms. In fact, even if an absolute
CD4+ T-cell count can be fully restored, T-cell immune
reconstitution can be “partial” if it is based on the production
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of new CD4+ T-cell or “truncated” if it is mainly from the
remaining repertoire of CD4+ T cell [11]. Factors such as
age, viremia, timing of HAART initiation and involution of
the thymus can play a critical role in this process leading
to quantitative and qualitative differences in the immune
reconstitution.

3. Factors Leading to Suboptimal
Reconstitution of T-Cell Compartment in
HIV-Infected Children on HAART

3.1. HIV Viremia. HIV causes qualitative and quantitative
dysfunctions of T-cell compartment in both CD4+ and CD8+

subsets. Under viral replication, naı̈ve CD4+ and CD8+ T-
cells are stimulated to enter the circulation and differen-
tiate into effector memory (CD45RA+ CCR7−) and effec-
tor phenotype (CD45RA− CCR7−), while central memory
(CD45RA− CCR7+) compartment is depleted [12–14]. How-
ever, persistent exposure to high levels of viremia results in a
dysfunctional immune-specific response to HIV leading to
exhaustion of naı̈ve CD8 T-cells and skewed maturation of
memory subsets [15, 16]. Virus-specific CD8 T-cell exhaus-
tion is characterized by the incremental loss of proliferative
and effectors properties [17, 18]. Moreover, a continued
antigenic stimulation induces an increased expression of
surface activation markers, such as HLA-DR and CD38
[19, 20]. A positive relation between the expression of these
markers and CD4+ and CD8+ depletion has been reported
[21] and directly related to clinical disease progression in
both HIV-infected adults and infants [22, 23]. Persistent
HIV viremia has also been related to an increase in T cell
apoptosis. A higher expression of the key regulatory marker
of apoptosis (CD95) on CD4+ has been described during
HIV infection [24–26]. Conversely, a significant decrease in
CD95 expression, with the reduction of CD4+ and CD8+ T
cells apoptosis, has been observed after HAART initiation in
HIV-infected children and adolescents [27]. However, since
the reduced apoptosis is restricted to the CD45RO-positive
(primed/memory) T-cells subpopulation, the simultaneous
increase in circulating resting/naı̈ve T cells observed in pe-
diatric patients can be explained by the new generation of
naı̈ve T cells from the thymus.

3.2. Quality of Reconstitution: Age Makes the Difference. Pre-
vious studies among transplant and chemotherapy recipients
indicated that age directly influences immune reconstitution
[28, 29]. In these patients, CD4+ T naı̈ve or memory expan-
sion specifically contributing to the immune reconstitution
ultimately differs according to age.

Similarly, a direct relation between the individuals age,
naı̈ve T-cell emigration, and memory T-cell expansion has
also been demonstrated in vertically HIV-infected children
after HAART initiation [30–33]. Since the patient’s age can
have an impact on immune reconstitution after HAART
initiation, the age of HIV transmission and timing of HAART
initiation must be carefully considered [34]. In a cohort of
265 HIV-infected children naı̈ve to treatment, Walker et al.

found that the short-term (6 months) CD4% increase after
HAART initiation was positively related to younger age and
inversely related to pre-HAART CD4% [35]. In addition,
several authors reported that immune restoration in infants
mainly involves naı̈ve cells, while it mostly relies on expan-
sion of memory T cells in older children [30, 33, 35].
Indeed immune recovery that follows HAART initiation is
faster in younger children compared to older ones or adults
[36–39]. As shown by multiple studies analyzing thymic
output using T-cell receptor excision circle (TRECs) assays
[40], thymic function plays a pivotal role in this process
[41]. Physiologically, thymus function is inversely related
to age. It has been shown that HIV-1-infected children
present lower TREC values than health-matched controls
and a significant increase in parallel with CD4+ count
after HAART initiation, particularly at younger ages [42].
Thus, to warrant an optimal immune reconstitution, WHO
2010 recommendations suggest the initiation of HAART in
all HIV-infected children between two and five years with
either a CD4+ count of 750 cell/mm3 or below, or a CD4+

percentage of 25 or below, whichever is lower, irrespective of
clinical status [43].

The relation between age and control of viremia has also
been extensively addressed by several authors [30, 34, 39, 44].
Untreated newborns and infants present an higher peak of
viremia during acute infection. In addition, younger patient’s
age has been related to the slower achievement of viral con-
trol compared to older one despite effective HAART [45,
46]. The immaturity of the immune system, together with
differences in pharmacokinetics and pharmacodynamics of
antiviral drugs, may account for a less efficient containment
of HIV viral replication during infancy [30].

3.3. Other Possible Factors Influencing Suboptimal

T-Cell Responses

3.3.1. Use of Different Antiretroviral Drugs Classes. First-
line boosted protease inhibitors (PI) regimens have been
recently shown to be equally effective than Nonnucleoside
reverse transcriptase inhibitors (NNRTI) ones in terms of
immune reconstitution and long-term control of viremia
in HIV-infected children [36]. However, small observational
studies in vertically HIV-infected children show increased
HIV-specific cellular immune responses after switching from
a PI to an NNRTI-based regimen [47, 48]. A possible relation
between the use of different antiretroviral drug classes and
the ability of the immune system to mount T-cell-specific
immune responses has been proposed. Several authors
have suggested that PI may cause immune suppression by
interfering with antigen presentation. In vitro studies [49]
showed the ability of PI drugs to modulate proteasome
peptidase activity and cause intracellular accumulation of
ubiquitin tagged proteins. Increased HIV-specific immune
T-cell response, in terms of lymphoproliferation and intra-
cellular IFN-γ and tumor necrosis factor-α production, has
been described in HIV-infected children who changed to a
PI-sparing therapy owing to failure of viral control or due to
toxicity [47, 48].
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Table 1: Factors leading to suboptimal immune reconstitution in vertically HIV infected children.
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3.3.2. Levels of IL-7. The IL-7/IL-7R pathway has been shown
to play a key role in sustaining peripheral CD4+ T-cell ho-
meostasis [50, 51].

High levels of IL-7 were demonstrated among HIV-in-
fected adults in association with higher CD4+ depletion [52,
53]. However, data on IL-7 activity in HIV-infected children
are discordant and still unclear. The presence of a better
higher thymus activity at younger ages may lead to a faster
T-cell turnover, resulting in different IL-7 consumption
[54, 55]. Therefore, lower IL-7 levels observed among HIV-
infected children may result from an increased consumption
of IL-7 by newly produced T cells in response to active viral
replication. In line with this observation, a strong relation
between low levels of IL-7 and extent of HIV viral replication
has also been established [56]. Taken together, this may
suggest that low levels of IL-7 could be a predictable marker
of virological failure in HIV-infected children [55, 56].

4. B-Cells Compartment and HAART

A decline in total CD27+ memory B-cells, hypergamma-
globulinemia [57–59], impaired reactivity or loss of specific
antibodies gained during the normal vaccination schedule,
increased expression of markers activation [60–62], high
spontaneous autoantibody production in vitro [63], and
an increased incidence of B-cell malignancies [64] have all
been reported as direct and indirect consequences of HIV
infection [65] (Table 1).

Hypergammaglobulinemia reflects a generalized HIV-1-
driven polyclonal B-cell activation and was shown to be
directly related to viremia and inversely related to CD4%
[66]. After virologic suppression with HAART, CD4+ T-
cell count increases, hypergammaglobulinemia decreases to

normal levels, and an increase in the absolute CD19+ B-cell
count has been observed [67–71].

Furthermore, HAART permits the reduction of B-
cells subpopulations that are abnormally expanded during
ongoing HIV replication and are prone to apoptosis [72]. In
a previous study, we observed a decrease of immature transi-
tional B-cells after achievement of viral suppression through
HAART in vertically infected children [54]. Similarly, an
expanded population of immature transitional B-cells during
uncontrolled viremia and their normalization after HAART
initiation has been described in adults [61, 73].

These results suggest that effective HAART permits the
normalization of B-cell subpopulations and apoptosis-prone
B-cell reduction; however, the number and magnitude of B-
cell alterations and their qualitative function caused by HIV
replication cannot be fully restored by HAART [74, 75].

The following is a review of the factors leading to a
suboptimal response of B-cell compartment, focusing on the
impaired ability of the immune system to develop an effective
B-cell response to infectious agents or vaccinations in HIV-
infected children on HAART.

5. Factors Leading to Suboptimal
Response of B-Cell Compartment in
HIV-Infected Children on HAART

5.1. The Impact of Active HIV Replication

5.1.1. Hypergammaglobulinemia. Aberrant activation of the
B-cell compartment and hypergammaglobulinemia were
among the first recognized characteristic of HIV-1-infected
individuals [76, 77]. Although not yet fully matured in chil-
dren, B-cells are already subject to HIV-induced immune
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activation. Hypergammaglobulinemia and reduced antigen-
specific humoral responses in HIV-infected children were
first described by Bernstein LJ in 1985 [78]. However, mech-
anisms responsible for hyperimmunoglobulinemia in HIV
infection are unclear. An increased frequency of B-cells
secreting high levels of Ig during viremia has been attributed
to the expansion of the CD21low B-cell subpopulation in
the peripheral blood of HIV-viremic patients. In addition,
it has been recently shown that the ligation of virion-
associated host CD40L with the cell surface CD40 is sufficient
to efficiently activate B-cells in a polyclonal fashion [79].
Whereas it has been reported that viral proteins, such as
Nef [80, 81] and gp120 [82, 83], can act as triggers for
Ig production and dysfunctional switch through a CD40-
independent pathway.

5.1.2. Abnormal Expansion of B Cell Subpopulations. During
HIV infection, different B-cell subpopulations are irrevers-
ibly damaged, and markers present on their surface make
them dysfunctional and prone to intrinsic and extrinsic
modes of apoptosis [84]. In the periphery-active HIV,
replication leads to differentiation to plasmablasts [64] and
immature transitional B cells with an abnormal expansion of
exhausted B-cell subpopulation.

Immature-transitional B-cells (CD19+ CD10+ CD24high

CD38high) represent a critical link between immature B-cells
in the bone marrow and mature naı̈ve B-cells, which differen-
tiate into switched memory B-cells, and in turn become over-
represented. This B-cell subpopulation is increased during
active HIV replication and has been shown to be related to
high levels of viremia, in parallel with a decrease of memory
B-cell subset in vertically HIV-infected children [63].

Plasmablasts (CD10− and CD21low) show an increased
expression of the cell cycle Ki-67 immune proliferation
marker and of the death receptor CD95+, which have been
reported to be related to apoptosis [61, 85]. In addition,
a large proportion of expanded B-cells in HIV-viremic
individuals includes a subset of “tissue-like,” exhausted B-
cells expressing the Fc-receptor-like 4 (FCRL4) and low levels
of CD21+ [86, 87]. This subset presents increased expres-
sion of multiple inhibitory receptors, altered expression of
homing receptors, and reduced proliferative potential [63].
Expansion of all these subsets occurs during active HIV repli-
cation and may contribute to the development of suboptimal
immune responses.

5.1.3. Loss of Resting Memory B Cell. The persistent high
viral replication has been reported to directly affect the B-
cell compartment [88, 89]. HIV-infected children show a
significant loss of relative and absolute numbers of CD27+

memory B cells [90]. The loss of mature B cells (CD19+

CD27+) impairs long-term maintenance of protective anti-
bodies titers [91–93] and has been shown to persist despite
successful HAART [92, 94, 95]. However, the loss of antigen-
specific memory B-cell responses begins in the early stages
of HIV infection and becomes increasingly evident as the
infection progresses to the chronic stage. Indeed, we have
reported [92] that numbers of measles-specific memory B

cells declined rapidly in vertically infected children who
started HAART later than 1 year after birth. Thus, early initi-
ation of HAART may preserve the normal development and
long-term maintenance of the memory B cells generated in
response to childhood immunizations.

5.1.4. IL-21 Downregulation. The IL-21/IL-21R pathway
has recently been identified to play a critical role in the
development and maintenance of memory B-cell responses.
IL-21 is a T-cell-derived pleiotropic cytokine whose receptor
(IL-21R) is expressed by NK, T and B cells, and it seems to
play a key role in the activation, expansion, and survival of
these cells [96, 97]. Impaired antigen specific IL-21 secretion
by CD4+ T cells in progressive HIV infection has been
reported [98]. In a recent study, upregulation of IL-21R on
B-cells and IL-21 secretion were proposed as a hallmark
to identify responders to H1N1 vaccination among HIV-
infected adults [98]. However, since IL-21 is produced mainly
from CD4+ cells, in particular from T follicular helper
cells [99], reconstitution of this subset of CD4 T cells with
HAART in HIV-infected patients may be critically important
to restoring B-cell function. Comparable studies addressing
the role of IL-21 in determining the effectiveness of vaccine-
induced immune responses in HIV chronically and acutely
infected children will contribute to further understand the
mechanisms leading to suboptimal immune response in
this very particular group of HIV-infected patients. Further-
more, IL-21 production appears to be crucial for antiviral
responses. For instance, it has been recently reported in a
mouse model, that younger mice, which presented reduced
IL-21 levels, showed a suboptimal generation of HBV-
specific CD8+ T-cell and B-cell responses [100].

5.1.5. Downregulation of BAFF and APRIL. Many studies
have identified T-independent mechanisms of modulation
of antibodies production [101–103]. Pallikkuth et al. have
recently found that two innate immune factors, the B-
cell Activating Factor (BAFF) and A Proliferation Inducing
Ligand (APRIL), were present at lower levels in HIV-
infected adults on HAART not responding to H1N1 vaccine
compared to responders [104]. Future efforts are required to
dissect the role of T independent immune factors including
BAFF and APRIL, with the aim to limit Ab response failure
to vaccinations particularly in clinical settings of impaired T-
cell Help such as HIV/AIDS, in both adults and infants.

5.1.6. Loss of Maintenance of Protective Antibody Titers.
Both primary and secondary Ab responses are impaired
during HIV infection, leading to loss in the maintenance
of protective antibody titers which may not be restored by
HAART [105]. A recent meta-analysis identified 38 studies in
which immune-specific responses were analyzed in vertically
infected children [106]. In general, fewer HIV-infected chil-
dren with achieved protective immunity might experience
greater and more rapid waning of protective immunity.
Loss of protective humoral responses has been reported
in infected children despite successful HAART [74, 77].
Persistence of measles antibody titers (MAt) (>50 mIU/mL
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cut-off value for specific immune response) [107], represents
a good experimental model to analyze the longevity of
humoral responses in HIV vertically infected children [108].
Protective levels of MAt have been shown to correlate with
memory B-cells numbers in healthy individuals and to
persist for the entire life span after successful immunization
[107]. Generally, impaired development and maintenance
of protective MAt has been reported in vertically infected
children [92, 107]. As previously discussed, the decline of
resting memory B-cells that occurs during the early stages
of HIV infection may be an important pathogenic mecha-
nism linked to the low level of measles-specific antibodies
reported in HIV-infected children. In addition, persistent
viral replication at the time of immunization can impair the
generation and maintenance of protective Ab titers. Reduced
or absent protective Ab titers versus HBV [109] and A H1N1
[110] have been reported in HIV-infected children, who were
viremic at the time of vaccination.

Loss of total CD4+ cells count can also play a crucial
role in this process. Noteworthy, emerging data point out the
importance of specific CD4+ T cell subsets depletion such
as follicular CCR5 helper cell [99], Tregs, and Th17 which
can play a crucial role in the induction and maintenance of
protective immune responses [111]. Reduction of follicular
CCR5 helper cell has been recently related to lower antibody
responses to H1N1 vaccination in HIV-infected individuals.
Similarly, studies on pandemic H1N1 have shown that
specific cellular immune-mediated surveillance is crucially
modulated by Th17 and Tregs. Cellular immune response to
the influenza virus appears to be lower in HIV-seropositive
patients than general population [111].

Reduction of Th17/Treg balance was found in untreated
HIV-infected adults and increased after twelve months of
HAART initiation as well as the IL-17 level [112]. Similarly,
a significant loss of IL-17 producing PBMC was also found
in viremic HIV-infected children [113]. A longitudinal
assessment of Th17 cell dynamic in the peripheral blood
is needed in order to determine the influence of timing of
HAART initiation in preserving such subset in HIV-infected
children.

5.2. Timing of Treatment

5.2.1. Timing of HAART Initiation and Specific Responses
to Vaccination. The loss of specific B-cell memory clones
occurs during the early stages of HIV infection. Thus, timing
of HAART initiation seems to be crucial, since it may result
in a different grade of disturbance of B-cell immune recon-
stitution, especially in pediatric patients. However, very few
studies have addressed this issue in childhood [92, 114].
We previously showed that children who began HAART
within the first year of life presented levels of memory
B-cell percentages comparable to healthy uninfected age-
matched controls. Conversely, children who began treatment
after the first year of life had significantly lower percentages
of memory B-cells compared to healthy controls [92].
Furthermore, it was shown that maintenance of resting
memory B cell number is related to a better preservation

of B-cell memory functionality. Indeed patients treated
early maintained protective levels of measles and tetanus
antibody titers, mirroring the preservation of B-cell memory
repertoire as suggested by ELISpot analysis (Figure 1).

Similarly, early initiation of HAART in infected adults
has been shown to prevent irreversible B-cell compartment
damage resulting in a more functional profile of memory B-
cell responses to HIV and non-HIV antigens when compared
with chronic-treated HIV-infected individuals [108]. These
data suggest that an early initiation of HAART is needed
to preserve B cell compartment and obtaining an optimal
response upon vaccination [115]. Whether or not HIV ver-
tically infected children starting HAART later than the first
year of life need different vaccine schedule is still debated
[92, 105].

5.2.2. Timing of HAART Initiation and Specific HIV Response.
Timing of HAART initiation can influence the development
of HIV-specific immune responses [116–120]. Some authors
suggest that a rapid suppression of viral replication during
a period of relative immunological immaturity might crit-
ically hamper the priming and expansion of virus-specific
immune responses in vertically infected children. In fact,
it has been shown that vertically infected children starting
HAART within the first 3 months achieved long-term viral
suppression, but did not develop HIV-specific antibodies and
remained seronegative [30, 121–123]. In line with these data,
initiation of HAART during acute HIV infection in adults
results in incomplete or absent specific Ab HIV responses
[124]. In addition, absent or suboptimal HIV-specific lym-
phoproliferative and cytotoxic immune responses have been
reported by several authors [117, 118, 125–128]. Thus,
the control of viremia achieved during different phases
of the infection (acute versus chronic) can result in the
development of suboptimal or strong HIV-specific immune
responses (Figure 1).

6. Conclusive Remarks

Vaccination is certainly among the most effective clinical
interventions aimed at preventing infectious disease. How-
ever, the immune responses obtained following immuniza-
tion are inadequate in HIV-infected children who present
a suboptimal immune reconstitution. The capacity of the
immune individuals to respond to vaccinations depends on
diverse immunogenetic factors, but also on the degree of
immunologic impairment at the time of immunization. The
majority of vertically HIV-infected children who have access
to antiviral treatment nowadays live into adolescence and
adulthood. A large proportion of these children might be
susceptible to vaccine-preventable childhood disease. Today,
many uncertainties remain about the optimal strategies for
identifying such susceptible individuals, and for offering
them sustained protection through an appropriate immu-
nization schedule, both in terms of timing and number of
vaccine doses [129].

According to the findings presented below, we can high-
light two main factors. First, HAART should be administered
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Figure 1: How timing of HAART initiation impact on B- and T-cell compartment and on viral replication.

to children during the primary HIV infection to preserve the
normal development of specific immune responses. Second,
control of viremia should be achieved prior to performing
any vaccination since HAART improves the capacity to
establish and maintain long-term memory responses in indi-
viduals with HIV.

Finally, we also believe that providing an in-depth under-
standing of the factors that regulate the development of
protective immune responses is the sole pathway for ratio-
nally devising novel vaccination strategies against emerging

infections, particularly in a large group of immune compro-
mised patients, where maintenance of protective immunity
clearly remains a major clinical challenge.
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