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Human blood contains cell-free DNA (cfDNA), with circulating tumor-derived DNAs (ctDNAs)
widely used in cancer diagnosis and treatment. However, it is still difficult to efficiently and
accurately identify and distinguish specific ctDNAs from normal cfDNA in cancer patient blood
samples. In this study, ctDNA fragment length distribution analysis showed that ctDNA
fragments are frequently shorter than the normal cfDNAs, which is consistent with previous
findings. Interestingly, the ctDNA fragment length was found to be partially associated with the
mutant allele frequency, with a lowmutant allele frequency (< ~0.6%) associated with a longer
ctDNA fragment length when compared to normal cfDNAs. The findings of this study
contribute to improving the detection of low-frequency tumor mutations.

Keywords: low-frequency tumor mutation, cell-free DNA, circulating tumor-derived DNA, fragment length
enrichment, mutant allele frequency, next generation sequencing
INTRODUCTION

In modern medicine, liquid biopsies are widely used in prenatal diagnoses and cancer treatment.
When utilizing a liquid biopsy, circulating cell-free DNA (cfDNA), circulating tumor cells (CTCs),
or exosomes are isolated for evaluation (Bardelli and Pantel, 2017; Wan et al., 2017; Siravegna et al.,
2017). Of these, circulating tumor-derived DNA (ctDNA) is widely utilized as a tumor biomarker in
translational and clinical research (Diaz and Bardelli, 2014; Donaldson and Park, 2018), while fetal
cfDNA obtained frommaternal blood is widely used as a noninvasive method for prenatal diagnoses
(Lun et al., 2008; Lo et al., 2010; Yu et al., 2014; Sun et al., 2018).

About 30 years ago, Stroun et al. first discovered that cancer patient blood samples contain cfDNA
of cancer origin (Stroun et al., 1989; Thierry et al., 2016). In the following decades, ctDNA has been
gradually developed as a clinical tool for cancer diagnosis and treatment, and has even been used as a
prognostic or predictive factor (Mao et al., 1994; Lecomte et al., 2002; Kimura, 2006; Diehl et al., 2008).
Currently, the use of ctDNA detection in cancer therapy has been approved by the US Food and Drug
Administration as a treatment determinant (osimertinib or erlotinib) in non-small-cell lung carcinoma
(NSCLC) patients with an EGFRmutation in the event that a tumor biopsy cannot be performed (US
Food & Drug Administration, 2016). The application of ctDNA in cancer therapy is reliant on precise
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polymerase chain reaction (PCR)-based technologies, such as
droplet digital PCR (ddPCR) or amplification refractory
mutation system (ARMS)-PCR, and deep-sequencing
technologies; these techniques aid in distinguishing ctDNAs
from other normal cfDNAs within the plasma and enable
hotspot mutation detection within cancer driver genes (Taly
et al., 2013; Newman et al., 2014; Frenel et al., 2015; Azizi et al.,
2018). However, ctDNAs are usually present in low abundance
relative to the normally occurring cfDNAs derived from normal
cells, particularly in non-metastatic solid tumors (Tug et al., 2014;
Siravegna et al., 2017). Consequently, there is an urgent need to
reliably distinguish ctDNAs from normal cfDNA to improve the
accuracy of identifying driver gene mutations.

Recently, tumor-derived ctDNAs have been shown to vary in
size and are shorter than normal cfDNAs in healthy people
(Umetani et al., 2006; Thierry et al., 2010; Mouliere et al., 2011;
Mouliere et al., 2013). This trend was also observed during
pregnancy, with fetal cfDNA usually of a different fragment size
than the maternal cfDNA (Lun et al., 2008; Lo et al., 2010).
Furthermore, in one study examining ctDNA length distributions
in hepatocellular carcinoma (HCC) patients, copy number
aberrations were leveraged and showed that high-concentration
ctDNA fractions were more fragmented, while low-concentration
fractions were paradoxically longer (Jiang et al., 2015; Mouliere and
Rosenfeld, 2015; Jiang and Lo, 2016). In another study, ctDNAs
were found to be consistently shorter than normal cfDNA, in both
animal xenograft models and clinical plasma samples (Underhill
et al., 2016). Additionally, mutant ctDNA fragments from tumor
patients were always shorter than wild-type cfDNA fragments from
healthy donors, with mutant alleles more commonly having shorter
fragment lengths, something that could potentially be exploited to
improve ctDNA detection (Underhill et al., 2016; Hellwig et al.,
2018). Moreover, a later study confirmed that this size difference
could be exploited to enhance sensitivity when monitoring ctDNAs
and for noninvasive genomic analysis of various cancers (Mouliere
et al., 2018). However, few studies have examined the impact of
mutant allele frequency on the size distribution of ctDNA
fragments, and most studies were conducted in cancer patients
with relatively high mutant allele frequencies.

Thus, the aim of this study was to examine ctDNA fragment
distributions in patients with low mutant allele frequencies and
determine whether the ctDNA fragment length is affected by the
mutant allele frequency. This was accomplished by utilizing
blood samples from cancer patients with a variety of different
histological types and stages. Key driver gene mutation
frequencies were determined using deep-sequencing
technologies and ddPCR, and fragment length differences
between mutant ctDNAs and normal cfDNAs obtained from
the cancer patient samples were examined.
MATERIALS AND METHODS

Sample Collection
All 105 samples (male: 49.52%, female: 50.48%) were obtained
from lung cancer patients from Chifeng Municipal Hospital. All
Frontiers in Genetics | www.frontiersin.org 2
patients provided informed written consent before de-
identification. The median age of the patients was 63.5 years
old (range from 36 to 85 years old). Our research was approved
by the Medical Research Ethics Committee of Chifeng Municipal
Hospital (Ethics [2018] No. 017).

Next-Generation Sequencing (NGS) Library
Preparation, Sequencing, and
Bioinformatics
Cell-free DNA was extracted using a QIAamp Circulating
Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The extracted DNA (20 ng/sample)
was then used to build libraries using Accel-NGS® 2S Plus DNA
Library Kits (96 reactions; Swift BioSciences, Ann Arbor, MI,
USA). Customized probes were obtained from Integrated DNA
Technologies (IDT, Skokie, IL, USA) and were used for
hybridization capture. All cfDNA libraries utilized a 38-hotspot
gene panel (Supplementary File) and were quantified using a
Universal Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, USA) on an ABI 7500 Real-Time PCR
system (Applied Biosystems, Waltham, MA, USA). Sample
quality was evaluated using a high sensitivity DNA kit (Agilent
Technologies, Santa Clara, CA, USA) with an Agilent 2100
Bioanalyzer as per the manufacturer’s instructions. NGS with
fusion detection was performed using a NextSeq 500/550 High
Output v2 kit with a NextSeq 500 sequencer (Illumina, San
Diego, CA, USA) for 302 cycles, with standing paired-end reads
of 151 bp (average sequencing depth was ~2,164X, details in the
Supplementary File).

The FASTQ reads were collapsed into unique observations
based on barcodes using CASAVA (v1.8.2) software. Low-quality
and adapter-contaminated reads were removed from the raw
reads using Cutadapt (v1.12) and aligned to the Hg19 reference
genome using the Burrow-Wheeler Aligner for short-read
alignment (bwa aln; 0.7.12-r1039). Paired-end reads with
hotspots were extracted from the paired-end alignment
information (column 9th) in BAM format using Samtools
(v0.1.19-44428cd), and the corresponding insert size
information was extracted. Finally, the extracted paired-end
reads were aligned to the Hg19 reference genome again using
SOAP (2.21), and hotspot mutation fragment lengths and wild
fragment lengths were calculated with the alignment mismatch
information (column 11th) in the alignment files.

Digital Droplet PCR
EGFR-T790M, EGFR-L858R, BRAF-V600E, PIK3CA-E545K,
KRAS-G12C, and KRAS-G12V mutant allele frequencies were
determined using a Digital Droplet PCR system (Bio-Rad
Laboratories, Inc., Hercules, CA, USA), with a droplet size of 1
nL in a total reaction volume of 20 mL, with ~20 ng of cfDNA
library utilized. All primers and probes were synthesized by IDT
(Skokie, IL, USA; Table 1). Droplet counts were determined
using the QuantaSoft software (Bio-Rad).

For the PIK3CA-E545K (n = 1), KRAS-G12C (n = 3), KRAS-
G12V (n = 1), EGFR-T790M (n = 5), and EGFR-L858R (n = 1)
samples, amplified libraries were utilized prior to size selection to
February 2020 | Volume 11 | Article 147
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define gates for wild-type and mutation droplet populations.
Libraries were constructed using the obtained DNA (~20 ng) and
a Rapid DNA Lib Prep kit (ABclonal, Woburn, MA, USA). The
obtained libraries (~1.2 mg) were then separated using 2% agarose
gel electrophoresis and bands between 130–160 bp and 160–230
bp were extracted using a QIAquick Gel Extraction kit (Qiagen).
All of the selected fragment size libraries were then validated using
ddPCR as described above (Supplementary File).
Frontiers in Genetics | www.frontiersin.org 3
RESULTS

Comparison of cfDNA Fragment Sizes in
Cancer Patient Plasma Samples
Blood samples were obtained from cancer patients with defined
driver gene hotspot mutations, including EGFR-T790M (n = 32),
EGFR-L858R (n = 28), BRAF-V600E (n = 13), PI3KCA-E545K
(n = 13), KRAS-G12C (n = 13), and KRAS-G12V (n = 6). The
cfDNA-sequencing libraries were analyzed by both NGS and
ddPCR to precisely detect the mutant allele frequencies of these
six hotspots in each cancer patient (Figure 1). Some hotspot
mutant allele frequencies were more variable, such as EGFR-
T790M (0.11–74.75%), EGFR-L858R (0.15–35.77%), PI3KCA-
E545K (0.10–21.67%), and KRAS-G12C (0.10–33.81%; Table 2).
Furthermore, some hotspot allele frequencies within these driver
genes were relatively low, including BRAF-V600E (0.10–0.30%)
and KRAS-G12V (0.11–1.26%; Table 2), which could be
explained by examining samples at different tumor stages and
of different histological types collectively. Next, the cfDNA-
sequencing libraries were sequenced, and size differences
between plasma ctDNA and normal cfDNA were compared.

Mutant Alleles Have a Shorter Fragment
Length Than the Wild-Type Alleles
In addition to examining cancer patient mutant allele
frequencies, whole cfDNA fragment length distributions were
globally observed. As expected, the mutant ctDNA fragments
were generally shorter than the normal cfDNAs (Figures 2 and
3). In patients with a low mutation frequency, the ctDNA
TABLE 1 | Primers and probes used in droplet digital PCR experiments.

Mutation Forward primer Reverse primer Wild probe Mutation probe

T790M GCCTGCTGGGCATCTG TCTTTGTGTTCCCGGACATAGTC VIC-
ATGAGCTGCGTGATGAG-
MGB-NFQ

FAM-
ATGAGCTGCATGATGAG-
MGB-NFQ

L858R GCAGCATGTCAAGATCACAGATT CCTCCTTCTGCATGGTATTCTTTCT VIC-
AGTTTGGCCAGCCCAA-
MGB-NFQ

FAM-
AGTTTGGCCCGCCCAA-
MGB-NFQ

V600E CATGAAGACCTCACAGTAAAAATAGGTGAT TGGGACCCACTCCATCGA VIC-
CTAGCTACAGTGAAATC-
MGB-NFQ

FAM-
TAGCTACAGAGAAATC-
MGB-NFQ

E545K CACTTACCTCTGACTCCATAGAAAATCTT AAAGCAATTACTACACGATATCCTCTCTC HEX-TCCTGCTCAGTGATT-
MGB-NFQ

FAM-CTCCTGCTTAGTGATT-
MGB-NFQ

G12 G12V AATTAGATGTATCGTCAAGGCACTCTT GCTGAAAATGACTGAATATAAACTTGTGG VIC-TACGCCACCAGCTC-
MGB-NFQ

FAM-TACGCCAACAGCTC-
MGB-NFQ

G12C FAM-TACGCCACAAGCTCT-
MGB-NFQ
February 2
FIGURE 1 | Experimental design flow.
TABLE 2 | Summary of the mutation frequencies based on next generation sequencing.

T790M L858R V600E E545K G12C G12V

Validation library number 32 28 13 13 13 6
Low mutation frequency 0.1–1% 16 11 13 11 4 5
Medium mutation frequency 1–10% 10 12 0 1 7 1
High-mutation frequency 10–100% 6 5 0 1 2 0
Mutation frequency distribution 0.11–74.75% 0.15–35.77% 0.10–0.30% 0.10–21.67% 0.10–33.81% 0.11–1.26%
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 | Article 147

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Liu
et

al.
ctD

N
A
Fragm

ent
Enrichm

ent

Frontiers
in

G
enetics

|
w
w
w
.frontiersin.org

February
2020

|
Volum

e
11

|
A
rticle

147
4

FIGURE 2 | Fragment length distributions of cfDNAs from 105 cancer patient blood samples.

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Liu et al. ctDNA Fragment Enrichment
fragment length was longer than the normal cfDNAs, such as
BRAF-V600E (0.10–0.30%). However, this trend was not
observed in the four other DNA fragment size distribution,
including EGFR-T790M (0.11–74.75%), EGFR-L858R (0.15–
35.77%), PI3KCA-E545K (0.10–21.67%), KRAS-G12V (0.11–
1.26%) or KRAS-G12C (0.10–33.81%; Figure 3).

Longer Fragment Lengths in Mutant
ctDNAs With a Low Mutation Frequency
Fragment size differences between cancer patient ctDNAs and
normal cfDNAs were further examined in conjunction with a
low, medium, or high mutant allele frequency. In fragments
associated with a low mutant allele frequency, the ctDNA
fragments were longer than the normal cfDNAs (Figure 4),
such as EGFR-T790M (0.22 and 0.21%). However, in ctDNAs
with a higher mutant allele frequency, such as EGFR-T790M
(74.75%), or a medium frequency, such as EGFR-T790M
(4.57%), fragment lengths were shorter than the normal
cfDNAs (Figure 5 and Table 3).

Low-Frequency Mutations Are Associated
With Large Fragment Sizes
Different fragment sizes were observed among the mutant
ctDNAs, including long ctDNA (longer than normal cfDNAs),
normal ctDNA (comparable to normal cfDNA lengths), and
short ctDNA (shorter than normal cfDNAs). Within these three
Frontiers in Genetics | www.frontiersin.org 5
groups, the mutant allele frequency distributions were examined
and showed that a low mutation frequency was commonly
associated with a long ctDNA fragment length, while normal
and short ctDNAs were not (Figure 6).

Enrichment of Longer ctDNA Fragments
Could Improve the Detection of Low-
Frequency Mutations
After discovering that a low-frequency is associated with a longer
ctDNA fragment size, this study aimed to determine if enriching
longer cfDNA fragments could increase the mutation frequency in
blood samples with a low mutant allele frequency. In one patient
with a high frequency for EGFR-T790M (44.53%), cfDNA was
extracted and different fragment sizes were obtained. To further
detect the EGFR-T790M frequency, DNA libraries comprising two
different DNA fragment sizes were examined using ddPCR. The
EGFR-T790M frequency in a library with a fragment length
between 160 and 230 bp (42.20%) was lower than the library
with a fragment size between 130–160 bp (46.40%; Figure 7A).
This was consistent with the findings presented above. Conversely,
a cfDNA sample was obtained from a patient with a low EGFR-
T790M frequency (0.54%) and different fragment sizes were
collected and analyzed. In the library with fragment sizes
between 160–230 bp, the EGFR-T790M frequency was increased
(1.04%) when compared to the library with fragment sizes between
130–160 bp (0.30%; Figure 7B).
FIGURE 3 | Comparison of fragment length sizes between ctDNAs and normal cfDNAs.
February 2020 | Volume 11 | Article 147
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DISCUSSION

This study showed that a consistent fragment length difference
occurs when comparing ctDNAs and normal cfDNA, with the
mutant allele almost always associated with a shorter ctDNA
fragment size, which is consistent with previous findings (Jiang
et al., 2015; Underhill et al., 2016; Mouliere et al., 2018).
However, some mutant ctDNAs were found to have a longer
Frontiers in Genetics | www.frontiersin.org 7
fragment size when compared to normal cfDNAs and were
associated with a low mutant allele frequency, which has not
been previously reported. Furthermore, this study showed that in
cancer patient plasma samples, the ctDNA fragment length is
associated with the mutant allele frequency and may even be
affected by it.

Here, blood samples were obtained from 105 patients that
contained different cancer driver gene mutations, such as NSCLC
FIGURE 5 | Fragment length distributions of cancer patient ctDNAs and normal cfDNAs with high, medium, or low EGFR-T790M mutant allele frequencies.
TABLE 3 | Fragment length distributions of cancer patient ctDNAs and normal cfDNAs with high, medium, or low EGFR-T790M mutant allele frequencies.

Mutation type NGS (%) ddPCR (%) Description Mutation peak Wild peak Mutation fragment median Wild fragment median

T790M 74.75 69.33 Short 146 171 164 172
T790M 4.57 5.55 Long 169/171 165 169.5 169
T790M 0.22 0.26 Other 158/191 169 191 168
V600E 0.23 0.17 Long 214 167 214 168
February 2020 |
 Volume 11 | Article 147
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FIGURE 6 | Mutant allele frequency distributions based on ctDNA fragment length. (A) Relationship between the mutation fragment size peak and the mutation
frequency. (B) Relationship between the median mutation fragment size peak and the mutation frequency.
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FIGURE 7 | Further validation of an association between fragment size and frequency using ddPCR. Examination of different fragment size libraries from a patient
with (A) a high EGFR-T790M frequency (44.53%) and from a patient with (B) a low EGFR-T790M frequency (0.54%) using ddPCR.
Frontiers in Genetics | www.frontiersin.org February 2020 | Volume 11 | Article 1479

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Liu et al. ctDNA Fragment Enrichment
patients with an EGFR gene mutation and colorectal cancer
patients with a BRAF mutation. In general, mutant ctDNA
fragments were found to be much shorter than normal cfDNA
fragments regardless of the histological type or driver gene
mutation. However, ctDNA fragments with a low mutant allele
frequency were found to be longer than normal cfDNA
fragments. In another study, longer mutant ctDNA fragments
were also detected in cancer patient blood samples, but this
phenomenon could not be explained at the time (Mouliere et al.,
2018). The findings presented herein may partially explain the
origin of these longer mutant ctDNA fragments.

In a previous study examining HCC plasma samples, ctDNAs
with low fractional concentrations were also found to have a
longer size distribution relative to the healthy controls (Jiang
et al., 2015), which is similar to the observations in this study.
However, the previous study only compared fragment length
differences between cancer patients and healthy donors, and did
not distinguish mutant ctDNA fragments from normal cfDNAs
due to experimental design limitations. Taken together, these
findings could suggest that early-stage tumors tend to release
longer ctDNA fragments at a low-frequency, but this hypothesis
requires further examination.

Mutant ctDNA fragments with a low allele frequency are hard
to be accurately detected. Here, two advanced technologies to
detect mutant ctDNA fragments and monitor mutant allele
frequency were employed to overcome this obstacle. The
cfDNA fragment sizes were accurately determined using deep-
sequencing technologies, and the mutant allele frequencies were
further confirmed using ddPCR. However, even these advanced
technologies are susceptible to false positives.

Furthermore, the lost enrichment phenomenon of short
fragments observed in this study may be related to factors such
as the designed probe size (120 bp), cfDNA purification, and
library construction. Moreover, the findings presented herein
indicate that size selection can further improve the ctDNA
detection rate and accuracy. Additionally, it would seem that
when constructing a ctDNA library for early-stage cancer
patients, a larger DNA fragment size (> 167 bp) should be
enriched, while in later stages, enrichment of shorter DNA
fragment size (< 167bp) is more beneficial.

In summary, this study demonstrates that plasma ctDNAs are
generally shorter than normal cfDNAs. However, for cancer
patients with a low mutant allele frequency or early tumor stage,
mutant ctDNA fragments are longer than normal cfDNAs. These
findings may potentially facilitate the accurate detection of cancer
gene mutations when utilizing liquid biopsies, and improve the
application of ctDNA detection in early cancer diagnoses.
Frontiers in Genetics | www.frontiersin.org 10
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