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Abstract
Background:Murine double minute 2 homolog (MDM2) plays an important role in the downregulation of P53 tumor suppressor
gene. MDM2 inhibits P53 transcriptional activity and thereby results in accelerated tumor formation. Overexpression of MDM2 has
been found in several cancer types including endometrial cancer. SNP309 is located in the promoter region of MDM2 and contributes
to the overexpression of MDM2. The association between MDM2 SNP309 polymorphism and endometrial cancer risk has been
investigated in several studies; however, the conclusion remains controversial.

Objectives: We performed the present meta-analysis to give a comprehensive conclusion of the association between MDM2
SNP309 polymorphism and endometrial cancer susceptibility.

Methods:We conducted a literature research on PubMed, Embase, Cochrane Library, OVID, Web of Science, Wan Fang, CNKI,
and CQVIP databases up to July 31, 2018. Newcastle–Ottawa scale was used to assess the quality of studies. We evaluated the
strength of association by combining odds ratios (ORs) and 95% confidence intervals (CIs) in 5 different genetic models under a fixed-
effect model or random-effect model. We further conducted subgroup analysis by ethnicity, source of control, histological type,
clinical type, grade, and stage of tumor. Sensitivity analysis and publication bias were also performed.

Results:Nine eligible studies were finally included in our meta-analysis. We found MDM2 SNP309 polymorphism increased the risk
of endometrial cancer under allele model (OR: 1.23, 95%CI: 1.06–1.41, P= .005), homozygotemodel (OR: 1.43, 95%CI: 1.13–1.81,
P= .003) and recessive model (OR: 1.55, 95% CI: 1.17-2.04, P= .002). Subgroup analysis suggested a similar elevated risk in both
Asians and Caucasians. We identified a strong association of enhanced susceptibility to endometrial cancer in endometrioid group
(OR: 2.13, 95% CI: 1.28–3.54, P= .004) and Type I group (OR: 1.89, 95% CI: 1.25–2.86, P= .002) under dominant model. We
identified no significant publication bias according to Egger’s test.

Conclusions: Our meta-analysis suggested that MDM2 SNP309 polymorphism increased the risk of endometrial cancer
significantly, especially in endometrioid and Type I endometrial cancer, indicating MDM2 could serve as a potential diagnostic factor
marker for endometrial cancer.

Abbreviations: CI = confidence interval, HB = hospital-based, HWE = Hardy–Weinberg equilibrium, MDM2 = murine double
minute 2, NOS = Newcastle–Ottawa scale, ORs = odds ratios, PB = population-based, PRISMA = Preferred Reporting Items for
Systematic Reviews and Meta-Analyses, RAF = risk allele frequency, SNP = single nucleotide polymorphism.
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1. Introduction

Endometrial cancer is one of the most common gynecologic
carcinoma worldwide.[1,2] Its incidence rate has been increasing
during last decades, especially in developed countries.[2] The
etiology of endometrial cancer remains unclear due to complex
mechanisms of pathogenesis. It has been reported that environ-
mental factors such as hormone exposure and obesity may
contribute to the carcinogensis of endometrial carcinoma.[3,4]

Genetic predisposition has also been confirmed to be involved in
the etiology.[5,6]

Murine double minute 2 homolog (MDM2) is located in
chromosome 12q13-14 and plays a key role in the down-
regulation of P53 tumor suppressor gene.[7] P53 is a crucial
component that regulates the cell-cycle arrest and apoptosis in
response to DNA damage or oncogene expression. It was
reported that MDM2 inhibited P53 transcriptional activity
through ubiquitination and degradation, thereby resulted in
accelerated tumor formation.[8] Overexpression of MDM2 has
been found in several cancers, including lung, breast, prostate,
bladder, gastric, colorectal, hepatocellular, and endometrial
cancer.[9–12] A functional single nucleotide polymorphism
located in 309bp downstream from intron 1 in the promoter
region of MDM2 (a change from T to G) was identified and is
referred to as SNP309.[7,13] The G variant allele was found to
enhance the affinity of MDM2 to SP1 transcription factor and
leading to MDM2 overexpression.[7] Several studies have also
revealed that G allele of SNP309 is associated with an elevated
susceptibility to cancer.[14–16]

So far, the relationship between MDM2 SNP309 polymor-
phism and endometrial cancer risk has been investigated in
several studies, but the conclusions remain inconsistent. Due to
the relatively small sample size of each individual study and the
conflict results, we performed the present meta-analysis with 9
eligible studies[17–25] to give a more accurate and comprehensive
estimation of the association between MDM2 SNP309 and the
susceptibility to endometrial carcinoma.
2. Methods

Weperformed ourmeta-analysis based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA).[26]
2.1. Search strategy

We performed a comprehensive literature search for relevant
studies in PubMed, Embase, Cochrane Library, OVID, Web of
Science, Wan Fang, CNKI, and CQVIP databases up to July 31,
2018. We combined the following items in our search strategy:
Polymorphism∗ or SNP∗ or mutant or mutation or variation;
MDM 2 or MDM-2 or MDM2 or Mouse double minute 2 or
Mouse double minute-2 or Mouse double minute2 or Murine
double minute 2 or Murine double minute-2 or Murine double
minute2; (Endometrial or Endometrium) and (cancer∗ or
neoplasm∗ or carcinoma∗). Furthermore, references of previous
articles were manually searched for potential studies.

2.2. Inclusion and exclusion criteria

The inclusion criteria were: studies with case–control or cohort
designs; studies investigating the potential association between
MDM2 SNP309 polymorphism and endometrial cancer risk;
studies with sufficient original data to calculate odds ratios (ORs)
and 95% confidence interval (95% CI). When overlapping data
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appeared in multiple publications, only the study containing
largest sample size was included in our meta-analysis.
The exclusion criteria were: reviews, letters, meta-analysis,

case reports, meeting abstracts, articles without controls, and
articles with different designs.
2.3. Data extraction and quality assessment

Two authors (XZ and YZ) individually reviewed the eligible
articles and extracted all useful data from them. Conflicts among
the extraction were resolved by discussion with a third
investigator (YC). The information extracted from each study
was as follows: the last name of the first author, publication year,
country and ethnicity of the participants, number of cases and
controls, source of controls, and genotypes distribution. We
evaluated the quality of studies according to 9-point Newcastle–
Ottawa scale (NOS).[27]
2.4. Statistical analysis

Hardy–Weinberg equilibrium (HWE) tests were conducted in
each involved study to assess the deviation of genotype
distribution from population. The strength of association
betweenMDM2 SNP309 polymorphism and endometrial cancer
risk was measured by combined ORs with 95%CI under fixed-
effect model or random-effect model according to the heteroge-
neity among studies. We quantified the heterogeneity by I2 test
which ranges from 0% to 100% to represent the degree of
heterogeneity. It indicated significant heterogeneity when I2>
50% and a random-effect model (Der Simonian and Laird
method) should be adopted for pooled ORs,[28] otherwise the
fixed-effect model (Mantel–Haenszel method) was used.[29] To
investigate the origin of heterogeneity, we further performed
subgroup analysis stratified by ethnicity, source of control,
histological type, clinical type, grade and stage of tumor. The
overall and subgroup analysis categorized by ethnicity and source
of control were performed under five genetic models: allele model
(G vs T), homozygote model (GG vs TT), heterozygote model
(GT vs TT), dominant model (GG+GT vs TT), and recessive
model (GG vs GT+TT), respectively. However, only dominant
model was used in the subgroup analysis stratified by histological
type, clinical type, grade and stage of tumor because the majority
of included researches only provided the data of GG+GT versus
TT for these subgroups. Sensitivity analysis was also performed
by combining ORs with the removal of each single involved study
to investigate the potential subversion of the results. Egger’s test
and Begg’s funnel plot were used to estimate publication bias.
P< .05 was considered as identification of statistically significant
bias of publication.[30] All the data were processed by STATA
version12 (Stata Corporation, College Station, TX).
2.5. Ethical approval

Since meta-analysis belonged to secondary analysis based on the
studies published previously, the patients’ informed consent and
the ethical approval were not necessary.

3. Results

3.1. Study characteristics

We identified 171 records in total in primary search from 8
databases with our criterion. There remained 139 studies for
screening after the duplicated records were eliminated and 124
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Figure 1. The PRISMA flow diagram of the study inclusion and exclusion. PRISMA=Preferred Reporting Items for Systematic Reviews and Meta-Analyses,
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studies were excluded after skimming the titles and abstracts.
Among the 13 studies read by full text, 6 were excluded because 2
offered overlapping data, 2 discussed other genetic locus of
MDM2, and 2 designed differently. The intact procedures of
inclusion and exclusion are shown in Figure 1. Eventually, there
3

were 9 studies containing 3535 cases and 6476 controls eligible
for our meta-analysis.[17–25] One of them involved data from 2
different ethnic groups, so we treated it as 2 separate groups.[18]

Table 1 demonstrates the main characteristics of the studies
involved. The eligible researches were performed in different

http://www.md-journal.com


Table 1

Characteristics of the studies included for meta-analysis.

First author Year Country Ethnicity Source of controls
Sample size

HWE testCase Control

Walsh[17] 2007 America Mixed HB 73 79 0.65
Terry-NHS[18] 2008 America Caucasian PB 394 948 0.64
Terry-WHS[18] 2008 America Caucasian PB 122 368 0.18
Ashton[19] 2009 Australia Caucasian PB 191 291 0.49
Ueda[20] 2009 Japan Asian HB 119 108 0.02
Knappskog[21] 2012 Norway Caucasian HB 910 2465 0.41
Zajac[22] 2012 Poland Caucasian HB 152 100 0.70
Yoneda[23] 2013 Japan Asian PB 125 200 0.91
Okamoto[24] 2015 Japan Asian HB 45 45 0.63
Gansmo[25] 2017 Norway Caucasian PB 1404 1872 0.80

Case–control design was used in all the included studies.
HWE=Hardy–Weinberg equilibrium, HB=hospital-based, PB=population-based, year=publication year.

Table 2

The results of Newcastle–Ottawa scale.

First author Selection Comparability Exposure

Walsh[17] ★★ ★★ ★★★
Terry[18] ★★★★ ★★ ★★
Ashton[19] ★★★★ ★★ ★★★
Ueda[20] ★★ ★★ ★★★
Knappskog[21] ★★★ ★★ ★★★
Zajac[22] ★★ ★★ ★★★
Yoneda[23] ★★★★ ★★ ★★★
Okamoto[24] ★★ ★★ ★★★
Gansmo[25] ★★★★ ★★ ★★★
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ethnic lines including Caucasian (n=6), Asian (n=3), and mixed
group (n=1). Five studies were population based and five were
hospital based. Table 1 also listed the results of HWE test and all
studies included were consistent with HWE except one.[20]

Table 2 shows the result of NOS for all the included studies. It
represented a good quality of included studies that the NOS score
of each studywasmore than 6 points. Table 3 shows the genotype
distribution and allele frequency of MDM2 SNP309 of each
study.
Table 3

SNP309 polymorphism of MDM2 genotype distribution and allele fre

Genotype (N)

Cases Controls

First author Total GG TG TT Total GG T

Walsh[17] 73 18 27 28 79 9 3
Terry-NHS[18] 394 63 162 169 948 95 4
Terry-WHS[18] 122 21 54 47 368 50 1
Ashton[19] 191 29 84 78 291 37 1
Ueda[20] 119 39 54 26 108 22 6
Knappskog[21] 910 123 426 361 2465 300 10
Zajac[22] 152 98 30 24 100 28 4
Yoneda[23] 125 34 61 30 200 40 9
Okamoto[24] 45 10 21 14 45 9 2
Gansmo[25] 1404 186 642 576 1872 254 8

Case–control design was used in all the included studies.
MDM2=murine double minute 2, RAF= risk allele frequency, risk allele=G allele, SNP= single nucleo

4

3.2. Quantitative synthesis

In overall analysis, the results indicated that MDM2 SNP309
polymorphism significantly increased the risk of endometrial
carcinoma under allele model (OR: 1.23, 95% CI: 1.06–1.41,
P= .005, I2=72.2%, Pheterogeneity= .00), homozygote model
(OR: 1.43, 95%CI: 1.13–1.81, P= .003, I2=56.4%, Pheterogeneity

= .01) and recessive model (OR: 1.55, 95% CI: 1.17–2.04,
P= .002, I2=75.5%, Pheterogeneity= .00) (Fig. 2). However, no
statistical association was identified under heterozygote model
(OR: 1.02, 95% CI: 0.93–1.12, P= .69, I2=3.6%, Pheterogeneity

= .41) and dominant model (OR: 1.08, 95% CI: 0.99–1.17,
P= .09, I2=6.7%, Pheterogeneity= .38) (Fig. 2).
We further performed subgroup analysis to investigate the

source of high heterogeneity among studies. In subgroup analysis
stratified by ethnicity, significant association of an elevated
cancer risk was found in Asians under recessive model (OR: 1.58,
95% CI: 1.10–2.29, P= .02, I2=0.0%, Pheterogeneity= .67) and in
Caucasians under allele model (OR: 1.23, 95% CI: 1.03–1.47,
P= .02, I2=83.2%, Pheterogeneity= .00), homozygote model (OR:
1.40, 95% CI: 1.05–1.88, P= .02, I2=71.5%, Pheterogeneity= .00)
and recessive model (OR: 1.49, 95% CI: 1.05–2.13, P= .03, I2=
84.4%, Pheterogeneity= .00).When classified according to source of
control, the significantly heightened risk was only identified in
hospital-based group under homozygote model (OR: 1.65, 95%
quency in cases and controls.

Allele frequency (N, %)

Cases Controls

G TT G T RAF G T RAF

8 32 63 83 0.43 56 102 0.35
20 433 288 500 0.37 610 1286 0.32
55 163 96 148 0.39 255 481 0.35
26 128 142 240 0.37 200 382 0.34
6 20 132 106 0.55 110 106 0.51
93 1072 672 1148 0.37 1693 3237 0.34
8 24 226 78 0.74 104 96 0.52
8 62 129 121 0.52 178 222 0.45
4 12 41 49 0.46 42 48 0.47
78 740 1014 1794 0.36 1386 2358 0.37

tide polymorphism.
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Figure 2. Forest plot for association between MDM2 SNP309 polymorphism and endometrial cancer risk under (A) allele model (G vs T); (B) homozygote model
(GG vs TT); (C) heterozygote model (GT vs TT); (D) dominant model (GG+GT vs TT); (E) recessive model (GG vs GT+TT). CI=confidence interval, MDM2=murine
double minute 2, OR=odds ratio, SNP=single nucleotide polymorphism.
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CI: 1.04–2.63, P= .04, I =56.5%, Pheterogeneity= .06), dominant
model (OR: 1.16, 95% CI: 1.01–1.33, P= .04, I2=0.0%,
Pheterogeneity= .54) and recessive model (OR: 1.97, 95% CI:
5

1.05–3.70, P= .04, I =83.9%, Pheterogeneity= .00), but not in
population-based group. Furthermore, we attempted to conduct
stratified analysis by various clinicopathological characteristics

http://www.md-journal.com
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Figure 2. Continued.
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including histological and clinical type, grade and stage of
endometrial cancer. We accidentally found a stronger correlation
with higher ORs in endometrioid (OR: 2.13, 95%CI: 1.28–3.54,
P= .004, I2=0.0%, Pheterogeneity= .87) and Type I endometrial
6

carcinoma (OR: 1.89, 95% CI: 1.25–2.86, P= .002, I =0.0%,
Pheterogeneity= .36) under dominant model, but no association was
found in nonendometriod and Type II groups. In subgroup
analysis by grade, there found no statistical relationship between
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all three grades of endometrial cancer and MDM2 SNP309
polymorphism. But when categorized by stage, we identified a
distinct increased risk with ORs even higher than endometrioid
and Type I group in stage I and III endometrial cancer. The
complete results of subgroup analysis are shown in Table 4.

3.3. Sensitivity analysis

We performed sensitivity analysis to investigate whether the
absence of each study will alter the result of our meta-analysis. As
Figure 3 indicates, no results were subverted when each studywas
excluded individually, which manifested the stability and
reliability of our conclusion (Fig. 3).

3.4. Publication bias

Egger’s test and Begg’s funnel plot were conducted to evaluate the
publication bias. The Begg’s funnel plot appeared to be
symmetrical visually (Fig. 4), which suggested no evidence of
publication bias (Egger’s test: P= .06).

4. Discussion

So far, investigation of association betweenMDM2 SNP309 and
risk of endometrial cancer has been reported in several
researches, but the results remain controversial. Among all
included studies, 4 studies revealed an increased risk of MDM2
SNP309 polymorphism in endometrial cancer,[17,18,20,22] 2
studies suggested no statistical significance,[19,23] one reported
a suspicious relationship,[21] and the rest 2 did not mention the
association between them in their articles.[24,25] Due to the
7

conflicting results from the studies with relatively small sample
size, we conducted the present meta-analysis to seek a
comprehensive conclusion.
Nine included studies with 10 groups of data were

consolidated to seek the connection of MDM2 SNP309 gene
polymorphism and endometrial cancer susceptibility. One
research conducted by Nunobiki et al[31] from Japan was
excluded because the data is overlapped with another study and
the sample size is smaller than it. The overall analysis revealed
that MDM2 SNP309 significantly enhanced the risk of
endometrial cancer. MDM2 is a negative regulator of P53 and
plays a crucial role in P53 tumor suppressor pathway.[32]

Previous studies showed that MDM2 could bind to P53 protein
directly to inhibit its activity via ubiquitination and degrada-
tion.[33] The overexpression of MDM2 was reported as a
carcinogenic factor by reduction of P53 levels, which attenuated
P53 apoptosis response to DNA damage and other cellular
stresses, and subsequently resulted in accumulation of genetic
errors, leading to accelerated cancer formation.[13,34–38] MDM2
was also reported to facilitate tumor growth in a P53-
independent way.[39] The polymorphism of SNP309, which
located in MDM2 promoter region, was reported to upregulate
theMDM2 expression.[7] This may account for the increased risk
of endometrial cancer caused byMDM2 SNP309 polymorphism.
Subgroup analysis was performed to investigate the source of

interstudy heterogeneity. The subgroup analysis by ethnicity
indicated an elevated susceptibility to endometrial carcinoma in
Asians under recessive model and in Caucasians under allele,
homozygote and recessive model, which means MDM2 SNP309
polymorphism may contribute to endometrial cancer carcino-
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Table 4

Subgroup analyses of association between MDM2 SNP309 polymorphism and endometrial cancer.

Subgroup Number ORs 95% CI P I2 (%) Pooling model

Source of control
Allele model HB 5 1.37 (0.98,1.92) .06 79.7 Random-effects model

PB 5 1.13 (0.98,1.30) .09 55.3 Random-effects model
Homozygote model HB 5 1.65 (1.04,2.63) .04 56.5 Random-effects model

PB 5 1.33 (0.98,1.81) .07 60.2 Random-effects model
Heterozygote model HB 5 1.07 (0.92,1.24) .40 37.4 Fixed-effects model

PB 5 0.99 (0.88,1.11) .89 0.0 Fixed-effects model
Dominant model HB 5 1.16 (1.01,1.33) .04 0.0 Fixed-effects model

PB 5 1.03 (0.93,1.15) .58 18.1 Fixed-effects model
Recessive model HB 5 1.97 (1.05,3.70) .04 83.9 Random-effects model

PB 5 1.29 (0.99,1.67) .06 55.2 Random-effects model
Ethnicity
Allele model Asian 3 1.22 (0.98,1.53) .08 0.0 Fixed-effects model

Caucasian 6 1.23 (1.03,1.47) .02 83.2 Random-effects model
Mixed 1 1.38 (0.87,2.20) .17 — —

Homozygote model Asian 3 1.47 (0.94,2.32) .09 0.0 Fixed-effects model
Caucasian 6 1.40 (1.05,1.88) .02 71.5 Random-effects model
Mixed 1 2.29 (0.89,5.90) .09 — —

Heterozygote model Asian 3 0.94 (0.64,1.38) .74 29.1 Fixed-effects model
Caucasian 6 1.03 (0.94,1.13) .56 15.4 Fixed-effects model
Mixed 1 0.81 (0.40,1.65) .56 — —

Dominant model Asian 3 1.09 (0.76,1.57) .64 11.3 Fixed-effects model
Caucasian 6 1.08 (0.98,1.18) .11 32.3 Fixed-effects model
Mixed 1 1.09 (0.57,2.10) .79 — —

Recessive model Asian 3 1.58 (1.10,2.29) .02 0.0 Fixed-effects model
Caucasian 6 1.49 (1.05,2.13) .03 84.4 Random-effects model
Mixed 1 2.55 (1.06,6.10) .04 — —

Histological type
Dominant model Endometrioid 2 2.13 (1.28,3.54) .004 0.0 Fixed-effects model

Nonendometriod 2 1.94 (0.35,10.87) .45 62.1 Random-effects model
Clinical type
Dominant model Type I 2 1.89 (1.25,2.86) .002 0.0 Fixed-effects model

Type II 2 0.90 (0.41,1.96) .79 0.0 Fixed-effects model
Grade
Dominant model Grade 1 2 1.79 (0.92,3.50) .09 0.0 Fixed-effects model

Grade 2 2 1.84 (0.96,3.52) .07 0.0 Fixed-effects model
Grade 3 2 2.28 (0.63,8.28) .21 62.6 Random-effects model

Stage
Dominant model I 2 4.40 (2.60,7.45) < .001 49.8 Fixed-effects model

II 2 3.36 (0.93,12.06) .06 56.3 Random-effects model
III 2 4.31 (1.08,17.18) .04 56.1 Random-effects model
IV 1 1.11 (0.12,10.10) .93 — Fixed-effects model

95% CI=95% confidence interval, HB=hospital based, ORs=odds ratios, PB=population based, SNP= single nucleotide polymorphism.
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genesis in both ethnic populations, but the association is stronger
in Caucasians than in Asians. Since cancer is a disease with
complicated multigenetic effect, the similarity and difference
between races may be responsible for the results. When stratified
by source of control, significant association of similar enhanced
susceptibility to endometrial cancer could only be found in
hospital-based group. This result may reveal potential selection
bias among these studies when recruiting participants for
matched control groups.
We further performed subgroup analysis categorized by several

clinicopathological characteristics including histological and
clinical type, grade, and stage of endometrial cancer. We
identified a strong association of increased risk of endometrial
cancer in endometrioid group and Type I group. Endometrial
cancer is classified into 2 clinical types: Type I and II. Type I is
estrogen-dependent endometrial cancer and belongs to endome-
trioid type histologically. It is associated with endometrial
8

hyperplasia. Estrogen receptors are commonly expressed in Type
I tumor cells. Type II endometrial carcinoma is estrogen-
independent and encompasses nonendometrioid type. It is related
to atrophic endometrium and the tumor cells scarcely express
estrogen receptors.[40,41] Previous researches indicated that
MDM2 overexpression is strongly concerned with estrogen
receptor.[34,42] The expression ofMDM2 is mediated through the
interaction of estrogen receptor with a promoter region of
MDM2where SNP309 located.[43] In addition, it is reported that
the GG genotype of SNP309 increases the affinity of MDM2
promoter to the transcription factor SP1.[7] SP1 is known as a co-
transcriptional activator of estrogen receptor[44] and contributes
to estrogen-mediated gene transcription.[45,46] Therefore,
MDM2 SNP309 polymorphism may enhance the susceptibility
to estrogen-related Type I endometrial carcinoma, which is in
accordance with the result of our subgroup analysis. No
statistical association was found between all three grades of
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Figure 3. Sensitivity analysis of MDM2 SNP309 polymorphism under recessive model. CI=confidence interval. MDM2=murine double minute 2, SNP=single
nucleotide polymorphism.
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endometrial cancer and MDM2 SNP309 polymorphism. When
stratified by stage of tumor, our analysis revealed a markedly
elevated risk of endometrial cancer in stage I and III group, but
not in stage II and IV. Small sample size may be responsible for
the dubious result because only 2 studies provided the data of
genotype concerned with different stage of carcinoma containing
129 stage I, 42 stage II, 46 stage III and 8 stage IV patients in total.
It is noteworthy that the results of the subgroup analysis
categorized by various clinicopathological characteristics should
Begg’s funnel plot with pseudo 95% conf
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r

s.e
0 .2

−1

0

1

2

Figure 4. Begg’s funnel plot with pseudo 95% confidence limits for MDM2 SNP
SNP=single nucleotide polymorphism.
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be concluded and generalized with caution considering the
limited number of relevant studies.
Although one studies included in our analysis deviated from

HWE in controls, the conclusions were not subverted when
removing the study during sensitivity analysis. Also, we
recognized no publication bias in our meta-analysis.
Several limitations of our meta-analysis should be admitted.

Firstly, one study is not consistent with the HWE in controls;
despite the conclusions did not alter after it was excluded.
idence limits

. of: logor
.4 .6

309 polymorphism under recessive model. MDM2=murine double minute 2,
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[8] Levav-Cohen Y, Haupt S, Haupt Y. Mdm2 in growth signaling and
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Secondly, data of Africans were not involved because no involved
studies mentioned it, which may lead to selection bias. Thirdly,
we did not perform subgroup analysis by age, obesity, menstrual
status, hypertention history, diabetes history and family history
because of insufficient data. Finally, interaction of several gene
polymorphisms may also influence endometrial cancer risk,
which was not involved in our analysis.
Gene targeting therapy has played an important role in the

treatment of several cancers such as lung cancer, breast cancer,
chronic myeloid leukemia and so on, but it is still not widely
conducted in gynecological tumor. The very first step is to identify
the association between gene mutation and endometrial cancer
susceptibility, as well as the mechanism of it. Our meta-analysis
showed thatMDM2 SNP309 polymorphism increased the risk of
endometrial cancer significantly both in Asians and Caucasians,
but the strength of association may be stronger in Caucasians
than in Asians. Also, we identified that SNP309 polymorphism
elevated the Type I and endometrioid type endometrial
carcinoma significantly. Our result revealed that MDM2
SNP309 polymorphism could serve as a potential prognostic
marker for endometrial cancer and may further possibly guide
genetic targeted therapy and even prevention strategies. Still,
further evidences from future studies with standardized genotyp-
ing methods, multiple populations and pathological types are
needed to corroborate our conclusions and provide a more
comprehensive and precise understanding of association between
MDM2 SNP309 polymorphism and endometrial cancer.
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