
fnagi-13-813923 January 28, 2022 Time: 13:28 # 1

ORIGINAL RESEARCH
published: 02 February 2022

doi: 10.3389/fnagi.2021.813923

Edited by:
Fushun Wang,

Nanjing University of Chinese
Medicine, China

Reviewed by:
Chunming Xie,

Southeast University, China
Feng Bai,

Nanjing Drum Tower Hospital, China

*Correspondence:
Ting Wu

wuting80000@126.com
Qing He

heqing80000@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Alzheimer’s Disease and Related
Dementias,

a section of the journal
Frontiers in Aging Neuroscience

Received: 12 November 2021
Accepted: 06 December 2021
Published: 02 February 2022

Citation:
Zheng Y, Liu Y, Wu J, Xie Y,

Yang S, Li W, Sun H, He Q and Wu T
(2022) Predicted Cognitive

Conversion in Guiding Early
Decision-Tailoring on Patients With

Cognitive Impairment.
Front. Aging Neurosci. 13:813923.

doi: 10.3389/fnagi.2021.813923

Predicted Cognitive Conversion in
Guiding Early Decision-Tailoring on
Patients With Cognitive Impairment
Yu Zheng1†, Yin Liu2,3†, Jiawen Wu2,3, Yi Xie4, Siyu Yang2,3, Wanting Li2,3, Huaiqing Sun2,3,
Qing He5,6* and Ting Wu2,3*

1 Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2 Division
of Brain Rehabilitation, Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
3 Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 4 Intensive Care Unit,
Wuxi No.2 People’s Hospital, Wuxi, China, 5 Department of Neurology, Xuzhou First People’s Hospital, Xuzhou, China,
6 Department of Neurology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, China

Background: Cognitive decline is the most dominant and patient-oriented symptom
during the development of Alzheimer’s disease (AD) and mild cognitive impairment (MCI).
This study was designed to test the feasibility of hybrid convolutional neural networks
and long-short-term memory (CNN-LSTM) modeling driven early decision-tailoring with
the predicted long-term cognitive conversion in AD and MCI.

Methods: Characteristics of patients with AD or MCI covering demographic features,
clinical features, and time-dependent neuropsychological-related features were fused
into the hybrid CNN-LSTM modeling to predict cognitive conversion based on a 4-
point change in the AD assessment scale-cognition score. Treatment reassignment
rates were estimated based on the actual and predicted cognitive conversion at 3
and 6 months according to the prespecified principle; that is if the ADAS-cog score
of the patient declines less than 4 points or increases at either follow-up time point, the
medical treatment recommended upon their diagnosis would be considered insufficient.
Therefore, it is recommended to upgrade the medical treatment upon diagnosis.
Actual and predicted treatment reassignment rates were compared in the general
population and subpopulations categorized by age, gender, symptom severity, and the
intervention subtypes.

Results: A total of 224 patients were included in the analysis. The hybrid CNN-LSTM
model achieved the mean AUC of 0.735 (95% CI: 0.701–0.769) at 3 months and
0.853 (95% CI: 0.814–0.892) at 6 months in predicting cognitive conversion status.
The AUC at 6 months was significantly impacted when data collected at 3 months
were withdrawn. The predicted cognitive conversion suggested a revision of medical
treatment in 46.43% (104/224) of patients at 3 months and 54.02% (121/224) at
6 months as compared with 62.05% (139/224) at 3 months (p = 0.001) and 62.50%
(140/224) at 6 months (p = 0.069) according to their actual cognitive conversion. No
significant differences were detected between treatment reassignment rates estimated
based on actual and predicted cognitive conversion in all directions at 6 months.

Conclusion: Using the synergistic advances of deep learning modeling and featured
longitudinal information, our hypothesis was preliminarily verified with the comparable
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predictive performance in cognitive conversion. Results provided the possibility of
reassigned recommended treatment for those who may suffer from cognitive decline in
the future. Considering the limited diversity of treatment strategies applied in this study,
the real-world medical situation should be further simulated.

Keywords: Alzheimer’s disease, mild cognitive impairment, decision-tailoring, deep learning, Alzheimer’s disease
assessment scale, cognitive conversion, medical treatment reassignment

BACKGROUND

According to the Alzheimer’s Disease International, the estimated
prevalence of dementia is about 50 million people worldwide in
2018 and will be projected to triple in 2050 (Koszewicz et al.,
2021). Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) are two major types of dementia, which have launched
significant economic load and medical burden for the families
and healthcare systems (Hill et al., 2017).

With the increasing efforts in predicting the occurrence and
development of AD and MCI, age and gender have often been
identified as the most important risk factors. Previous studies
have shown that for elders aged 65 years or more, there were
significantly more women who have developed AD compared
with a high proportion of men who have developed MCI with
an OR of 1.54 (95%CI: 1.2–2.0) (Petersen et al., 2010; Wu
et al., 2017). Moreover, studies on biomarkers have formed
an important basis for the early diagnosis of dementia (Hort
et al., 2010). The β amyloid deposition, pathologic tau, and
neurodegeneration (A-T-N) framework proposed by Jack et al.
(2018) is intended to define the diagnosis of AD by the presence
of amyloid-β and phosphorylated tau that measured either in
plasma, cerebrospinal fluid (CSF), or neuroimaging. While in
the search for prognostic biomarkers of dementia, the field still
focused heavily on neuroimaging and CSF markers. For instance,
several studies have reported that the progression of AD or
MCI could be predicted by advanced neuroimaging techniques,
including MRI findings, FDG-PET, or CSF examination (Jack
et al., 1999; Killiany et al., 2000; Shaw et al., 2009; Zhang
et al., 2012). In fact, professionals have advocated that at
least one neuroimaging examination and several CSF/plasma
examinations are needed for monitoring the progression of
dementia (Langa and Levine, 2014). However, the major barrier
leading to this destination is the poor compliance to these
examinations and the difficulties in the collection of the
corresponding information in real clinical practice. In addition,

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment;
CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; FDG-PET,
fluorodeoxyglucose positron emission tomography; ADAS-Cog, Alzheimer’s
Disease Assessment Scale-Cognition; MMSE, Mini-Mental State Examination;
GBE, ginkgo biloba extract; CNN, convolutional neural networks; LSTM:
long-short-term memory; NINCDS-ADRDA, National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association; IADL, instrumental activity of daily living;
GDS, geriatric depression scale; QOL-AD, quality of life-Alzheimer’s disease; NPI,
neuropsychiatric inventory; CI, cognition improved; CNI, cognition not improved;
HIS, Hachinski ischemic score; CDR, clinical dementia rating; DSST, digit symbol
substitute test; TMT A, trail making test A; TMT B, trail making test B; ALT,
alanine aminotransferase; TC, total cholesterol; TG, triglyceride; LDL, low density
lipoprotein; ERP, event-related potentials; ROC, receiver operating curve; AUC,
area under curve; CI, confidence interval; AUPRC, area under precision-recall
curve; AI, artificial intelligence; P-tau, phosphor-tau; Aβ, beta-amyloid.

even these difficulties can be conquered, their specificity and
accuracy in the prediction of prognosis of dementia have not
been guaranteed in the current context (Carrillo et al., 2013;
Hepp et al., 2016).

For the majority of patients diagnosed with AD and MCI,
cognitive impairment is recognized as the most dominant and
patient-oriented symptom. Progression of cognitive impairment
is normally monitored through longitudinal neuropsychological
assessments using cognitive scales such as the Alzheimer’s Disease
Assessment Scale-Cognition (ADAS-Cog) or the Mini-Mental
State Examination (MMSE). This longitudinal information can
be scheduled and collected sequentially through face-to-face
interviews in the hospital, community, or at home. According
to Xue et al. (2018) neuropsychological assessments were
proved to be more practical compared with neuroimaging and
CSF/plasma examinations and more accurate in the reflection
of cognitive function than baseline information alone. This
inspired us to ask whether sequential neuropsychological-
related information along with other clinical data can be used
to predict cognitive trajectory. Upon this thought, the long-
term cognitive decline can be foreseen with which medical
treatment for AD or MCI could be redirected at the early
stage. Considering the high heterogeneity in the individual
progression of dementia and huge difficulties in the prediction
of its trajectory, traditional statistical models may not be
powerful enough to provide accurate predictive outcomes. In
particular, the cognitive trajectory that was impacted by the
sequential time features would probably not be captured by
traditional regression algorithms (Verbeke et al., 2014). Upon
this data signature, we were, therefore, promoted to construct
a novel deep learning model comprised of convolutional
neural networks (CNN) and long-short-term memory (LSTM)
networks. This hybrid CNN-LSTM network is capable to
handle longitudinal data with varying lengths of follow-ups,
help capture temporal dynamics, and, therefore, make accurate
predictions based on the sequential data (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014; Chung et al., 2014;
Ioannou et al., 2020).

In this study, we used the subset data from three ongoing,
longitudinal, cohort studies conducted by our research team.
The aim of this study was (1) to explore the predictive
potential of longitudinal neuropsychological information on
cognitive conversion reflected by ADAS-Cog upon the diagnosis
of AD and MCI and (2) to compare the reassignment
rates estimated by the deep learning modeling according to
the actual status. If the long-term cognitive status can be
successfully predicted with our hybrid CNN-LSTM modeling,
then recommendations on treatment redirection can be provided
at the early stage of AD or MCI.
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FIGURE 1 | Flowchart of this study.

MATERIALS AND METHODS

Patient Data
This study utilized three cohorts including 364 patients from
the First Affiliated Hospital of Nanjing Medical University
(ClinicalTrials.gov ID: NCT03090516 and Chinese Clinical
Trial Registry ID: ChiCTR-INR-15007420) and 111 patients
from communities in Nanjing, China. Patients from the above
three cohorts were treated with either observation, exercise,
monotherapy (donepezil or ginkgo biloba extract [GBE]), or
donepezil and GBE combination. All of these patients met the
following inclusion criteria: (1) diagnosed with AD or MCI
according to the NINCDS/ADRDA guidelines; (2) MMSE score
of 27 or less; (3) able to follow medical instruction or assessment
requirement; (4) complete available baseline and longitudinal

data, such as age, course of the disease, comorbidities, blood
biochemical examination, clinical scales assessed during three
visits (e.g., baseline, 3 months, and 6 months); and (5) signed
informed consent (Cummings, 1993; Dubois et al., 2007). The
flowchart of this study is shown in Figure 1.

Predictive Variables and Target
Outcomes
As data from these cohorts were presented with a varying
treatment plan, disease duration, visiting frequency, and
inclusion criteria, all patients have no data beyond 6 months at
this moment. We chose a 3-month spacing between time points
based on the visit frequency of follow-up patients to ensure
most patients had efficient data for model building (baseline,
3 months, and 6 months).
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FIGURE 2 | Workflow of CNN-LSTM modeling and architecture of proposed network composition. *The architecture of the hybrid CNN-LSTM model combines two
modules. The CNN module (light pink) is composed of five fully connected layers and a rectified linear unit (ReLU) activation unit and then followed by a sigmoid
activation function to generate a score representative of non-time dependent features. Next, the LSTM module (light green) was trained to extract both non- and
time-dependent features to generate outputs for estimating cognitive conversion status in multiple time points. The attention block (light yellow) denoted an attention
mechanism proposed by Vaswani et al. (2017) which was used to perform feature-weighted fusion across time steps to make an accurate prediction. *The yellow
block used here refers to “scaled dot-product attention,” explicitly explained by Vaswani et al. (2017) Given a task-related query vector Q, it can calculate the
attention value by calculating the attention distribution associated with the key (K) and assigning it to the value (V). This attention block is applied to find the
“resonance” between hidden vectors from each time step, namely, find the most relevant embedding features for high-level representations recognition.

Data in the merged database were stored in EXCEL
format. The predictors used in our deep learning model of
cognitive conversion prediction that were originated from
tables in the database but not limited to demographics,
medical history, intervention subtype, neuropsychological
outcomes, and laboratory and neuroelectrophysiological
results are listed in Supplementary Table 1. Time-dependent
variables such as ADAS-cog (Rosen et al., 1984), MMSE
(Folstein et al., 1975), the instrumental activity of daily
living (IADL) (Thomas et al., 1998), geriatric depression
scale (GDS) (Defrancesco et al., 2018), quality of life-
Alzheimer’s disease (QOL-AD) (Lawton, 1997), and
neuropsychiatric inventory (NPI) (Cummings et al., 1994)
for the evaluation of neurobehavioral status were recorded
at 3 month intervals (Cummings, 1993; Logsdon et al., 2002;
LaPlante, 2010; Benedetti et al., 2018; Jiang et al., 2020;
Vik-Mo et al., 2020).

According to the guidelines published by the American
College of Physicians and the American Academy of Family
Physicians, a decline of 4 points or more in the ADAS-cog
score is used to define a clinically important improvement
(Qaseem et al., 2008). Based on this, we used ADAS-cog as
the target outcome and adopted 4 points as the threshold so
that patients with different cognitive conversion during follow-
ups were further classified (Qaseem et al., 2008; Raina et al.,
2008). Specifically, patients whose ADAS-cog score had a decline
of 4 points or more were grouped as cognition improved
(CI), and patients whose ADAS-cog score remained stable
or increased were grouped as cognition not improved (CNI)
(Sabbagh et al., 2020).

The Hybrid Convolutional Neural
Networks and Long-Short-Term Memory
Modeling
Data Preprocessing
We first excluded patients with missing feature variables covering
more than 50% of the whole record number, as higher
proportions of missing data limit the prediction ability of the
proposed model. We then imputed missing data of remaining
features with the mean or the mode of existing data in the
same feature for continuous or categorical variables, respectively
(Kang, 2013). Normalization was subsequently applied; therefore,
all data are normalized to have zero mean and unit variance.

Model Development and Training Details
A hybrid model comprised of cascaded classical CNN and
state-of-art LSTM was constructed to forecast 3-month interval
cognitive conversion status (CI vs. CNI at 3 months and
6 months) in individual patients (Figure 2). Briefly, CNN with
stacked multiple full connection layers was used to aggregate
and extract features of all non-sequential state information.
We then applied the sigmoid activation function to generate
the score of the non-sequential state (time-independent data)
information. The detailed architecture of CNN was explained
in Supplementary Figure 1. Afterward, the generated score was
combined with all other time-dependent data, the corresponding
time-sequential information (baseline or 3-month) as well as the
cognitive conversion status (improved or not) to fuse into the
LSTM network. This specialized LSTM model was trained to use
the encoded latent representation from the previous time point
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TABLE 1 | Demographics and cognitive conversion distribution at 3 and 6 months.

Patient characteristics Total (n = 224) 3-month 6-month

Cognition not
improved (n = 139)

Cognition
improved (n = 85)

Cognition not
improved (n = 140)

Cognition improved
(n = 84)

Age in year, mean (SD) 69.75 (8.52) 69.24 (9.17) 70.58 (7.32) 69.13 (9.07) 70.79 (7.45)

Gender, n (%)

Male 87 (38.84) 51 (36.69) 36 (42.35) 52 (37.14) 35 (47.67)

Female 137 (61.16) 88 (63.31) 49 (57.65) 88 (62.86) 49 (58.33)

Education in year, mean (SD) 13.00 (4.32) 13.22 (4.72) 12.66 (3.55) 13.31 (4.79) 12.49 (3.35)

Height in centimeter 162.70 (3.69) 162.71 (4.29) 162.67 (2.44) 162.61 (3.92) 162.84 (3.30)

Weight in kilogram 63.09 (4.98) 62.72 (4.41) 63.71 (5.77) 62.58 (4.19) 63.95 (6.00)

Comorbidities, n (%)

Hypertension 44 (19.64) 27 (19.42) 17 (20.00) 28 (20.00) 16 (19.05)

Diabetes mellitus 16 (7.14) 10 (7.19) 6 (7.06) 8 (5.71) 8 (9.52)

Thyropathy 6 (2.68) 5 (3.60) 1 (1.18) 6 (4.29) 0 (0.00)

Cardiovascular disorders 13 (5.80) 7 (5.04) 6 (7.06) 9 (6.43) 4 (4.76)

Asthma 3 (1.34) 1 (0.72) 2 (2.35) 1 (0.71) 2 (2.38)

Cerebrovascular disorders 17 (7.59) 14 (10.07) 3 (3.53) 13 (9.29) 4 (4.76)

Hyperlithuria 1 (0.45) 1 (0.72) 0 (0.00) 0 (0.00) 1 (1.19)

Hyperlipidemia 7 (3.12) 5 (3.60) 2 (2.35) 5 (3.57) 2 (2.38)

Interventions, n (%)

Observation 62 (27.68) 53 (38.13) 9 (10.59) 56 (40.00) 6 (7.14)

Exercise 22 (9.82) 15 (10.79) 7 (8.24) 17 (12.14) 5 (5.95)

Donepezil 55 (24.55) 30 (21.58) 25 (29.41) 26 (18.57) 29 (34.52)

GBE 38 (16.96) 16 (11.51) 22 (25.88) 17 (12.14) 21 (25.00)

Donepezil and GBE 47 (20.98) 25 (17.99) 22 (25.88) 24 (17.14) 23 (27.38)

HIS, mean (SD) 0.97 (0.81) 1.01 (0.81) 0.91 (0.81) 0.99 (0.80) 0.95 (0.83)

Family medical history, n (%)

Yes 45 (20.09) 26 (18.71) 19 (22.35) 24 (17.14) 21 (25.00)

No 179 (79.91) 113 (81.29) 66 (77.65) 116 (82.86) 63 (75.00)

MMSE, mean (SD) 23.46 (3.83) 23.96 (3.86) 22.64 (3.64) 23.94 (3.95) 22.65 (3.49)

ADAS-Cog, mean (SD) 16.62 (9.55) 13.79 (8.88) 21.25 (8.82) 13.97 (9.26) 21.04 (8.35)

IADL, mean (SD) 15.63 (2.47) 15.55 (2.38) 15.75 (2.62) 15.60 (2.34) 15.68 (2.69)

NPI, mean (SD) 3.47 (9.55) 3.17 (7.44) 3.97 (12.28) 4.11 (11.49) 2.41 (4.73)

QOL-AD, mean (SD) 31.91 (6.26) 32.53 (6.21) 30.89 (6.23) 32.33 (6.22) 31.21 (6.30)

GDS, mean (SD) 6.72 (6.44) 6.66 (6.33) 6.81 (6.65) 6.64 (6.07) 6.84 (7.04)

Anxiety, mean (SD) 1.25 (1.94) 0.79 (1.64) 2.01 (2.16) 0.84 (1.61) 1.95 (2.24)

CDR, mean (SD) 1.07 (0.27) 1.07 (0.29) 1.07 (0.26) 1.06 (0.26) 1.10 (0.30)

DSST, mean (SD) 31.86 (8.02) 32.27 (9.58) 31.18 (4.39) 31.99 (9.72) 31.63 (3.82)

TMT A, mean (SD) 82.88 (21.63) 82.08 (24.95) 84.18 (14.72) 83.08 (26.00) 82.53 (11.16)

TMT B, mean (SD) 218.28 (56.84) 217.75 (65.81) 219.14 (38.24) 217.94 (66.13) 218.84 (36.84)

as well as the multivariate relations of the current time point
(Gers and Schmidhuber, 2001). Using this process, the underlying
temporal characteristics in the given time-dependent ADAS-
cog score were captured. Notably, the attention mechanism was
applied to perform feature-weighted fusion across time steps
to improve the prediction accuracy (Vaswani et al., 2017). This
procedure was made to empower the model to find significant
useful information related to the current output in the input data
and eventually improve the quality of the output.

We implemented the above model building on the publicly
available library sklearn and open framework PyTorch on Python
3.6 using a computer with one NVidia GTX 1080Ti GPU. The
batch size was set to 3,600 when training the CNN-LSTM model,

with the optimizer used as the Adam algorithm (Kingma and
Ba, 2014). The learning rate was reduced from 0.01, and the
number of iterations of training is 1,000 epochs. The output
model was selected based on the epoch, resulting in the highest
AUC in the validation cohorts. For training the specialized LSTM
model, the teacher forcing strategy is used to improve the learning
efficiency of the model.

Model Withdrawal Procedure
To explore the impact of the cognitive conversion status at each
time step during the evaluation of the patient, we used the trained
hybrid model to test and evaluate the robustness of a single
time point on the ADAS-cog score; that is, by changing the
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FIGURE 3 | ROC comparisons of cognitive conversion at 3 and 6 months with CNN-LSTM modeling. (A) ROC comparisons of cognitive conversion at 3 months;
(B) ROC comparisons of cognitive conversion at 6 months.

FIGURE 4 | Predictive performance evaluation of CNN-LSTM modeling with confusion matrix at 3 and 6 months. *Computed classification confusion matrix using
our hybrid CNN-LSTM modeling in five-fold cross-validation. (A) Confusion matrix at 3 months; (B) Confusion matrix at 6 months.

model input through withdrawing the mid-point information
(simulating situations of follow-up absence), the degree of impact
of ADAS-cog at 3 months can be evaluated.

Model Performance Measurements and
Statistical Analysis
Descriptive statistics (mean, standard deviation counts,
and proportions) were provided to demonstrate the sample
characteristics with respect to statistical quantitative and
qualitative features.

For hybrid CNN-LSTM model evaluation, five-fold cross-
validation was applied, and assembled ROC curves with
AUCs were used to assess model performance at 3 and
6 months. Performance measurements including AUC,
sensitivity, and specificity with 95% confidence interval
(95% CI) were assessed using the optimal cut-off value (Youden
index = sensitivity + specificity − 1).

We expected that the implementation of deep learning
modeling could potentially guide the recommended
treatment plan, especially on patients who may suffer from
continuous cognitive decline during follow-ups. According
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3 to recommendations by multiple guidelines, it is assumed

that if patient’s ADAS-cog score declines less than 4 points or
increases at either follow-up time point (every 3 months), the
medical treatment recommended upon their diagnosis would
be considered insufficient for avoiding the cognitive decline
in the future (Farlow and Cummings, 2007; Cummings et al.,
2015; Grossberg et al., 2019). Therefore, it is recommended
to redirect or upgrade the medical treatment. Upon the above
rationales, it was hypothesized that if our deep learning modeling
could successfully predict the long-term cognitive conversion,
it could be used to guide the early decision-making redirection.
Therefore, we first estimated the treatment reassignment rates
based on the actual and predicted cognitive conversion (namely,
the target outcome) at 3 and 6 months according to the above
principle. The actual and predicted treatment reassignment
rates were then compared with chi-square testing (adjusted
if necessary) in the general population and according to age,
gender, and symptom severity as well as intervention subtypes
within all directions. STATA 16.0 (StataCorp LLC, TX, United
States) was utilized to perform the above analysis, and the
statistical significance was determined with p < 0.05.

RESULTS

Demographics and Cognitive Conversion
Distribution
Patient demographics and distribution according to cognitive
conversion (e.g., improved or not improved) at 3 and 6 months
are demonstrated in Table 1. A number of 224 patients were
included, of whom 85 at 3 months and 84 at 6 months were
identified as CI population, while 139 at 3 months and 140
at 6 months were identified as CNI. There were more men
(137 accounted for 61.16%) than women (87 accounted for
38.84%) enrolled with an average age of 69.75 ± 8.52 years.
Hypertension was the predominant comorbidity in 44 (19.64%)
patients. Patients were referred for different treatments mainly
based on the severity of cognitive impairment and the interests
of the original cohorts in which they were enrolled, including 62
(27.68%) for observation, 22 (9.82%) for exercise, 55 (24.55%) for
donepezil monotherapy, 38 (16.96%) of GBE monotherapy, and
47 (20.98%) for GBE and donepezil combination.

Predictive Performance of Hybrid
Convolutional Neural Networks and
Long-Short-Term Memory Modeling
We performed five-fold cross-validation to test the model
stability and to obtain the predicted outcomes of all patients.
Our hybrid CNN-LSTM modeling showed a considerable good
predictive capacity in identifying cognitive conversion status at
sequential time points. As shown in Figure 3, the hybrid model
achieved a mean AUC of 0.735 (95% CI: 0.701–0.769) at 3 months
and 0.853 (95% CI: 0.814–0.892) at 6 months. The predictive
performance achieved by the proposed model was considered
good at 3 and 6 months, with the detailed information provided
in Figure 4 and Table 2.
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FIGURE 5 | Demonstration of predictive accuracy stratified by age, gender, symptom severity, and intervention subtypes. (A) Predictive accuracy stratified by age at
3 months; (B) Predictive accuracy stratified by age at 6 months; (C) Predictive accuracy stratified by gender at 3 months; (D) Predictive accuracy stratified by gender
at 6 months; (E) Predictive accuracy stratified by symptom severity at 3 months; (F) Predictive accuracy stratified by symptom severity at 6 months; (G) Predictive
accuracy stratified by intervention subtypes at 3 months; (H) Predictive accuracy stratified by intervention subtypes at 6 months.

TABLE 3 | Predictive performance evaluation of CNN-LSTM-based withdrawal modeling at 6 months.

Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI) Positive predictive
value (95%CI)

Negative predictive
value (95%CI)

F-score AUC (95%CI) AUPRC

Fold 0 0.778 (0.629–0.888) 0.556 (0.308–0.785) 0.926 (0.757–0.991) 0.833 (0.516–0.979) 0.757 (0.577–0.889) 0.667 0.796 (0.656–0.937) 0.725

Fold 1 0.756 (0.605–0.871) 0.800 (0.519–0.957) 0.733 (0.541–0.877) 0.600 (0.361–0.809) 0.880 (0.688–0.975) 0.686 0.721 (0.554–0.888) 0.499

Fold 2 0.756 (0.605–0.871) 0.941 (0.713–0.999) 0.643 (0.441–0.814) 0.615 (0.406–0.798) 0.947 (0.740–0.999) 0.744 0.803 (0.661–0.944) 0.669

Fold 3 0.689 (0.534–0.818) 0.500 (0.247–0.753) 0.793 (0.603–0.920) 0.571 (0.289–0.823) 0.742 (0.554–0.881) 0.533 0.663 (0.491–0.834) 0.517

Fold 4 0.682 (0.524–0.814) 0.556 (0.308,0.785) 0.769 (0.564–0.910) 0.625 (0.354–0.848) 0.714 (0.513–0.868) 0.588 0.692 (0.529–0.855) 0.575
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FIGURE 6 | Recommended treatment reassignment following actual and predictive cognitive conversion at 3 and 6 months. (A) Treatment reassignment according
to actual cognitive conversion at 3 months; (B) Treatment reassignment according to predicted cognitive conversion at 3 months; (C) Treatment reassignment
according to actual cognitive conversion at 6 months; (D) Treatment reassignment according to predicted cognitive conversion at 6 months. *Another treatment
indicates additional memantine, psychological interventions combined with pharmacological therapy or novel pharmacological approaches involving strategies to
reduce amyloid and/or tau deposition.

The proposed hybrid model generally provided accurately
predicted outcomes in 70.09% of patients at 3 months and
81.70% at 6 months. To validate the generalizability of the
proposed model, Figure 5 and Supplementary Table 2 provide
the representative subgroup results according to age, gender,
symptom severity, and intervention subtype between actual and
predicted cognitive conversion at 3 and 6 months. Predictive
performance was superior in male patients who were under
observation at 3 months and exercise at 6 months.

In addition, we constructed the withdrawal model to further
explore the importance of time-sequential data on the stability of
our previously built CNN-LSTM modeling. As shown in Figure 3
and Supplementary Figure 2, without the incorporation of data
collected at 3 months, the AUC at 6 months decreased from 0.853
(95% CI: 0.814–0.892) to 0.734 (95% CI: 0.678–0.790), indicating

that the AUC was moderately impacted by the withdrawal of
data collected at 3 months. Another evaluation matrix of CNN-
LSTM based withdrawal modeling at 6 months is demonstrated
in Supplementary Figure 3 and Table 3.

Recommended Treatment Reassignment
Following Actual and Predicted
Cognitive Conversion at 3 and 6 Months
Based on the prespecified principle, over half of the patients
need reclassified treatment with a fraction of 62.05% (139/224)
at 3 months and 62.50% (140/224) at 6 months as determined by
their actual cognitive conversion. According to our hybrid CNN-
LSTM algorithms, the predicted conversion could potentially
guide the treatment reassignment in 46.43% (104/224) of patients
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TABLE 4 | Comparison between actual results and AI-predicted results after 3 and 6 months.

3-month 6-month

Actual
reassignment
status

Predicted
reassignment
status

X2 p value Actual
reassignment
status

Predicted
reassignment
status

X2 p value

Overall, n (%) 139/224 (62.05) 104/224 (46.43) 11.017 0.001 140/224 (62.50) 121/224 (54.02) 3.314 0.069

Observation 53/62 (85.48) 53/62 (85.48) 0.000 1.000 56/62 (90.32) 54/62 (87.10) 0.322 0.570

Exercise 15/22 (68.18) 20/22 (90.91) – 0.132 17/22 (77.27) 18/22 (81.82) – 1.000

Monotherapy 46/93 (49.46) 20/93 (21.51) 15.876 0.000 43/93 (46.24) 28/93 (30.11) 5.126 0.024

Donepezil and GBE combination 25/47 (53.19) 11/47 (23.40) 8.824 0.003 24/47 (51.06) 21/47 (44.68) 0.384 0.536

Age, n (%)

50–59y, n (%) 25/30 (83.33) 23/30 (76.67) 0.147 0.519 24/30 (80.00) 24/30 (80.00) 0.000 1.000

Observation 15/17 (10.79) 16/17 (15.38) – 1.000 15/17 (10.71) 15/17 (12.40) – 1.000

Exercise – – – – – – – –

Monotherapy 7/10 (5.04) 5/10 (4.82) – 0.650 7/10 (5.00) 6/10 (4.96) – 1.000

Donepezil and GBE combination 3/3 (2.16) 2/3 (1.92) – 1.000 2/3 (1.43) 3/3 (2.47) – 1.000

60–69yr, n (%) 42/74 (56.76) 35/74 (47.30) 1.327 0.249 44/74 (59.50) 37/74 (50.00) 1.336 0.248

Observation 15/18 (83.33) 16/18 (88.89) – 1.000 17/18 (94.44) 15/18 (83.33) – 0.603

Exercise 6/8 (75.00) 8/8 (100.00) – 0.467 6/8 (75.00) 7/8 (87.50) – 1.000

Monotherapy 12/30 (40.00) 7/30 (23.33) 1.926 0.165 10/30 (33.33) 8/30 (26.67) 0.317 0.573

Donepezil and GBE combination 9/18 (50.00) 4/18 (22.22) 3.010 0.083 11/18 (61.11) 7/18 (38.89) 1.778 0.182

70–79yr, n (%) 49/87 (56.32) 33/87 (37.93) 5.905 0.015 51/87 (58.62) 42/87 (48.28) 1.871 0.171

Observation 16/19 (84.21) 15/19 (78.95) – 1.000 17/19 (89.47) 17/19 (89.47) – 1.000

Exercise 6/9 (66.67) 8/9 (88.89) – 0.576 7/9 (77.78) 7/9 (77.78) – 1.000

Monotherapy 19/39 (66.67) 7/39 (17.95) 8.308 0.004 18/39 (46.15) 10/39 (25.64) 3.566 0.059

Donepezil and GBE combination 8/20 (40.00) 3/20 (15.00) – 0.155 9/20 (45.00) 8/20 (40.00) 0.102 0.749

80–89yr, n (%) 23/33 (69.79) 13/33 (39.39) 6.111 0.013 21/33 (63.64) 18/33 (54.55) 0.564 0.453

Observation 7/8 (87.50) 6/8 (75.00) – 1.000 7/8 (87.50) 7/8 (87.50) – 1.000

Exercise 3/5 (60.00) 4/5 (80.00) – 1.000 4/5 (80.00) 4/5 (80.00) – 1.000

Monotherapy 8/14 (57.14) 1/14 (7.14) – 0.013 8/14 (57.14) 4/14 (28.57) – 0.252

Donepezil and GBE combination 5/6 (83.33) 2/6 (33.33) – 0.242 2/6 (33.33) 3/6 (50.00) – 1.000

Gender

Male, n (%) 51/87 (58.62) 40/87 (45.98) 2.778 0.095 52/87 (59.77) 45/87 (51.72) 1.142 0.285

Observation 21/25 (84.00) 22/25 (88.00) – 1.000 23/25 (92.00) 21/25 (84.00) – 0.667

Exercise 8/10 (80.00) 9/10 (90.00) – 1.000 9/10 (90.00) 9/10 (90.00) – 1.000

Monotherapy 14/35 (40.00) 6/35 (17.14) 4.480 0.034 15/35 (42.86) 8/35 (22.86) 3.173 0.075

Donepezil and GBE combination 8/17 (47.06) 3/17 (17.65) – 0.141 5/17 (29.41) 7/17 (41.18) 0.515 0.473

Female, n (%) 88/137 (64.23) 64/137 (46.72) 8.511 0.004 88/137 (64.23) 76/137 (55.47) 2.187 0.139

Observation 32/37 (86.49) 31/37 (83.78) 0.107 0.744 33/37 (89.19) 33/37 (89.19) – 1.000

Exercise 7/12 (58.33) 11/12 (91.67) – 0.155 8/12 (66.67) 9/12 (75.00) – 1.000

Monotherapy 32/58 (55.17) 14/58 (24.14) 11.672 0.001 28/58 (48.28) 20/58 (34.48) 2.275 0.132

Donepezil and GBE combination 17/30 (55.17) 8/30 (26.67) 5.554 0.018 19/30 (63.33) 14/30 (46.67) 1.684 0.194

AD, n (%) 76/135 (56.30) 56/135 (41.48) 5.929 0.015 78/135 (57.78) 66/135 (48.89) 2.143 0.143

Symptom severity

Observation 24/31 (77.42) 23/31 (74.19) 0.088 0.767 27/31 (87.10) 25/31 (80.65) – 0.731

Exercise 15/22 (68.18) 20/22 (90.91) – 0.132 17/22 (77.27) 18/22 (81.82) – 1.000

Monotherapy 21/52 (40.38) 9/52 (17.31) 6.746 0.009 20/52 (38.46) 11/52 (21.54) 3.722 0.054

Donepezil and GBE combination 16/30 (53.33) 4/30 (13.33) – 0.002 14/30 (46.67) 12/30 (40.00) 0.271 0.602

MCI, n (%) 63/89 (70.79) 48/89 (53.93) 5.385 0.020 62/135 (45.93) 55/135 (40.74) 1.222 0.269

Observation 29/31 (93.55) 30/31 (96.77) – 1.000 29/31 (93.55) 29/31 (93.55) – 1.000

Exercise – – – – – – – –

Monotherapy 25/41 (60.98) 11/41 (26.83) 9.705 0.002 23/41 (56.10) 17/41 (41.46) 1.757 0.185

Donepezil and GBE combination 9/17 (52.94) 7/17 (41.18) 0.472 0.492 10/17 (58.82) 9/17 (52.94) 0.119 0.730
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FIGURE 7 | Recommended treatment reassignment following actual and predictive cognitive conversion according to age at 3 and 6 months. (A) Treatment
reassignment according to actual and predicted cognitive conversion at 3 and 6 months in 50–59 years; (B) Treatment reassignment according to actual and
predicted cognitive conversion at 3 and 6 months in 60–69 years; (C) Treatment reassignment according to actual and predicted cognitive conversion at 3 and
6 months in 70–79 years; (D) Treatment reassignment according to actual and predicted cognitive conversion at 3 and 6 months in 80–89 years. *Another treatment
indicates additional memantine, psychological interventions combined with pharmacological therapy or novel pharmacological approaches involving strategies to
reduce amyloid and/or tau deposition.

at 3 months and 54.02% (121/224) at 6 months (Figure 6).
No significant difference (p = 0.069) was noted in actual and
predicted treatment reassignment at 6 months. We also estimated
the treatment reassignment rate in subgroups categorized by

age, gender, symptom severity, and intervention subtypes within
all directions. Generally, no significant differences in treatment
reassignment rates were detected between actual and predicted
cognitive conversion in all directions at 6 months. Detailed
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FIGURE 8 | Recommended treatment reassignment following actual and predictive cognitive conversion according to gender at 3 and 6 months. (A) Treatment
reassignment according to actual and predicted cognitive conversion at 3 and 6 months in men; (B) Treatment reassignment according to actual and predicted
cognitive conversion at 3 and 6 months in women. *Another treatment indicates additional memantine, psychological interventions combined with pharmacological
therapy or novel pharmacological approaches involving strategies to reduce amyloid and/or tau deposition.

statistics regarding subgroup analysis of treatment reassignment
are provided in Table 4.

DISCUSSION

Progressive cognitive impairment is currently considered as the
major symptom in patients with AD or MCI. Studies and reviews
have suggested improved clinical outcomes (e.g., suspended or
postponed cognitive decline) in patients who were managed
upon early diagnosis (Livingston et al., 2017; Regan et al.,
2017; Bachurin et al., 2018; Green et al., 2019; Mintun et al.,
2021). Advanced diagnostic strategies (e.g., genetic or plasma
screening) have been proposed, therefore early intervention
could be delivered directly (Nakamura et al., 2018; Giau et al.,
2019; Palmqvist et al., 2019; Karikari et al., 2020). However,
there remain concerns regarding a fairly high proportion of the
quick decline in cognitive function in a short period due to
distinctions in terms of the progressive variation of dementia.
In the view of medical professionals, this situation would be
attributed to, to some extent, the lack of strategies available to
guide treatment decision-making even the diagnosis of AD or
MCI at the early stage.

The concept of artificial intelligence (AI) has recently
permeated almost every sector of the healthcare system. Its recent
expansion of plasma phosphor-tau (P-tau) and other biomarkers

in the prediction regarding the risk of developing AD is an ideal
example (Palmqvist et al., 2021). Nonetheless, there is an ongoing
demand for the continual process of integrating and optimizing
these synergistic advances in guiding medical decision-making in
the real clinical context.

In this study, we first estimated the reassignment rates
according to our prespecified principle (as mentioned earlier)
using the datasets from three ongoing cohorts. Using AI
techniques would allow us to compare the reassignment rates
estimated by the deep learning modeling according to the
actual status. Upon this perspective, our findings based on
the predicted cognitive conversion at 3 and 6 months verified
our hypothesis and provided preliminary recommendations on
treatment reassignment at the early stage of AD or MCI.

Generally, predicted cognitive conversion according to our
hybrid CNN-LSTM algorithms led to a recommendation of
treatment reassignment in 46.43% (104/224) of patients at
3 months and 54.02% (121/224) at 6 months as compared with
62.05% (139/224) at 3 months (X2 = 11.017, p = 0.001) and
62.50% (140/224) at 6 months (X2 = 3.314, p = 0.069) according
to their actual cognitive conversion (Figures 6–9 and Table 4).
This indicated that a proportion of 74.7% of patients at 3 months
and 86.4% at 6 months would be potentially benefited from deep
learning modeling-guided treatment reassignment.

Interestingly, patients referred for observation and treated
with monotherapy (GBE/donepezil) were more likely to be
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FIGURE 9 | Recommended treatment reassignment following actual and predictive cognitive conversion according to symptom severity at 3 and 6 months.
(A) Treatment reassignment according to actual and predicted cognitive conversion at 3 and 6 months in AD; (B) Treatment reassignment according to actual and
predicted cognitive conversion at 3 and 6 months in MCI. *Another treatment indicates additional memantine, psychological interventions combined with
pharmacological therapy or novel pharmacological approaches involving strategies to reduce amyloid and/or tau deposition.

reclassified according to their actual cognitive conversion.
However, a discrepancy that occurred between the actual and
predicted reassignment status, with 44.4% (20/43) of patients
at 3 months and 65.1% (28/46) at 6 months in this subgroup
to be benefited, would be mainly attributed to the declined
predictive accuracy in patients treated with monotherapy
(GBE/donepezil). Considering the advantages of the hybrid
CNN-LSTM algorithms in handling temporal data and capturing
long-term dependencies, it was not surprising that the predictive
performance was superior at 6 months than 3 months (Lara-
Benítez et al., 2021). This was mainly benefited from its automatic
feature learning ability with multiple temporal data (e.g., data at
baseline and 3 months), which further enriched the predictive
performance at 6 months. However, the predictive algorithm is
different at 3 months, especially without the application of CNN
featured algorithms. This highlighted the importance of adding
time-sequential data to compensate for the above limitation
in improving reassignment accuracy, while the increased costs
and workload due to additional follow-ups would be further
considered and balanced. It is important to emphasize that our
follow-up is limited to 6 months at present, and long-term follow-
up would be valuable to assess whether predictive performance
can be further improved when the cognitive decline slows down
with less heterogeneity and variation (Cortes et al., 2007; Vellas
et al., 2007; Rockwood et al., 2008; De Rui et al., 2014). In
contrast, the debated effectiveness of monotherapy (e.g., GBE

and donepezil) may also increase the predictive uncertainty at
both 3 and 6 months (Schneider et al., 2005; Mazza et al.,
2006; Yuan et al., 2017; Birks and Harvey, 2018). Nonetheless,
our results provided opportunities when neurological clinicians
recommended medical treatment upon the diagnosis of AD or
MCI, our model redirected management in averagely 80% of
cases according to the actual cognitive conversion at 3 and
6 months, offering the potential to avoid a cognitive decline in
the future. Unfortunately, a proportion of up to 26.3% of patients
was not followed by our deep learning modeling, despite the
dramatic efforts to optimize predictive performance and improve
reassignment accuracy. Perhaps, this reflected nuanced medical
management regarding factors such as age, gender, symptom
severity, individual sensitivity, and variations in response to
medical treatment, compliance to medical treatment, or other
factors, which were not included in this study. Results of our
subgroup analysis in reassignment rates also supported the
above assumption.

Importantly, our findings could be placed into the context of
guidelines highlighting the evidence-based classification criteria
according to symptomatology and physiopathology to enable
real-world testing of the value of our proposed strategy in a
fashion that may assist the decision-making upon the diagnosis of
AD or MCI. Since the diversity of medical treatment was limited
due to the utilization of datasets from three registered cohorts, it
cannot completely represent the real-world situation. However,
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our study may serve as a template and has preliminarily verified
by the application of deep learning modeling-guided decision-
making in the treatment of dementia among AD or MCI. In
fact, the currently proposed deep learning modeling successfully
simulated the actual reassignment status, and several concerns
are pending for investigation. For instance, the prognosis
following the deep learning modeling-guided reassignment of
medical treatment needs to be verified with well-designed studies
before its application in real clinical circumstances. We used the
increase in ADAS-cog score for more than 4 points as the cut-
off to define cognitive decline. Similar to all neuropsychological
assessments, the actual cognitive function may not be completely
followed due to the sensitivity and specificity of ADAS-cog (Chu
et al., 2000; Monllau et al., 2007; Rockwood et al., 2007; Balsis
et al., 2012; Skinner et al., 2012; Verma et al., 2015). Although we
reported the actual and predicted reassignment rates according
to our prespecified principles, it was not totally evidence-
based, indicating that some elements of referral bias cannot be
excluded in this study. Our deep learning modeling was featured
with handling time-sequential data especially for longitudinal
cognitive scores extracted from multiple neuropsychological
assessments, and the lack of data in terms of Aβ, tau, and other
neurodegenerative biomarkers would consequently be assumed
to impact the predictive performance of our deep learning
modeling (Choi and Jin, 2018; Lee et al., 2019; Janelidze et al.,
2020). In fact, plasma and CSF samples were not planned in the
three registered cohort studies, highlighting that future studies
must take these elements into account.

CONCLUSION

To sum up, we provided an example of hybrid CNN-LSTM
modeling-driven early decision-tailoring in AD or MCI. Using
deep learning modeling and featured longitudinal information,
our hypothesis was preliminarily verified so that it may provide
those suffering from cognitive decline in the future with chances
to redirect treatment at the early stage. Considering the limited
diversity of treatment strategies applied in this study, the real-
world medical situation was not comprehensively simulated.
Enlarged sample and diverse treatment datasets need to be
further tested when considering the integration of this novel AI
strategy into routine clinical practice of AD and MCI.
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