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ABSTRACT

Motivation: Viruses employ various means to evade immune
detection. One common evasion strategy is the removal of CD8+
cytotoxic T-lymphocyte epitopes. We here use a combination of
multiple bioinformatic tools and large amount of genomic data to
compute the epitope repertoire presented by over 1300 viruses in
many HLA alleles. We define the ‘Size of Immune Repertoire score’,
which represents the ratio between the epitope density within a
protein and the expected density. This score is used to study viral
immune evasion.

Results: We show that viral proteins in general have a higher
epitope density than human proteins. This difference is due to a
good fit of the human MHC molecules to the typical amino-acid
usage of viruses. Among different viruses, viruses infecting humans
present less epitopes than non-human viruses. This selection is not
at the amino-acid usage level, but through the removal of specific
epitopes. Within a single virus, not all proteins express the same
epitopes density. Proteins expressed early in the viral life cycle have
a lower epitope density than late proteins. Such a difference is not
observed in non-human viruses. The removal of early epitopes and
the targeting of the cellular immune response to late viral proteins,
allow the virus a time interval to propagate before its host cells are
destroyed by T cells.

Contact: louzouy@math.biu.ac.il

1 INTRODUCTION

The infection of a cell by a virus can elicit a Cytotoxic T
Lymphocyte (CTL) response to viral peptides presented by the Major
Histocompatibility Complex (MHC) class I molecules (Ambagala et
al., 2005; Gulzar and Copeland, 2004). Such a CTL response plays
a critical role in the host’s anti-viral immune response (McMichael
et al., 1983). This role is suggested by studies indicating a drop of
viral loads and the relief of the acute infection symptoms following
the emergence of virus-specific CTLs (Borrow et al., 1994), as well
as by data from CD8+ T cells-depleted animal models (Letvin et al.,
1999; Negri et al., 2006). The CTL response is also associated with
a rapid selection of viral CTL escape variants (Howley et al., 2001;
Lichterfeld et al., 2005).

In order to explore the anti-viral CD8+ T cells response, one
has to consider the factors affecting the CTL response, such as
the kinetics of the viral protein expression, the Human Leukocyte
Antigen (HLA) class I genetic background of the infected individuals
and the viral gene diversifications (Lichterfeld et al., 2005). These
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viral genes determine the epitope repertoire presented to the immune
system and consequently the immune response.

We here propose to use an immunomic methodology combining
genomic data and multiple bioinformatic tools to study the anti-viral
CTL response. Using this immunomic analysis, we present a novel
all-virus analysis of the viral epitope repertoire and highlight the
selective forces affecting viruses and their human host.

In general, CTL epitopes originate from short peptides cleaved
by the proteasome (Rock et al., 2002) that can pass through the
Transporter associated with Antigen Processing (TAP) and associate
non-covalently with the groove of MHC-I molecules. The vast
majority of these epitopes are nine-mers (although octamers and
decamers and even longer epitopes can be observed). A cleaved
nine-mer is presented on an MHC-I molecule only if its affinity to
the MHC molecule is sufficiently high. We have recently developed
and improved a set of bioinformatic tools to estimate all peptides
within a virus that can be presented to the immune system (the CTL
epitope repertoire). We here apply this methodology to over 1300
fully sequenced viruses and show that viruses selectively alter their
epitope repertoire.

The HLA locus is the most polymorphic locus in the human
genome. In the class I locus HLA-A, B and C have over 697,
1109 and 381 alleles, respectively (Robinson et al., 2003). This
large polymorphism permits a rapid selection of alleles that can
respond to viral threats. On the other hand, viruses can mutate
rapidly. For example, the HIV mutation rate is approximately 1.e—3—
1.e—4 mutations per base pair per division (Coffin, 1995), which is
approximately one mutation per division for the entire viral genome.
This high mutation rate coupled with a short viral life cycle [24-72 h
for most viruses (Howley, et al., 2001)] allows viruses to modify
their epitope repertoire within a short time.

Thus, the number of viral epitope is affected by two opposing
trends: the attempts of the human immune system to recognize
virally infected cells and the viral attempts to survive for a long
enough time in the infected cell to bud. We here propose a direct
measure of the epitope number over all fully sequenced viruses to
explore the effect of these opposing forces.

2 METHODS

2.1 Genomic data

Viral and human protein sequences were used for this analysis. The human
sequences were obtained from the Ensembl database (Birney et al., 2004). All
human predicted protein-coding regions were used. In the current analysis,
we ignored the effect of point mutations. The viral sequences were obtained
from the NCBI (http://www.ncbi.nlm.nih.gov/) and LANL (Kuiken et al.,
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2003) databases. The proteins of some of the human viruses were divided into
groups, according to the available data. Viruses were classified into human
or non-human viruses, based on their main host. A virus mainly infecting
non-humans that can infect humans, but is not usually transferred from one
human to the other was classified as non-human.

2.2 SIR score

We have analyzed the ratio between the number of epitopes presented in viral
genes and their random counterpart. The epitope number was computed using
three algorithms: a homemade cleavage algorithm (Ginodi et al., 2008), a
TAP-binding algorithms developed by Peters e al. (2003) and the BIMAS
MHC binding (Parker et al., 1994) algorithms. We have computed epitopes
for 31 common HLA alleles and weighted the results according to the allele
frequency in the global human population. The algorithms’ quality was
systematically validated versus epitope databases and was found to induce
low FP and FN error rates. A detailed description of the algorithm, their
validation and the SIR score can be found in previous works (e.g. Vider-Shalit
et al., 2007).

2.3 Validation

To validate our results, we checked the score of peptides present in
seven different databases: IEDB (Peters et al., 2005), SYFPEITHI
(Rammensee et al., 1999)—www.syfpeithi.de, MHCBN (Bhasin et al.,
2003)—http://www.imtech.res.in/raghava/mhcbn/, MPID (Govindarajan
et al., 2003)—surya.bic.nus.edu.sg/mpid/, MHCPEP (Brusic et al.,
1998)—http://www3.oup.co.uk/nar/database/, AntiJen (Blythe et al., 2002;
McSparron et al., 2003)—http://www.jenner.ac.uk/AntiJen/ and HLALigand
(Sathiamurthy et al., 2003)—http://hlaligand.ouhsc.edu/LigandDB.
Assuming that most peptides in the various databases are correct, we
computed the threshold that would maximize the number of presented
peptides from the positive databases, and minimize the number of peptides
in a neutral set of 1 000 000 random peptides with the NCBI database
amino-acid distribution (http://prowl.rockefeller.edu/aainfo/contents.htm).
We have checked for each HLA allele the level of type-I and type-II errors
and attempted to find a cutoff minimizing both. For most alleles we found
cutoffs reducing both errors to less than 10% (i.e. 90% inclusion of the
presented peptides and 90% exclusion of the random peptides).

2.4 Statistical analysis

The SIR score of various populations was compared. A one-way ¢-test with
unknown and unequal variance was used to compare the SIR scores of viruses
in human and non-human hosts, as well as the SIR scores of human and
viral proteins. When comparing viruses, the full virus score was used. When
comparing proteins, the SIR score of each protein was used. A ¢-test over all
alleles was used to compare the average SIR score of the epitopes produced
from the Hidden Markov Models (HMM) based on either human or viral
amino-acid distribution properties. When comparing the early versus late
proteins in a large group of viruses an ANOVA procedure was used. In the
HIV analysis, we first performed an average over all sequences of each
protein, and then compared the average SIR score of all proteins among
different organisms. The first averaging was required since the sequence
number in different HIV significantly varies.

3 RESULTS
3.1 SIR score

In order to study the human immune response to the viral epitope
repertoire, we computed all predicted epitopes in each viral protein
in over 1300 viruses. Predicted CTL epitopes are nine-mers fulfilling
three criteria: (i) production through proteasomal cleavage. In other
words, a given peptide can be potentially presented if its extreme
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Fig. 1. Algorithm for the SIR score computation. Each viral gene is divided
into all nine-mers and the appropriate flanking regions (a). For each nine-mer
a cleavage score is computed (b). We compute a TAP binding for all nine-
mers with a positive cleavage score and choose only supra-threshold peptides
(¢). The MHC-binding score of all TAP-binding and cleaved nine-mers is
computed (d). Nine-mers passing all these stages are defined as epitopes.
‘We then compute the number of epitopes per protein per HLA allele (e).

and flanking residues enhance proteasomal cleavage and if it is not
cleaved in its center (Ginodi et al., 2008). (ii) transport through the
TAP machinery to the endoplasmic reticulum (ER). (iii) presentation
in the context of MHC-I (Fig. 1). We have used three algorithms to
predict all peptides within a protein successfully passing all these
stages (Louzoun and Vider, 2004; Peters et al., 2003; Parker et al.,
1994). Specifically, each viral gene was divided into all nine-mers
and the appropriate flanking regions. For each nine-mer a cleavage
score is computed, based on the nine-mer itself and its flanking
regions. Only peptides computed to be properly cut were taken to
the next stage. We then computed a TAP-binding score for all nine-
mers with a positive cleavage score and choose only supra-threshold
peptides. The last stage of the analysis is based on allele-specific
MHC-binding scores of all TAP-binding and cleaved nine-mers.
Resulting nine-mers that bind a given MHC molecule are defined
as epitopes for this HLA allele. All algorithms used here were
validated using a quality assurance process versus seven different
databases of epitopes experimentally measured to be presented. The
validation process ensured that the error levels are low enough to
allow a systematic analysis of the repertoire (Ginodi, et al., 2008)
(http://peptibase.cs.biu.ac.il/peptibase/validation.htm).

A fraction of the epitopes is transported through a TAP-
independent pathway (Yewdell et al., 1998). Since we performed
a comparative analysis, we ignored this fraction, assuming that their
statistics resemble those of TAP-dependent epitopes and that they
should have only a minor effect on the total epitope number. We
have ignored octamers and decamers for the same reasons. We
estimated the number of epitopes from viral proteins on 9 HLA-
A, 19 HLA-B and 3 HLA-C alleles most common in the global
human population. These alleles have well-defined MHC-binding
motifs. These combined HLA alleles are present in 80-90% of the
human population.

3.2 Human vs viral epitope density

In order to check if the MHC allele distribution has evolved to
maximize the presentation of viral epitopes, we measured the epitope
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Fig. 2. Comparison of epitope density in human and viral proteins. The
white bars represent the ratio between the relative change between the viral
and human epitope densities (i.e. viral epitope desnity/human epitope density
—1). All positive values represent a higher viral epitope density. The black
bars represent the same comparison performed on a random sequence based
on human and viral amino-acid distributions.

density of human and viral proteins and compared them in the same
allele. The epitope density of a sequence is defined as the number of
predicted epitopes divided by the number of candidate nine-mers.
Indeed systematically, viral proteins express more epitopes than their
human counterpart over the vast majority of alleles (Fig. 2, empty
bars) (P < 1.e-7).

We further checked the evolutionary selection of HLA alleles by
comparing the frequency of the HLA alleles and the ratio between the
density of human and viral epitopes in the same allele. The alleles
with the highest ratio are the most frequent one (20% increased
frequency of alleles with high ratio compared with alleles with low
ratio) highlighting a possible selection at the population level of
alleles presenting a large number of viral epitopes.

The most natural mechanism for such a selection is that alleles-
binding residues over-represented in viral sequences are preferred.
In order to test this hypothesis, we produced two random sequences
with different amino-acid distributions. We trained two distinct
Markov models on all human and all viral proteins, respectively and
produced very long random sequences (1.e6 amino acids) based on
these models. We then compared the epitope densities of these two
random sequences in each HLA allele (Fig. 2). The ratio between
the epitope density of the random sequence based on viral amino
acids and the random sequence based on human amino acid is even
larger than the ratio between the real viral and human proteins
epitope densities (Fig. 2) (P < 0.02 t-test on the ratio between
epitopes from the viral and human Markov models, compared with
the ratio between computed epitopes from the viral and human
real protein sequences). The difference between the Markov models
shows that the human MHC system is evolving to recognize the
viral amino-acid distribution. The smaller difference between human
and viral epitope numbers shows that within the broad specificity
of human MHC to preferentially bind epitopes with viral amino-
acid distribution, viruses specifically mutate their epitopes to limit
detection.

Table 1. SIR score of human and non-human viruses used in analysis

Virus SIR Virus SIR
Human herpes virus 1 0.89 HIV-1 0.71
Human herpes virus 4 0.91 HIV-2 0.73
Human herpes virus 5-AD169 0.87 SIVcpz 0.79
Human herpes virus 5-Merlin 0.87 SIVmac 0.79
Human herpesvirus 8 0.92 SIVsm 0.87
Ostreid herpes virus 1 1.08

Ictalurid herpes virus 1 1.01 HBV A 0.82
Gallid herpes virus 1 1.00 HBV B 0.92
Alcelaphine herpes virus 1 1.00 HBV C 0.88
Meleagrid herpes virus 1 0.98 HBV D 0.85
Equid herpes virus 1 0.94 HBVE 0.82
Psittacid herpes virus 1 0.91 HBVF 0.90
Suid herpes virus 1 0.91 HBV G 0.91
Murid herpes virus 1 0.91 HBVH 0.83
Bovine herpes virus 1 0.90 gsHBV 1.03
Cercopithecine herpes virus 1 0.87 WHV 1.20
Tupaiid herpes virus 1 0.86 DHBV 1.03
Bovine herpes virus 4 1.06 gooseHBV 0.98
Equid herpes virus 4 0.96 heronHBV 0.94
Murid herpes virus 4 0.95

Pongine herpes virus 4 0.86

Bovine herpes virus 5 0.90

Cercopithecine herpes virus 8 0.92

3.3 Human and non-human hosts

Among viruses, the attempts to mutate epitopes should only be
observed in human viruses (viruses infecting a human host). We
compared the epitope density in viruses living in a human host
and the epitope density in their non-human counterparts. In order
to ease the comparison, we used the number of epitopes in the
Markov-Model-based random strand produced from all viral protein
as a normalization factor. We defined a score representing the ratio
between the epitope density in a given protein and the epitope
density in the viral random strand and named it the ‘Size of Immune
Repertoire’ (SIR) score (Almani et al., 2008; Vider-Shalit et al.,
2007). This score can be interpreted as the ratio of the number of
predicted CTL epitopes to the number of epitopes expected within
the same number of random nine-mers with similar amino acid
and amino-acid couples frequency distribution (Vider-Shalit er al.,
2007). For example, assume a 308-amino acid long sequence. Such
a sequence has 300 overlapping nine-mers. If a set of 300 random
nine-mers with a similar amino-acid distribution is expected to have
10 HLA A*0201 epitopes and the sequence is computed to have
4 HLA A*0201 epitopes, the SIR score of the sequence for HLA
A*0201 would be 0.4. The SIR score of a gene in a population is
defined as the average SIR score over all HLAs, weighted by the
HLA frequencies in this population. An average SIR score of <1
represents an under-presentation of epitopes, while an average SIR
score of >1 actually represents an over-presentation of epitopes.
In order to compare viruses from human and non human hosts, we
used three groups of viruses from different families. We compared
the SIR scores of human herpes viruses and the ones of non-human
herpes viruses. Five human and 18 non-human Herpes strains were
tested on human MHC alleles (Vider-Shalit et al., 2007; Table 1,
Fig. 3a). The average SIR score of the human herpes viruses was
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Fig. 3. The average SIR score of human versus non-human viruses. Data are shown for three viruses: Herpes virus (HHV-1, HHV-4, HHV-5 and HHV-8), (a)
HIV (HIV-1 and HIV-2) (b) and Hepatitis B (strains A-H) virus. (¢) The black columns represent human strains while the gray columns represent non-human
strains. In most cases, the average SIR score of the human viruses are lower than the non-human viruses. The lower right drawing represents the SIR score
distributions of all full sequenced viruses from the NCBI. (d) In general, the SIR score of the non-human viruses (gray dashed line) was distributed around 1

while the human viruses (black thick line) was <1.

lower than their non-human counterparts (z-test P < 0.003). A similar
result can be observed when comparing Human immunodeficiency
virus (HIV) I and II, with the respective Simian immunodeficiency
virus (SIV) that originated them (Vider-Shalit ez al., 2008; P <0.02).
We computed the SIR score of all HIV-1, HIV-2, SIVcpz, SIVsm
and SIVmac sequences in the LANL and NCBI databases (Kuiken
et al., 2003). The SIVcpz, which is the ancestor of HIV-1, has a
higher SIR score than average SIR score of all HIV-1 sequences.
The SIR score of HIV-2 is also smaller than the SIR scores of SIVsm
and SIVmac that originated it (Vider-Shalit er al., 2008) (Fig. 3b).
Another virus with human strains as well as strains infecting other
species is Hepatitis B virus (HBV). Viruses similar to HBV exist
among others in ducks and squirrels (Table 1). As was the case for
the Herpes and the HIV, the SIR score of non-human hepatitis viruses
is ~1, while the SIR score of the HBV is lower than 1 (Fig. 3c; T-test
P <0.01). In the case of HBV, this comparison holds at the single
protein level, for most proteins. Most HBV proteins have a lower
SIR score than their non-human counterpart (X is only compared to
mammalian Hepadnaviruses).

More generally, when comparing the SIR scores of all human-
infecting viruses, it is significantly lower than the one of non-human
viruses [Fig. 3d; (z-test P < 1.e-7)]. However, this last result should
be taken with a grain of salt, since the SIR score of different virus
families can significantly vary. Thus, the average over multiple
families is affected by the number of available fully sequenced
viruses in each family. The Human Papillomavirus (HPV) family
(Papillomaviridae) is one of the most highly sequenced human viral

families. HPV have a low SIR score, reducing the average human
viruses SIR score. Thus the proper analysis is the case-by-case
comparison of similar viruses, as was done in the herpes, HIV and
HBYV cases.

3.4 Early versus late viral proteins

The selection against viral epitopes does not end at the full virus
level. Not all viral proteins are subject to the same immune pressure.
An example from a different branch of the immune system would be
the gp120 in HIV and Hemaglutinin in Influenza. These proteins are
under the most stringent pressure from B cells, since they are directly
accessible to antibodies. Similarly one could assume that different
viral proteins are under more or less immune pressure from CTL. We
hypothesized that early proteins should express less epitopes than
late proteins. Such a difference is expected, since viruses probably
attempt to delay as much as possible the destruction of infected cells
to ensure the probability of budding before cellular destruction.
We have compared early to late proteins in 24 different viruses,
mostly Adenoviruses, Herpes viruses and HPV. In most HLA alleles
tested the average SIR score ratio of late to early proteins is higher
than one. This result is valid for most viruses, as well as for
the average of all viruses (All positive values in Fig. 4 represent
allele/virus combination with a higher epitope density in late proteins
than in early proteins). The difference between early and late proteins
is significant, when comparing the average SIR over all alleles
(t-test, P < 0.0001), or when the SIR for each allele is taken into
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Fig. 4. SIR score of early versus late proteins. The data is shown for 24
viruses of all candidates HLA alleles (31 alleles). Each column represents
the ratio between the difference of the late and early SIR score to their sum
([SIR(late) — SIR(early)]/[SIR(late) 4+ SIR(early)]). For most HLA\virus the
ratio is more than 0, indicating a significant positive difference in the number
of presented epitopes between these groups.

account (Anova, P < 1.e-100). Thus quite systematically, late viral
proteins express more epitopes than early ones. Assuming, viruses
would make all possible efforts to evade detection, one could
assume that viruses would remove all epitopes through mutations.
However, given the large number of epitopes resulting from the
MHC polymorphism and the probable cost of mutations, viruses are
probably limited in their attempts to reduce epitopes. Given these
restrictions, our results show that most of the effort is targeted to
early proteins that are probably the most dangerous for the virus.

Note that the observed effect is the average over a large number
of proteins. At the single protein, many factors can affect the SIR
score. For example, we have shown that proteins down-regulating
MHC presentation have a high SIR score, while critical latent Herpes
proteins have a very low SIR score (Vider-Shalit et al., 2007).

To summarize, the SIR score of a protein is affected at the most
general level by its amino-acid distribution. At the next level, it is
affected by the type of the virus and the protein expression time in
the viral life cycle and finally by specific properties of the protein.
To that one must add a very strong random element resulting from
viral mutations that did not pass selection (such as mutations not
affecting epitopes in the specific host MHC allele.).

4 DISCUSSION

The precision of CD8+ T-cell epitope presentation and processing
algorithms has reached the level allowing a systematic analysis of the
detailed epitope repertoire of a given organism. We have combined
such algorithms and the large amount of available viral genomic
data to produce for the first time a systemic analysis of viral epitope
repertoires.

Viruses and the immune system play an intricate evolutionary
game. Viruses attempt to evade immune detection, while the human
population is constantly driven by viral epidemics to use HLA alleles
presenting viral epitopes. Viruses use a large variety of immune
evasion mechanisms, such as (among other): down-regulation of
MHC-I expression (Hilleman, 2004), self mimicry (Alcami, 2003),
down-regulation of CD1d surface expression (Yuan et al., 2006) and
mutation of T-cell epitopes (Bowen and Walker, 2005; McMichael
and Phillips, 1997). If the selective pressure affecting viruses and

the immune system was balanced, the epitope density of viruses and
of random sequences should be similar.

We have measured this epitope density and shown that MHC
molecules are actually selected to present more viral epitopes than
human epitopes. This selection is based on the typical amino-
acid usage of viruses, since a random amino-acid sequence with
a distribution resembling the viral amino-acid distribution has the
highest epitope density among all cases studied here. Viruses in
general attempt to avoid this bias by mutating epitopes. However, not
all viral proteins have the same epitope density. We have defined a
normalized score to compare the epitope density of different viruses.
In a given protein/genome, libraries of all presented epitopes were
devised. These libraries’ size was compared to the size of their
counterpart in a random sequence of similar length and amino-acid
distribution. The size ratio was named the SIR score.

The SIR score of all human viruses was found to be lower than
the one of non-human viruses. Note that highly acute viruses, such
as ebola and smallpox had a SIR score higher than 1. A reduction
in the number of presented epitopes can have crucial effects on
the immune response, since the average number of epitopes is of
the order of one per protein per HLA (Louzoun et al., 2006). A
reduction in this number can simply prevent the immune detection
of a given protein. A single epitope could theoretically induce an
immune response. Thus theoretically, as long as the SIR score is not
0, an immune response is possible. However, the immune response
is a stochastic process. The viral effort to reduce the epitope number
accompanied by other immune evasion methods are probably meant
to reduce the probability that an infected cell should be destroyed to
a level allowing some of the infected cell to produce virions. Even
if most cells are indeed destroyed, a few surviving infected cells can
be enough to ensure a successful infection.

Even within a given virus, not all proteins have the same SIR
score. We compared early to late proteins in 24 viruses and found that
proteins expressed early in the viral life cycle had a lower SIR score
than late proteins. An early presentation of epitopes may give the
immune system enough time to kill the infected cell before budding,
while a late destruction may not prevent budding and the infection of
new cells. The difference between early and late proteins disappears
when looking at the non-human counterparts of the viruses checked.
The different SIR score seems to directly result from the negative
selection of epitopes in the appropriate host. We have compared in a
few viruses the effect of the protein concentration on the SIR score,
but never found a consistent relation. The lack of such a correlation
may stem from the small number of epitopes required to induce an
immune response.

The SIR score has beyond its explanatory power, important
applications. The detection of outliers in the distribution allows us
to detect proteins that the virus tries to ‘hide’ from the immune
system. Their epitopes are optimal targets for immunotherapy or
simply for vaccination. One can assume that if viruses attempt to
hide a protein from the immune system, the detection of this protein
would maximize the immune impact. Thus, the SIR score can track
the important proteins for immunotherapy even if their function is
not known. It can be used for any virus. The full list of epitopes
for other viruses for any HLA alleles can be obtained from the
PEPTIBASE server at peptibase.cs.biu.ac.il.
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