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Energetic Effects of a Closed System Approach Including
Explicit Proton and Electron Acceptors as Demonstrated by
a Mononuclear Ruthenium Water Oxidation Catalyst
Jessica M. de Ruiter,[a] Huub J. M. de Groot,[a] and Francesco Buda*[a]

When considering water oxidation catalysis theoretically, ac-

counting for the transfer of protons and electrons from one

catalytic intermediate to the next remains challenging: correc-

tion factors are usually employed to approximate the energetics

of electron and proton transfer. Here these energetics were

investigated using a closed system approach, which places the

catalytic intermediate in a simulation box including proton and

electron acceptors, as well as explicit solvent. As a proof of

principle, the first two catalytic steps of the mononuclear

ruthenium-based water oxidation catalyst [Ru(cy)(bpy)(H2O)]2 +

were examined using Car-Parrinello Molecular Dynamics. This

investigation shows that this approach offers added insight, not

only into the free energy profile between two stable intermedi-

ates, but also into how the solvent environment impacts this

dynamic evolution.

Introduction

In the optimisation of catalysts, computational techniques are

increasingly employed to test proposed mechanisms and to

infer catalyst design principles.[1–8] When evaluating proposed

catalytic cycles, the free energies of the various catalytic

intermediates are compared.[2–7] This comparison often uses

correction factors to approximate the energetic contributions

of the protons and electrons transferred during the catalytic

step.[3,4,6,9–15] Here the pitfalls of the commonly employed

approach are highlighted, and an improved framework is

suggested based on the Closed System Approach (CSA).[16]

Consider, for example, the catalytic cycle with Proton-

Coupled Electron Transfer (PCET) reaction steps [Eq. (1)]

Ii ! Iiþ1 þ Hþ þ e�, ð1Þ

shown in Figure 1. The PCET steps have a change in free energy

[Eq. (2)]

DG Ii ! Iiþ1ð Þ ¼ G Iiþ1ð Þ � G Iið Þ þ DG Hþð Þ þ DG e�ð Þ: ð2Þ

The free energy G has traditionally been approximated by

[Eqs. (3) and (4)],

G ¼ Evac þ ZPEvac � TSvacð Þ þ dEsolv; ð3Þ

dEsolv ¼ Esolv � Evac; ð4Þ

following the methodology first proposed by Nørskov

et al.[13–15] Evac, ZPEvac and TSvac are the enthalpy, zero-point

energy and entropic contribution respectively, as calculated for

an intermediate in vacuum. Esolv is the enthalpy calculated in

the presence of a solvent, where the solvent is approximated

by a continuous dielectric model. The problematic contribu-

tions in Equation (2) are the free energy changes due to proton

and electron transfer. The solvation energy of a proton,

DGsolv Hþð Þ ¼�11.45 eV,[17] is significantly larger than the ther-

modynamic potential of water oxidation (1.23 eV). To overcome

this issue, the energetic contributions of the proton and

electron have often been approximated by combining the
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Figure 1. The four PCET steps between the catalytic intermediates (Ii) from I1

to I0 for water oxidation. Vertical lines denote electron transfer, horizontal
lines proton transfer. Stable intermediates are shown in black. The ligand
exchange I0 + 2H2O!I1 + O2 is also shown.
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proton and electron into 1=2H2,[14,15] as the free energy of H2 is

easier to compute.

However, the 1=2H2 approximation has its limitations: in the

PCET reactions considered, H+ is always bonded to another ion.

The transfer of H+ is a combination of the formation of one

O�H covalent bond and the breaking of another. The proton

transfer involves a rearrangement of the hydrogen-bond net-

work surrounding the catalytic site, which makes the simulation

of such processes difficult.[18,19] And yet, the complexity of the

network rearrangement processes is ignored when using the
1=2H2 approximation. This approximation may have been

sufficient to establish trends in changes in free energy for

different materials and catalysts,[13,20] but as we move into the

rational design of molecular catalysts, the how and why of the

PCET process needs to be addressed. Two intermediates can no

longer be seen as isolated from each other, instead we must

also seek to optimise the processes between them.

To address the details of the processes, including the

thermodynamic barrier, between two intermediates, we employ

the CSA. Within the CSA explicit water molecules and a metal

ion (Me) are included within the simulation box, to act as

proton and electron acceptors respectively. In this way the

charge carriers, and the processes via which they are transferred

from the catalyst, can be considered explicitly. For the PCET

reaction shown in Equation. (1), the equivalent equation within

the CSA simulation box is Equation (5)

Ii þMe3þ ! Iiþ1 þ Hþsolv þMe2þ; ð5Þ

where Hþsolv denotes the solvated proton, which is part of a

dynamic solvation complex.[18–20] We can then decouple the

PCET reaction into an electron- and proton-transfer process.

The electron transfer step is given by Equation (6)

Ii þMe3þ ! Ii
þ þMe2þ: ð6Þ

In the context of the CSA methodology, the energy needed

to transfer an electron from the catalytic intermediate to the

electron acceptor can be calculated by Equation (7)

DEe� ¼ hEKS Ii
þ þMe2þð Þi � hEKS Ii þMe3þð Þi; ð7Þ

where hEKSi is the time-averaged Kohn-Sham (KS) energy over

the simulation trajectory. One should note that DEe� also

includes the reorganisation energetic contributions resulting

from the electron transfer.[21] This includes contributions from

internal vibrational and external solvent rearrangement. Various

schemes for the calculation of redox properties based on

Marcus theory have been previously implemented in the

context of ab initio molecular dynamics simulations with explicit

solvent.[22–24] In these approaches only one redox active species

is included explicitly in the simulation box, while in the CSA we

include an explicit electron acceptor. Because the number of

particles, charges, bonding patterns, and conformations of the

reactants and products in Equation (6) remains the same, the

change in entropy and zero-point energy will be negligible, i. e.

DEe� � DGe� :

The proton-transfer process [Eq. (8)]

Ii
þ ! Iiþ1 þ Hþsolv; ð8Þ

and the corresponding free energy change DGHþ ; may be

investigated using constrained Car-Parrinello Molecular Dynam-

ics (CPMD) along the reaction coordinate of proton solva-

tion.[25–29] Constrained CPMD is required in order to sample

relevant reaction pathways, which may be rare on the normal

timescale of CPMD. Other enhanced sampling techniques, such

as metadynamics,[30] can also be employed to examine reaction

pathways.[31,32]

Within the CSA [Eq. (9)]

DGCSA ¼ DEe� þ DGHþ ; ð9Þ

where DEe� includes energetic contributions from both the

oxidation of the catalyst, as well as the reduction of the metal

ion. The difference between DGCSA and DG Ii ! Iiþ1ð Þ will be due

to the energetic contribution of both the metal ion and

solvated proton [Eq. (5)], a contribution that ideally should be a

constant offset in the DG throughout the catalytic cycle.

Via this formalism, the way is paved for an energetic

consideration of the process of a reaction step which includes

both electron and proton transfer.[16] Although this transcends

the static consideration which uses the correction term 1=2 H2, it

does introduce the extra complication of the energetic

contribution due to the electron acceptor.

To demonstrate this methodology the ruthenium based

mononuclear molecular water oxidation catalyst (WOC) Ru-bpy

is used (see Scheme 1). Ru-bpy provides an excellent test case

as its catalytic cycle has been explored both experimentally and

computationally using static methods.[33] Here the first and

second catalytic PCET steps of this WOC are examined within

the CSA. The results of this examination are then compared to

experimental data, as well as computational data obtained

using static methods.

Scheme 1. Proposed catalytic cycle for water oxidation by [RuII

(cy)(bpy)(H2O)]2 + (Ru-bpy). Inset: Schematic structure of Ru-bpy, which has a
bipyridine (bpy) and a cymene (cy) moiety ligated to the Ru centre. Depicted
in this way, the catalytic cycle consists of four consecutive PCET steps, i. e.
along the diagonal in Figure 1, followed by the ligand exchange of O2 for
H2O to regenerate the original intermediate.
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Results and Discussion

The first two catalytic steps [RuII�OH2]2 +![RuIII�OH]2 + (I1!I2)

and [RuIII�OH]2 +![RuIV=O]2 + (I2!I3) of the ruthenium-based

WOC were investigated within the CSA. The catalytic intermedi-

ates and electron- and proton-transfer steps examined are

shown in Scheme 2. Analogous to cyclic voltammetry, we first

removed an electron from the catalyst (vertical arrows,

Scheme 2), and then observed how the system responds.

Proton transfer (horizontal arrows, Scheme 2) was investigated

by means of constrained CPMD. The reaction coordinate

examined during the constrained CPMD is the distance

between the oxygen of an incoming water molecule and a

proton on the oxygen ligated to the Ru centre (d(O!H), see

also Figure 2).

Energetic Analysis of the PCET Step [RuII�OH2]2 +!
[RuIII�OH]2 +

First the PCET step [RuII�OH2]2 +![RuIII�OH]2 + (cf. Scheme 2:

[RuII�OH2]2 + + Mn3 +Ð[RuIII�OH2]3 + + Mn2 +Ð[RuIII�OH]2 + + H+

solv + Mn2 +) is analysed. Considering the proton transfer process

after electron transfer, [RuIII�OH2]3 + + Mn2 +Ð[RuIII�OH]2 + + H+

solv + Mn2 +, the variation of the time-averaged constraint force

hli along the reaction coordinate is shown in Figure 3 (top). At

d(O!H) = 1.4 Å hli is only slightly above zero. When d(O!H) is

shortened, hli increases. At d(O!H) = 1.2 Å hli is again very

close to zero, indicating the transition state has been reached.

At this point, the proton is equidistant between the two oxygen

atoms: d(O!H) = 1.2 Å vs. the average (1.20�0.06) Å for the

unconstrained H�O distance. The dependence of hli on d(O!
H) is well in line with a normal activated reaction profile.

At d(O!H) = 1.1 Å the standard deviation of hli is notably

larger: hli= (�1.1�0.9) eV Å�1. During the d(O!H) = 1.1 Å

simulation there is significant rearrangement in the solvent

surrounding the reaction site, in preparation for proton

diffusion into the solvent. This diffusion is facilitated by an

appropriate ‘water wire’. We define a water wire to be a chain

of water molecules which are hydrogen bonded together such

that a proton may transfer rapidly along it. The proton can be

considered to be delocalised along such water wires.[34,35] The

formation of a water wire has a large effect on l. If a suitable

wire has formed, the formation of the O!H bond is more

favourable as the extra proton on the solvent molecule may

diffuse away, and as a result l is negative (see Figure S1). In

contrast, the extra proton cannot be released from the solvent

molecule if this water wire is broken; forming the O!H bond is

therefore unfavourable. During these segments of the trajec-

tory, l is seen to be positive. After the simulation with d(O!
H) = 1.0 Å, the distance constraint is released and the system is

allowed to evolve freely. The formed O�H bond has an

equilibrium distance of 0.97 Å, and so hli= 0 at that distance,

as shown in Figure 3 (top).

The free energy profile of the complete proton transfer into

solvent was obtained by integrating the fit of hli and is shown

in Figure 3 (bottom). This gives a DG0
Hþ = (�0.2�0.1) eV (see

Figure S2), and a transition state energy barrier DG*
Hþ = 0.05 eV (

�2 kBT at room temperature). Because DG0
Hþ is less than zero

we can conclude that proton transfer is thermodynamically

favourable once the electron has been removed from the

catalyst. An electron transfer energy DEe� = (1.8�1.0) eV was

obtained from the time-averaged KS energy according to

Scheme 2. The electron- and proton-transfer steps examined in this work.
Vertical lines denote electron transfer, horizontal lines proton transfer. The
regeneration step corresponds to the removal of an electron from the Mn
ion, as well as the removal of the solvated proton. Intermediates observed to
be stable in the simulations performed in this work are shown in black,
unstable intermediates in grey. The inset shows the corresponding
intermediates in Figure 1.

Figure 2. The distance constraints d(O!H), shown by the grey arrow,
considered in this study for (left) [RuII�OH2]2 + + H2Osolv and (right)
[RuIII�OH]2 + + H2Osolv.

Figure 3. (top) The time-averaged constraint force (hli) as a function of
d(O!H). This analysis is performed for
[RuIII�OH2]3 + + Mn2 +Ð[RuIII�OH]2 + + H+

solv + Mn2 +. The error bars show
standard deviations. The dotted line shows the fit of the calculated points.
(bottom) The integral of the hli fit with respect to distance. The definite
integral has a value DG0

Hþ =�0.17 eV (�3.8 kcal mol�1). DG*
Hþ = 0.05 eV

(1.2 kcal mol�1)
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Equation. (7), with the distance constraint d(O!H) = 1.6 Å. This

distance corresponds to a typical hydrogen bond distance at

equilibrium where hli is around 0 (see Figure S3).

DGCSA([RuII�OH2]2 +![RuIII�OH]2 +) = (1.6�1.0) eV can then be

calculated using Equation. (9) (see also Table 1).

Proton Diffusion [RuIII�OH2]3 +![RuIII�OH]2 +

Above it was concluded that proton transfer into the solvent is

dependent on the proton at the reaction site having access to a

viable water wire. During normal solvent dynamics these wires

are formed and broken as water molecules move and rotate.

The solvent environment during anticipated proton transfer

was therefore examined, scanning to identify whether a solvent

O atom was covalently bonded to a number of protons

different from two i. e. whether it was an OH� or H3O+ ion. If a

proton is within 1.2 Å of an O atom, it is considered to be

covalently bonded.[36] For the H3O+, the distance to the Ru

catalytic centre, following the minimum-image convention for

periodic boundary conditions, was then plotted as a function of

time (Figure 4). This analysis gives an overview of how the H+

moves through the solvent, visiting a number of different

oxygens as it travels from the first to the third hydration shell.

During the d(O!H) = 1.2 Å simulation there is already an

initial attempt at proton transfer from the first solvation shell at

around 4 Å, to the second solvation shell at around 6 Å.

Towards the end of the d(O!H) = 1.1 Å simulation the proton

resides mainly within the second solvation shell, though it is

still shared with the first. At the start of the d(O!H) = 1.0 Å

simulation the proton has been transferred into the third

solvation shell at 8 Å. After releasing the distance constraint

(Unconstr, Figure 4), the proton remains in the third solvation

shell for the 1 ps duration of the simulation, though it is mobile:

the distance between its O atom and the ruthenium atom of

the catalyst ranges between 6.5 and 8.9 Å.

Of further interest here, is that the mobility of the water

molecules themselves can also be observed (Figure 4). During

the d(O!H) = 1.1 Å simulation the proton is transferred to a

water molecule in the second solvation shell (gold). During the

simulation after d(O!H) has been released, at around 5 ps, the

proton is again transferred to this water molecule, which has

now moved into the third solvation shell.

In the SI (Figure S3 and Figure S4) the [RuII�OH2]2 + + Mn3 +

Ð[RuII�OH]+ + H+
solv + Mn3 + proton transfer process is dis-

cussed, which would be a proton-first pathway (e. g. I1!I1
� as

shown in the inset in Scheme 2, which is reproduced from

Figure 1). This process does not yield a stable end product and

is thermodynamically unfavourable.

Energetic Analysis of the PCET Step [RuIII�OH]2 +![RuIV=O]2 +

In the reaction from [RuIII�OH]2 + to [RuIV=O]2 +, the second PCET

step (cf. Scheme 2: [RuIII�OH]2 + + Mn3 +Ð[RuIV�OH]3 + + Mn2 +

Ð[RuIV=O]2 + + H+
solv + Mn2 +), hli remains negative, with a

minimum at 1.1 Å (as shown in Figure 5, top). After the

constrained dynamics with d(O!H) = 1.0 Å, the constraint is

again released, and the system is allowed to equilibrate. The

newly formed O�H bond is stable, with an average bond

distance of (0.970�0.009) Å.

hli is integrated to give the free energy profile (Figure 5,

bottom), with DG0
Hþ = (�0.2�0.2) eV (see also Figure S2). The

electron transfer energy is calculated from simulations of

[RuIII�OH]2 + + Mn3 + and [RuIV�OH]3 + + Mn2 +, where d(O!H) =

2.04 Å. Using Equation. (7) DEe� = (2.3�0.8) eV, and so, from

Equation. (9), DGCSA([RuIII�OH]2 +![RuIV=O]2 +) = (2.1�0.8) eV;

this is also noted in the summarising Table 1.

As in the case for the first catalytic step, for [RuIV�OH]3 + +

Mn2 +Ð[RuIV=O]2 + + H+
solv + Mn2 + the first attempt at proton

transfer from the first solvation shell, at 4 Å, to the second

solvation shell, now at around 5 Å, occurs in the d(O!H) =

1.1 Å simulation (Figure 6). However, instead of moving into the

third shell, it collapses back to the first solvation shell within

the same d(O!H) = 1.1 Å simulation. The extra proton remains

shared between these two solvation shells, with brief transfers

Table 1. Summary of the changes in free energy DG, in eV, for the first two PCET steps of the catalyst Ru-bpy, as obtained by the CSA methodology,
experiment (Exp),[33] and static theoretical methods (Th).[33] D(DG) is the difference between the DG obtained for the first two catalytic steps (top two rows of
the table).The differences D1 = CSA – Exp and D2 = CSA – Th are also reported.

CSA Exp D1 Th D2

DG([Ru�OH2]2 +![Ru�OH]2 +) 1.6�1.0 0.67 0.93 0.87 0.73
DG([Ru�OH]2 +![Ru=O]2 +) 2.1�0.8 1.27 0.83 1.38 0.72
D(DG) �0.5�1.3 �0.60 0.1 �0.51 0.01

Figure 4. The distance between Ru and H3O+, defined as an oxygen atom
with 3 H within a radius of 1.2 Å, as measured for a sequence of constrained
CPMD simulations. The CPMD simulations show diffusion of the single
released proton for [RuIII�OH2]3 + + Mn2 +Ð[RuIII�OH]2 + + H+

solv + Mn2 +. The
value of d(O!H) is noted in grey, and subsequent runs with decreasing
d(O!H) are separated by dashed lines. According to the simulations, only
one oxygen is in the H3O+ form at any time, and although the proton
associates with a number of different oxygens (indicated with different
colours) during the simulation, it is primarily bonded to three oxygens (blue,
gold and magenta).
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to the third shell. The water molecule in the second solvation

shell receiving the proton gradually moves away from the

reaction site, until, during the simulation without distance

constraint (Unconstr, Figure 6), the additional proton stabilises

in the second solvation shell (Figure 6, blue trace). At the end

of this simulation, the additional proton is localised on a water

molecule around 8.7 Å from the Ru catalytic centre.

From the free energy profile shown in Figure 5 (bottom), it

is clear that no thermodynamic barrier for proton transfer exists,

once an electron has been transferred. Therefore, this process

should occur spontaneously. To investigate this, the [RuIII�OH]2 +

![RuIV=O]2 + step is also considered without an applied d(O!
H).

Unconstrained CPMD simulation of [RuIV�OH]3 + + Mn2 +

shows proton transfer into the first solvation shell after 0.8 ps

(Figure 7). In Figure 7 the relative positions of the O atoms

bonded to a number of protons different from two are shown

as the proton is released into the solvent, and the Ru�O bond

contracts and stabilises. For clarity, this is decomposed into the

various species present (Figure 7, bottom): H3O, and the O

atom ligated to the Ru centre as first an OH, then O, ligand.

After 0.8 ps, a proton is transferred from the ligated OH to the

first solvation shell at 4 Å. This proton then interacts with two

different water molecules in the second solvation shell. The

Ru�O distance reaches equilibrium fairly quickly. This simulation

encompasses the entire proton transfer into solution:

[RuIV�OH]3 + + Mn2 +Ð[RuIV=O]2 + + H+
solv + Mn2 +.

The difference in time-averaged KS energies between the

unconstrained calculations for [RuIV=O]2 + + H+
solv + Mn2 + (i. e.

for the trajectory after 0.8 ps until the end of the simulation

shown in Figure 7) and [RuIII�OH]2 + + Mn3 + is (2.7�0.7) eV. This

encompasses both electron and proton transfer. However, in

this trajectory bonds are formed and broken, and therefore one

cannot assume that the change in zero-point energy will be

negligible. For this reason the vibrational density of states was

obtained from the CPMD trajectory files,[37,38] as shown in

Figure S5. The zero-point energy contribution from the

changed Ru�O bond, the broken O�H bond, and the formed

H+
solv/[H5O2]+ complex would amount to a correction of only

�0.04 eV, which is small in comparison to the uncertainty in the

change in KS energy. For the constrained case DGCSA([RuIII-OH]2 +

![RuIV=O]2 +) = (2.1�0.8) eV. The two values are consistent

within the large standard deviations, inherent to the thermal

fluctuations for a system of this size. The differences between

the two values will, in part, be due to the slightly different final

configurations of the solvated proton.

Figure 5. (top) The time-averaged constraint force (hli) as a function of
d(O!H) between one of the ligated water hydrogens and a solvent water
oxygen for [RuIV�OH]3 + + Mn2 +Ð[RuIV=O]2 + + H+

solv + Mn2 +. (bottom) The
integral of the interpolated hli fit with respect to distance. The definite
integral has a value DG0

Hþ =�0.25 eV (�5.8 kcal mol�1).

Figure 6. The distance between Ru and the H3O+ ion associated with the
proton transferred during [RuIV�OH]3 + + Mn2 +Ð[RuIV=O]2 + + H+

solv + Mn2 +.
d(O!H) is noted in grey, and subsequent runs with decreasing d(O!H) are
separated by dashed lines. The proton is primarily associated with an oxygen
in the first solvation shell (brown trace), and interacts with, then transfers to,
the oxygen with the dark blue trace. There are a number of momentary
interactions between the proton and other oxygens; these oxygens each
have a different coloured trace.

Figure 7. (top) The distance between Ru and H3O+, OH� and O2� as
measured during [RuIV�OH]3 + + Mn2 +![RuIV=O]2 + + H+

solv + Mn2 +, where!
indicates spontaneous proton transfer from the catalyst into the solvent. The
ions are defined by the number of H within a radius of 1.2 Å from the
oxygen, and are specified in (bottom): H3O – three H atoms, [Ru�OH] – one
H atom, [Ru=O] – no H atoms. At first the oxygen ligated to the Ru centre
has one proton bonded to it ([Ru�OH], green trace), but at around 0.8 ps a
proton is transferred. The oxygen ligated to the Ru centre then has no
bonded protons ([Ru=O], green trace), and the Ru – O distance is seen to
shorten and stabilise. Meanwhile the excess proton is transferred to an
oxygen in the first solvation shell (H3O, brown trace). It then continues to
interact with three different oxygens within the solvent (brown, light green,
pink).
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Experimental Comparison and Evaluation

One of the dilemmas in comparing the values of DG obtained

so far to experiment is that the values of DGCSA contain a

contribution from the metal ion electron acceptor and solvated

proton. Taking the difference between DGs for two PCET steps

[Eq. (10)]

D DGð Þ ¼ DG Ii ! Iiþ1ð Þ � DG Iiþ1 ! Iiþ2ð Þ; ð10Þ

the energetic contributions due to the charge carriers will

cancel out. This is based on the assumption that these terms

are constant throughout the catalytic cycle. This provides a

quantity that may be compared with experimental data, as well

as data obtained from previous theoretical methodologies.[33,39]

The theoretical methodology used for comparison is one we

have used earlier for this catalyst, which includes the use of the
1=2H2 approximation.[33] The changes in free energy for the two

catalytic steps investigated here are summarised in Table 1, as

are the resulting values for D(DG). For the CSA methodology

D(DG) = (�0.5�1.3) eV. This is in very good agreement with

experiment (see Table 1), allowing for the large standard

deviation due to system size, as mentioned earlier. This is

primarily due to the method of calculating DEe� . Because of the

fluctuations in KS energy during the simulations, a larger box

size with more water molecules would be needed to decrease

the standard deviation.

The changes in free energy for each step as calculated with

the CSA are compared to experimental and static theoretical

values (see Table 1). Considering the static calculations, the

D(DG) compares well with the CSA, where the static results

were obtained using a different functional: B3LYP vs OPBE for

the CSA. Using D(DG) will also lead to the partial cancellation of

errors resulting from the use of the different functionals.

Furthermore, there is also a good agreement between D(DG)

when comparing the CSA to experimental values, within 0.1 eV.

It may therefore be concluded that the initial proposition, that

energetic contributions from the reduction of the metal and

solvated proton should be a constant offset, does indeed hold.

Future calculations can then use the calculated constant (D1,

Table 1) to account for the use of the CSA with a Mn ion.

It was mentioned in the introduction that the CSA

ameliorates the need for correction factors in the case of water

oxidation catalysis. Moreover, the good agreement between

experiment and the CSA also leads us to conclude that it would

be advantageous to apply the CSA in other contexts where

relevant correction terms may not be known.

Conclusions

The energetics of the first two steps of the catalytic cycle of a

ruthenium-based WOC were examined using a closed system

approach in which an electron acceptor is included in a fully

solvated simulation setup. This setup allows for the independ-

ent examination of the energetic contribution of electron

transfer, as well as the free energy profile and process of proton

transfer. In both the steps examined, proton transfer was

thermodynamically favourable after electron transfer. The first

catalytic step has a small barrier of the order of kBT at room

temperature, and the second step is barrier-less. The closed

system approach compares well with experiment, within 0.1 eV,

though a large standard deviation results from the statistical

uncertainty of the calculated electron transfer energies. Mecha-

nistically, it was observed that a viable water wire is essential

for proton release into the solvent, which further emphasises

the importance of considering the environmental influence on

a catalytic reaction.

Computational Method and Details

The CPMD program was used to examine the explicitly solvated
systems.[40] The solvent environment for the CPMD simulations was
generated using Discovery Studio 2.5.[41] The solvent was equili-
brated for 0.2 ns using the CHARMM force field and CFF partial
charge parameters at 300 K,[42] while the catalyst was kept fixed.
The volume was then adjusted using constant pressure for 0.2 ns,
after which the system was further allowed to evolve with constant
volume for 2 ns. Subsequently CPMD calculations were performed
in the canonical NVT ensemble at 300 K, using GTH pseudopoten-
tials for the transition metals,[43] DCACP pseudopotentials for the
remaining atoms,[44] and the OPBE exchange-correlation func-
tional.[45] This GGA functional has shown good performance when
describing transition metal complexes.[25,32,45–47] Kohn-Sham (KS)
orbitals are expanded on a plane wave basis set with an energy
cut-off of 70 Ry. A time step of 5 a.u. = 0.121 fs was used. Image
rendering for the CPMD output was done using VMD.[48,49]

The general methodology for the CPMD simulations was as follows:

a. The system was initially allowed to equilibrate with CPMD for
0.1 ps.

b. A solvent water molecule was constrained at progressively
closer distances to one of the protons of the water molecule
ligated to the Ru centre (Figure 2), at 0.1 Å intervals. The system
is allowed to evolve for at least 1 ps to allow the time-averaged
constraint force hli to stabilise. In cases where stabilisation was
difficult, simulation length was extended to a maximum of
2.5 ps.

c. If d(O!H) was contracted to 1.0 Å, the distance constraint was
then removed and the system allowed to evolve for 1 ps.

d. If the formed bond is stable, hli at this distance is set to 0. hli
is then fitted with a 100 pt Akima Spline,[25,50] a fit based on
cubic functions. Cubic-based functions have long been used as
a fitting method for hli.[26] This fit can then be integrated to
give the free energy profile of the reaction.[25–29]

The Simulation Box

Simulations are performed on the catalytic intermediate and an
Mn2 + or Mn3 + ion within a 17.52�15.78�13.65 Å3 box with 94
water molecules, total charge 5+. The water environment around
the Mn ion was constrained to avoid spurious effects on DG due to
changes in the coordination sphere of the electron acceptor. The
coordination sphere is stabilised by constraining the coordination
numbers around the Mn ion. The number of oxygen atoms is
constrained to four, based on unconstrained simulations where the
Mn2 +(H2O)4 structure was formed spontaneously (see Supplemen-
tary Information (SI), Figure S6 and S7). The coordination radius,
rc = 2.25 Å was also determined from these unconstrained Mn
simulations. At 2.25 Å the radial distribution function of O atoms
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around Mn was zero after the first solvation shell. The parameter
k= 9.4 Å�1, where k�1 is the width of the transition region, is
chosen such that k�1 is significantly smaller than rc.[51] Although the
four-fold coordination is anomalous for Mn in water, it can be
attributed to the relatively close location of the charged catalyst
affecting the Mn ion. Mn chemistry has been shown to be very
sensitive to the charge of the complex, as well as the surrounding
environment.[52] Each O atom was saturated with two H atoms
using rc = 1.2 Å and k= 17.6 Å�1. 1.2 Å may be considered the H�O
distance at which a proton is equally shared between two
oxygens,[36] which makes it an appropriate rc.

[RuII�OH2]2 + + Mn3 +

In order to calculate DEe� , a d(O!H) = 1.6 Å was imposed for 2 ps
for [RuII�OH2]2 + + Mn3 + (System 1 in Table 2). The multiplicity was
then flipped to a septet to give [RuIII�OH2]3 + + Mn2 + (System 2 in
Table 2), and the system allowed to evolve for a further 2 ps. For
the calculation of DGHþ the system was allowed to evolve for at
least 1 ps for each d(O!H): 1.4, 1.3, 1.2, 1.1, and 1.0 Å.

[RuIII�OH]2 + + Mn3 +

The initial geometry was obtained by removing the solvated proton
once the final product had stabilised during the unconstrained
DGHþ calculation for [RuIII�OH2]3 + + Mn2 + (System 2). The
[RuIII�OH]2 + + Mn3 + system was equilibrated for 0.5 ps with sextet
multiplicity (System 3 in Table 2). This system was allowed to evolve
for 2.5 ps; then the multiplicity is switched to an octet and
[RuIV�OH]3 + + Mn2 + (System 4 in Table 2) equilibrated for 2.5 ps. In
order to calculate DEe� the [RuIII�OH]2 + + Mn3 + system, with sextet
multiplicity, was allowed to evolve for 2.5 ps with d(O!H) = 2.04 Å,
where d(O!H) was initiated from the equilibrated system. The
multiplicity was then flipped to octet multiplicity [RuIV�OH]3 + +
Mn2 + (System 4), and the system allowed to evolve for a further
2.5 ps. For the calculation of DGHþ d(O!H) was contracted from
2.04 Å: d(O!H) = 1.9, 1.7, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0 Å, where the
initial contraction was more rapid (see Figure S8).
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