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Abstract: Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools
for which the primary application is the generation of odour metrics that are indicators of odour as
perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of
the acquired data, and the validation of the correlation of the odour metric are key topics to control
in order to ensure a robust and reliable measurement. The research presents and discusses the use of
different pattern recognition and feature extraction techniques in the elaboration and effectiveness
of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and
peak period from the original response curve, in collaboration with Linear Discriminant Analysis
(LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated.
Laboratory analyses were performed with real odour samples collected in a complex industrial plant,
using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the
quality of the OCMM produced. The peak period in combination with the Artificial Neural Network
(ANN) highlighted the best combination on the basis of high classification rates. The paper provides
information to develop a solution to optimize the performance of IOMS.

Keywords: artificial neural network; data extraction; electronic nose; linear discriminant analysis;
odour classification monitoring model

1. Introduction

Instrumental odour monitoring systems (IOMS) are devices that function as an ar-
tificial paradigm of the olfactory stimuli to reveal environmental odours. Their general
architecture is composed of a sampling system, along with a detection unit, in which the
array of gas sensors and signal processing system are located [1–4]. There are wide and
different gas sensor technologies currently available [1,3]. In 2015, within the framework
of CEN/TC 264—Air Quality, a new working group (WG41) with the aim of proposing
a new European standard for IOMS environmental odour monitoring applications was
started [5]. IOMS has gained a great deal of popularity and applicability over the last few
years in the field of air quality and, in particular, for the monitoring of odours due to the
annoyance and impact induced by the growing number of emissions in the environment
by industrial activities [5,6]. Furthermore, IOMS possessed numerous advantages over
sensorial (e.g., dynamic olfactometer) and analytical instrument (e.g., Gas chromatography–
mass spectrometry, colorimetric method, catalytic, infrared and electrochemical sensors,
photoionization detector, differential optical absorption spectroscopy) because it is appli-
cable for in-situ and in real time measurements [5–8]. Meanwhile, other techniques are
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combined with IOMS, such as pre-concentrator (i.e., silicon-micro), to improve the recog-
nizing capability [9], Bluetooth to a smartphone for remote-controlling applications [4],
and GC-MS to identify the responsible gas compounds in odour emission [10–12]. IOMS
output odour metrics may include odour classification and/or odour quantification [13].
In order to use an IOMS, first, a training phase is needed, which aims to create the odour
monitoring model (OMM). Generally, the sequence to obtain the OMM consists of three
steps: raw data acquisition; signal processing and dimensionality reduction of the acquired
data; and pattern-recognition algorithms applications [6,14]. One of the benefits of the
IOMS technology is that it allows for continuous measurements, making it possible to
achieve a real time control, which is ideal for environmental odours monitoring [14–19].
However, the IOMS accuracy to a specific on-site application requires further improve-
ment and is still being studied. IOMS innovation can be in terms of hardware and/or
software development of the system [19]. The hardware modification could be in terms of
the selection of sensitive material, optimization of number and typologies of the sensors
array, and in the implementation of specific signal control and management unit (span and
calibration system) [20]. Meanwhile, the software development can be applied in terms of
the feature extraction of the data and assignment of the appropriate pattern recognition
algorithm [20–23]. The internal function directs the IOMS to perform, in an intelligent way,
recognizing and interpreting the information in a fast and robust manner [21].

Many studies feed the complete signals as input to the pattern-recognition al-
gorithm, which makes the system computationally expensive, complex, and hard to
implement and requires a large memory space [19,22]. Due to large number of values,
feature extraction of signals is used to eliminate redundant data and improve the
accuracy of the IOMS [24–27]. By applying this method, the most important data from
large set of signals can be captured, resulting in a reduction in computation time, as well as
an increase in the speed of measurement and storage [28,29]. Different feature extraction
techniques are available in current literature, such as data extraction from the original
response curves, from curve fitting parameters, from transform domain, from phase space,
etc. [19,30,31] (Table 1).
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Table 1. Overview of the principal feature extraction methods and related features.

Technique Sample Method Characteristic/s Equation/s Reference/s

Extraction from
original response curves

of sensors

- Steady state models i.e.,
maximum values (based on
electrical resistance)

- the fastest and frequently-used method
- some signals are omitted
- not applicable for demanding tasks

Difference: xij = RS − RO
Relative: xij = RS/RO

Fractional: xij = (RS − RO)/RO
Logarithm: xij = ln (RS/RO)

Normalized: xij = xij/(RS − RO)

[19,26,27]

Extraction from curve
fitting parameters

- Polynomial functions
- Exponential functions
- Fractional functions

- approximate discrete data using
analytical expressions

- nonlinear in nature
- the fitting process is complicated and

long

Polynomial: y = A0 + A1
x + A2

x + A3x3 +
. . . + Anxn

Exponential : y = A0 +
n
∑
1

Ai + exp
(
− x

T
)
,

i = 1,2,3 . . .
Fractional: y = x/Ax + B

[28,32]

Transform domains
- Fourier transform
- Wavelet transform

- maps the original data into new space
- the basis functions are sine and cosine

Fourier : F(k) =
∫ +∞
−∞ e−2πikt xt dt

Wavelet (mother): ya, b = 1√
a y( t−b

a );
a > 0, -∞ < b < ∞

[20,33]
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The above-mentioned techniques have been used in recent years, while new methods
are starting to be recognized, such as phase space (PS), dynamic moments (DM), parallel
factor analysis (PARAFAC), energy vector (EV), power density spectrum (PSD), surface
electromyography (sEMG), windowed time slicing (WTS), etc. [20,21]. In practical appli-
cations, the extraction from the original response curves represents one of the most used
techniques, due to its intuitive nature and fast calculations [19,20]. Selecting the useful
data can improve the discrimination function and exclude values that can cause noise and
uncertainty in the measurement. Moreover, to maximize the potential of IOMS, the ex-
tracted data and the pattern-recognition technique must work together. Pattern-recognition
techniques are mathematical models (i.e., statistical and biological) that are used to estab-
lish a relationship between input variables (independent variable) to the target output
(dependent variable) in the dataset. The mathematical treatment of correlation of the odour
metric with human odour perception is particularly important, and to be stressed in the
application for odour monitoring, due to the large number of odourants that cause the
odour [13,34]. Table 2 reports an overview of the principal pattern-recognition techniques
applied to IOMS technologies.

Table 2. Overview of the principal pattern-recognition techniques used in instrumental odour monitoring systems (IOMS).

Technique Characteristic/s Equation Reference/s

Artificial Neural Network
(ANN)

- connect input to output via
hidden layers

- strong non-linear relationship
- independent to assumptions

y = ∑(i1w1 + i2w2 + . . . + inwn) [35,36]

Partial Least Square (PLS)

- connect input to output via latent
variables

- present multicollinearity
- can reduce dimension

y = β0 + β1 x1 + β2 x2 . . . βn xn + C [37]

Linear Discriminant
Analysis (LDA)

- combine linear features
- locate axes that maximize the

variance
- can reduce dimension

y = k1+ax1+bx2 . . . αxn [32,38]

Multivariate adaptive
regression splines

(MARSPline)

- a stepwise linear regression
- acquire intrinsic complex data map
- nonlinear in nature y = f (X) = β0 +

M
∑

m−1
βmhm (X) [39]

Response Surface
Regression (RSR)

- sensitive to dependent variables
- good optimization technique
- complex configuration

y = β0 + β1 w + β2 w2 + β3 x + β4 x2+
β5 z + β6 z2 + β7 w x + β8 w z + β9 z z

[40]

The research presents and discusses the influence of the application of different
extracted signals and pattern recognition methods in the elaboration of the environmental
odour classification monitoring model (OCMM) with IOMS. The paper aims to optimize
the performance and robustness of an IOMS. The piecemeal signals (i.e., rise, intermediate,
and peak state) obtained from the original response curves in combination with the use
of the Linear Discriminant Analysis (LDA) or the Artificial Neural Networks (ANN) as
pattern recognition techniques are investigated and argued. Laboratory experimental
analysis with real samples were considered, to analyze and compare the results.
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2. Materials and Methods
2.1. Experimental Setup

Research studies were carried out by collecting real odour samples at a complex
industrial petrochemical plant. Two odour classes were sampled directly at the emission of
two different sources in floating roof storage tanks in accordance with the EN 13725 (2003),
by using a static lung effect device.

Ten samples Class A (“petrol”, CAS 86290-81-5) and 13 samples Class B (“diesel”,
CAS 68476-34-6) were collected, with a weekly frequency, in nalophan bags of 7-L volume.
Moreover, 28 ambient air (Class C) samples were collected in the field surrounding the
plant, to distinguish among the odours from the investigated sources and the ambient air
(no annoyance). A total of 51 samples from three odour classes were used for the research.

2.2. IOMS Technology and Data Acquisition

The seedOA IOMS technology, developed by the Sanitary Environmental Engineering
Division (SEED) of the University of Salerno, Italy, was used for the experiments. The
functional architecture of the seedOA consists of a sampling system, a detection unit, a
signal processing system, and a control and management system [41–44]. The sampling
system contains a specific unit that allows the standardization of the temperature and
humidity conditions of the analyzed gaseous sample. The air from the sample is drawn
by a pump located downstream of the measuring chamber with a constant flow rate of
300 mL m−1. The detection system is composed by the code® measurement chamber [44],
which contains total of 16 sensors distributed on two different levels. For the specific
research, thirteen of the overall installed sensors are of metal-oxide semiconductors type
(MOS, Figaro) and adopted for the measurement (Table 3), while the other three sensors are
inserted for the control of the environment and process parameters (temperature, humidity
and flowrate).

Table 3. Array of metal-oxide semiconductor gas sensors (MOS) present in the IOMS (seedOA).

Sensor ID Number Target Gas

TGS880 2 Alcohols, water vapors
TGS822 2 Alcohols, organic solvent vapors
TGS842 2 Methane

TGS2611 2 Methane
TGS2620 2 Solvent vapors
TGS2602 1 Air contaminants
TGS825 1 Hydrogen sulfide
TGS826 1 Ammonia

2.3. Odour Classification Monitoring Model (OCMM) Elaboration
2.3.1. Data Acquisition

All the collected gas samples were individually acquired by the seedOA IOMS tech-
nology adopting an odour-odourless air cycle [13,34]. An acquisition time and a recovery
time of 2 min were set for each sample, with a data detection time step of 2 s. A total of
60 data points for each sample were recorded. The seedOA IOMS measured the resistance
of the sensors by a voltage divider. Odourless air was used to recover the base resistance of
the sensors each time before the next measurement.

2.3.2. Data Reduction

The signal responses provided by the sensors are pre-elaborated and given in fractional
change in resistance and registered as kΩ (RS = (R − RO)/RO, where R is the resistance
value after the reaction with a gaseous compound, and Ro is the default resistance value of
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the sensor (baseline resistance)) [20,21,45]. For the MOS sensors, the relationship between
resistance and the gas concentration is inversely proportional and of the type:

R (kΩ) = A(C)-α, (1)

where: R is the electrical resistance supplied by the sensor; A is a constant defined by
the material (e.g., TiO2, ZnO, SnO2, etc.); C is the concentration of analyzed gas; and α
is the slope (e.g., experimental quantity of the gas). Figure 1 reports the general trend
of the output signal response provided by the sensors, expressed in terms of electrical
resistance (e.g., kΩ) with respect to exposure time (e.g., minute) and presence of odour
and odourless events. As shown, when the sensor is exposed to odour, its output signal in
terms of resistance decreases, while, when exposed to odourless air, the signal in terms of
electrical resistance returns to the initial reference base values.
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Figure 1. Electrical signals trend with respect to time at odour and odourless air exposure.

For the experimental activities, in addition to considering the data of the complete
sensors response curve (i.e., Figure 2a), piecemeal signals lasting 1 min, such as the rise
period (first 1 min of acquisition, Figure 2b), the intermediate period (intermediate, 1 min
of acquisition, after 30 s from the start, Figure 2c), and the peak period (last 1 min of
acquisition, Figure 2d), during the 2-min acquisition time, were extracted and investigated.

2.3.3. Pattern-Recognition Algorithms

Linear discriminant analysis (LDA), as a traditional statistical method, and artificial
neural network (ANN), as a biological method, were used to investigate the influence and
effect of the application of different categories of pattern recognition algorithms.

Linear discriminant analysis (LDA) adopts linear combinations of variables to dis-
tinguish between classes that results in linear decision boundaries. The method searches
for a linear transformation that maximizes class separability in a reduced dimensional
space [32,38,46]. LDA is a popular classifier technique and commonly used in IOMS
technologies for environmental odour monitoring and assessment [34,35]. During LDA
training, coefficients (i.e., k, a, b . . . α) of different discriminant function (γ) equations per
representative group (i.e., λ, β and ω) are calculated. In predicting the categories of the new
data, the input values are substituted to the variables (i.e., x1, x2 . . . xn) of the equations
reported below (Equation (2)) to measure the scores:

γλ = k1 + ax1 + bx2 + . . . αxn, (2)

γβ = k2 + ax1 + bx2 + . . . αxn, (3)

γω = k3 + ax1 + bx2 + . . . αxn. (4)
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The highest score indicates the group where those values belong.
Meanwhile, artificial neural network (ANN) is biological paradigm that serves as

mathematical models in simulating complex systems and considered black-box [47–52]. A
general ANN consists of input neurons, hidden neurons, and output neurons, connected
via synapse, which contains specific weight values [49,50]. For the experimental activities,
a 3-layer feed-forward neural network was designed. The 13 different electrical resistance
profiles from seedOA IOMS were used as input data, while the three investigated odour
classes were used as target output (Figure 3). The ideal number of neurons is identified by
means of “trial-and-error” on the basis of high correlation values (R2) and classification
rates (%) between measured and predicted output.
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In training the neural network, the system optimizes the ideal weight values until
the loss function is minimized under the influence of a learning algorithm [49,50]. The
Bayesian Regularization algorithm was applied, introducing a non-linearity by using a
tan-sigmoid function to reduce the possibility of an over-fit since it uses a probabilistic
nature for the network weights [53].
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2.3.4. Training and Validation datasets

The overall acquired dataset in terms of fractional change in resistance, for each of
the 13 odour measurement sensors, at a given time of the overall sample acquisition (one
data every 2 s), was divided into a “training” and a “validation” dataset. The training
dataset was used to determine the coefficients of the two investigated mathematical models,
considered subsequently for the validation stage. The validation dataset, consisting of six
separate sets of samples and applied according to “leave-one-group-out” method [24], was
adopted as test samples to verify the model accuracies.

For the LDA training, the datasets were organized and labeled according to the three
investigated odour classes (G1 = Class A, G2 = Class B, and G3 = Class C) (Table 4).

Table 4. Size of the training dataset for each of the 13 measurement sensors, at different extracted
signals, by using linear discriminant analysis (LDA).

Description Number of Data Output

Complete Response Curve Rise Intermediate Peak Group

Class A 600 300 300 300 G1
Class B 780 390 390 390 G2
Class C 1680 840 840 840 G3

For the training datasets, by applying the ANN, supervised learning was adopted.
Binary classifiers, such as “1” and “0”, were assigned in the output to group the data, where
“1” refers to the belonging to the group, while “0” indicates no interaction (Table 5).

Table 5. Size of the training dataset for each of the 13 measurement sensors, at different extracted
signals, by using an Artificial Neural Network (ANN).

Group
Number of Data

Assigned Output
Complete Response Curve Rise, Intermediate and Peak

A B C A B C A B C

Class A 600 0 0 300 0 0 1 0 0
Class B 0 780 0 0 390 0 0 1 0
Class C 0 0 1680 0 0 840 0 0 1
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To assess the reliability of the trained models, a validation test was conducted, using
the overall acquired data, the data excluded from the training dataset, and considering
known the source for the comparison test (Table 6). The accuracy rates are, therefore,
defined by analyzing the known values with the predicted ones.

Table 6. Size of the validation dataset for each of the 13 measurement sensors, at different extracted
signals.

Group
Number of Data Designated

OutputComplete Response Curve Rise, Intermediate and Peak

G1 G2 G3 G1 G2 G3 G1 G2 G3

Class A 120 0 0 60 0 0 1 0 0
Class B 0 120 0 0 60 0 0 1 0
Class C 0 0 120 0 0 60 0 0 1

2.4. Statistical Analysis

Excel 2010 software (Microsoft, Washington, DC, USA) was applied for the pre-
processing data extraction. Meanwhile, Statistica 10 (StatSoft, Tulsa, OK, USA) and MAT-
LAB R2017a (MathWorks, Natick, MA, USA) were used as the computational software for
the LDA and ANN pattern-recognition algorithms elaboration, respectively.

For the LDA applications, a scatterplot diagram and confusion matrix was used to
analyze the behavior of the detected data points per investigated odour classes and to
evaluate the performance of the predicted classification algorithm.

For the ANN methodology, the coefficient of determination (R2) and the mean square
error (MSE) were calculated to investigate the relation of the predicted and measured data,
as well as to update the weights of the number of times all of the training vectors.

2.5. Comparison Studies

Comparative analyses of the different Odour Classification Monitoring Models
(OCMMs), elaborated by using the different future extraction techniques and pattern
recognition methods, were performed by calculating the classification accuracy rate during
the training and validation tests, per investigated odour class (αi; i = class) and for all the
detected data (ϕ):

αi(%) =
number o f correctly classi f ied data

total number o f detected data × 100
ϕ (%) = 1

n ∑3
i=1(αi),

(5)

where α% is the individual accuracy rate per class, and ϕ% is the overall accuracy rates (i.e.,
summation of the individual accuracy rates (α%) divided by the total number of class (η)).

A total of eight (8) OCMMs were elaborated and compared (Table 7).

Table 7. Matrix of the different elaborated and compared odour classification monitoring models
(OCMMs).

Extracted Piecemeal Signal Features Pattern Recognition Methods

LDA ANN

Complete response curve OCMM1.1 OCMM2.1
Rise OCMM1.2 OCMM2.2
Intermediate OCMM1.3 OCMM2.3
Peak OCMM1.4 OCMM2.4
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3. Results
3.1. OCMMs Using Different Extracted Signals and LDA Application

Table 8 summarizes the results of the classification accuracy rate obtained by applying
the LDA model and the training dataset. Each column shows the classification rate per
investigated piecemeal signal. The values of the Wilks’ lambda are also highlighted to
analyze the degree of the discriminatory power of the model.

Table 8. Classification accuracy rate results with LDA application and training dataset.

Group
Classification Accuracy Rate (%)

Complete Response Curve Rise Intermediate Peak

Class A 74.83 65.16 80.97 86.77
Class B 79.10 76.92 79.65 78.41
Class C 99.94 100.00 99.88 99.77

OVERALL 89.71 87.29 91.02 91.78

Wilks’ Lambda 0.1091 0.1253 0.0824 0.0714

Among the different feature extractions, the peak and the intermediate period show
the highest level of confidence in discriminating all the analyzed data in the training phase.

For all the investigated features, despite the adjustment made to some parameters
during the training (i.e., the tolerance value), the Wilks’ lambda values are near to 0, thus
demonstrating general good discrimination properties for all three classes.

The results clearly highlight an influence in the classification accuracy rate determi-
nation, in relation to the choice of the piecemeal signal. Considering the analysis per
investigated odour class, a maximum variation of 21.61% of the classification accuracy rate
was detected for Class A by using, respectively, the “peak” or the “rise” signal, whereas a
minimum variation of 0.23% was observed for the “Ambient Air” odours class (Class C).

While performing the analysis with all the detected data (ϕ), the discrimination
variation of the investigated samples by adopting different extracted signal is equal to
4.49%.

Figure 4 shows the scatter plots produced from the linear discriminant analysis (LDA)
of the “training” dataset, with all the detected data, showing a distinction among Class A,
Class B, and Class C by using the (a) complete response curve data and extracted data for
the (b) rise data, (c) intermediate data, and (d) peak data.

The results also graphically confirm that the peak analysis (Figure 4d) shows better
cluster formation of the classes, and Class C (ambient air) is the most recognizable class
among the different investigated classes. A more pronounced difficulty of discrimination
is shown, especially, among some elements of the classes A and B for all of the investigated
piecemeal signal features. The cause may be related to the relatively small magnitude and
difference in resistance values detected by the sensors solicited and, probably, to the similar
composition in terms of predominant odourous substances and/or odour concentration of
the investigated samples.

Table 9 summarizes the classification metrics during the LDA validation test, deter-
mined by using the discriminant factors equation developed in the training phase.

Table 9. Classification accuracy rate results with LDA application and validation dataset.

Group
Classification Accuracy Rate (%)

Complete Response Curve Rise Intermediate Peak

Class A 00.00 48.33 50.00 50.00
Class B 98.33 100.00 100.00 100.00
Class C 00.00 00.00 00.00 00.00

OVERALL 32.78 49.44 50.00 50.00
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Excellent classification accuracy rate results are highlighted only for the Class B
samples, while a much lower recognition percentage was detected for the Class A samples.
No samples of the Class C were correctly identified. Once again, the analyses show the
better response by using the peak or the intermediate data.

3.2. OCMMs Using Different Extracted Signals and ANN Application

MATLAB environment has a default setting that automatically partitions the input
dataset into 70–30% (i.e., train-test set) during training. The purpose of this configuration
is to eliminate the possibility of over-fitting. Each piecemeal signal was tested at different
number of neurons in the hidden layer. The ideal ANN topology was found at “13-7-3”.
Table 10 summarizes the coefficient of determination (R2) obtained by applying the ANN
during the training stage.

Table 10. Correlation values with ANN application during training phase.

Experiment Stage Complete Response Curve Rise Intermediate Peak

Train (R2) 0.9999 0.9999 0.9999 0.9999
Testing (R2) 0.9954 0.9999 0.9876 0.9999
Overall (R2) 0.9999 0.9999 0.9981 0.9999

Classification Rates (%) 99% 100% 99% 100%

Considering the overall R2 to assess the ANN accuracy, the results show that all the
correlations (R2) were found to be >0.998 for all the subsets of the extracted signals. This
means that the ANN was able to detect all the possible interactions in the dataset.

Figure 5 highlights the graphical representation of the results summarized in Table 10 to
evaluate the R2 trend through the mean square error (MSE) vis-a-vis the number of epochs,
by using the different sets of extracted data.
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The ANN was able to map good patterns, especially when the data in the rise and
peak part are utilized in the basis of small MSE at low number of epochs. The best training
performance was found, respectively, to be 1.00 × 10−9 at epoch 51 for the complete
response curve data (Figure 5a), 2.60 × 10−9 at epoch 83 for the rise part data (Figure 5b),
3.49 × 10−10 at epoch 48 for the intermediate data (Figure 5c), and 1.38 × 10−9 at epoch 26
for the peak data (Figure 5d).

Table 11 summarizes the classification metrics during the ANN validation test, deter-
mined using the values of the weights and biases, encoded as coefficients to satisfy the
topology of “13-7-3” generated during the training.

Table 11. Classification accuracy rate results with ANN application and validation dataset.

Group
Classification Accuracy Rate (%)

Complete Response Curve Rise Intermediate Peak

Class A 76.67 50.00 100.00 100.00
Class B 100.00 50.00 100.00 100.00
Class C 00.00 00.00 00.00 00.00

OVERALL 58.89 33.33 66.67 66.67

The results show that the ANN misclassified Class C (ambient air) data. However, a
perfect classification (100%) was achieved for Class A and Class B using the intermediate
and peak data points. This scenario might be attributed to the idea that molecules of
Class A and Class B are more sensitive to the gas sensors, in which an observable reaction
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is recognized when compared to Class C. The highest overall recorded accuracy was
determined equal to 66.67% for the intermediate and peak data points.

3.3. Comparison Studies

Table 12 presents and compares the classification accuracy rates obtained in the
training and validation stage through the application of the LDA and ANN, along with the
different extracted signal points, by performing the analysis with all the detected data (ϕ).

Table 12. Classification accuracy rates of all investigated conditions.

Extracted Piecemeal Signal Features ϕ% by LDA ϕ% by ANN

Training Validation Training Validation

Complete response curve 89.71% 32.78% 99.00% 58.89%
Rise 87.29% 49.44% 100.00% 33.33%

Intermediate 91.02% 50.00% 99.00% 66.67%
Peak 91.78% 50.00% 100.00% 66.67%

The peak steady part is confirmed as the piecemeal signal that provides the highest
discriminatory value for all the investigated cases and contains the most useful informa-
tion for both the pattern-recognition techniques. Despite the complete response signals
containing the complete information, this condition appears to slow down the performance
of the pattern-recognition algorithm. A good classification accuracy was highlighted by
using the intermediate period of the overall acquired data.

In the LDA classification, the technique was able to discriminate groups with a good
satisfaction rate (>89.71%); however, when simulated with unknown data during valida-
tion, the model could not classify them higher than 50%. This phenomenon might due to
the natural characteristic of the technique in relying on normal data distribution. However,
some variables do not obey this behavior. Meanwhile, by applying the ANN technique,
the results are relatively higher than in LDA. The model acquired a high learning con-
dition, which is manifested by the classification rates for all the piecemeal signals and
principally by using the intermediate and peak signals during the validation stage. The
ANN demonstrates a better pattern-recognition potential than using the LDA for almost
all the experiments carried out (e.g., +8.22% and even +12.71% during the training phase,
considering, respectively, the peak or rise periods). The cause may be related to the higher
ability of the ANN technique to deal with the noise in the dataset. This characteristic is
an asset of the ANN due to the fact that gas movements are dynamic. Only during the
validation phase by using the rise signal, LDA highlights a better classification accuracy.

4. Conclusions

The analysis of the adoption of different fragmented signals from the overall ac-
quired data and their responses with different pattern-recognition algorithms, such as
LDA and ANN in the OCMMs elaboration with IOMS, highlight the influences in the
final classification accuracy. For the investigated analyses, during the LDA training, the
intermediate and peak periods had the highest discrimination rates. On the other hand,
during the ANN training, all the fragmented signals performed well in terms of a high R2,
low MSE, and high classification metrics. ANN proves to have a higher learning capability
than LDA, while, during the test set validation of the two models, the intermediate and
peak parts confirm the highest accuracy, and ANN outperforms LDA in almost all the
investigated cases.

The selection of the feature extraction can optimize the IOMS performance by cap-
turing the most important signals to improve the system suffering from a large dataset
and memory storage space. In this way, the redundant signals that may contribute to the
uncertainty in the measurement can be eliminated and increase the robustness of the odour
monitoring model. Furthermore, the selection of the most appropriate pattern-recognition
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technique can improve the overall algorithm of the IOMS, which is manifested by the
odour classification metrics.

In LDA, no matter how the parameters were adjusted, such as by lowering the toler-
ance value, the Wilks’ lambda remains steady, unlike in ANN, where more configurations
are still available to explore. Based also on the signal response, the intermediate and peak
periods carried the most useful information that can be applied in odour monitoring.

The research can be a guideline for further research on selecting the proper combina-
tion of extracted signals and pattern-recognition algorithm. The paper provides useful in-
formation for the selection of the most appropriate mathematical data treatment techniques
in environmental odour monitoring with IOMS, as well as to promote the development
of more flexible systems, in order to minimize redundancy, as well as increase the overall
quality and reliability of the system.
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