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ABSTRACT
Background. Osteosarcoma (OS) is the most primary malignant bone cancer in
children and adolescents with a high mortality rate. This work aims to screen novel
potential gene signatures associated with OS by integrated microarray analysis of the
Gene Expression Omnibus (GEO) database.
Material andMethods. The OS microarray datasets were searched and downloaded
from GEO database to identify differentially expressed genes (DEGs) between OS
and normal samples. Afterwards, the functional enrichment analysis, protein–protein
interaction (PPI) network analysis and transcription factor (TF)-target gene regulatory
networkwere applied to uncover the biological function ofDEGs. Finally, twopublished
OS datasets (GSE39262 and GSE126209) were obtained from GEO database for
evaluating the expression level and diagnostic values of key genes.
Results. In total 1,059 DEGs (569 up-regulated DEGs and 490 down-regulated DEGs)
between OS and normal samples were screened. Functional analysis showed that these
DEGs were markedly enriched in 214 GO terms and 54 KEGG pathways such as
pathways in cancer. Five genes (CAMP, METTL7A, TCN1, LTF and CXCL12) acted
as hub genes in PPI network. Besides, METTL7A, CYP4F3, TCN1, LTF and NETO2
were key genes in TF-gene network. Moreover, Pax-6 regulated four key genes (TCN1,
CYP4F3, NETO2 andCXCL12). The expression levels of four genes (METTL7A, TCN1,
CXCL12 and NETO2) in GSE39262 set were consistent with our integration analysis.
The expression levels of two genes (CXCL12 and NETO2) in GSE126209 set were
consistent with our integration analysis. ROC analysis of GSE39262 set revealed that
CYP4F3, CXCL12, METTL7A, TCN1 and NETO2 had good diagnostic values for OS
patients. ROC analysis of GSE126209 set revealed that CXCL12, METTL7A, TCN1 and
NETO2 had good diagnostic values for OS patients.

Subjects Bioinformatics, Oncology, Orthopedics, Rheumatology, Medical Genetics
Keywords Osteosarcoma, Diagnosis, Genes, Activating transcription factor, Bioinformatic

INTRODUCTION
Osteosarcoma (OS) is a type of primary malignant bone cancer that causes public
health concern, especially in children and adolescents (Isakoff, Meltzer & Gorlick, 2015;
Lindsey, Markel & Kleinerman, 2017). Several treatment strategies of OS such as surgical
resection, traditional adjuvant chemotherapy and radiotherapy have been favored by
clinical oncologists in the past few decades (Nagarajan et al., 2011). Accordingly, the 5-year
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survival rate has been raised to approximately 70% (Bielack et al., 2002). However, it is
estimated that 80% of OS patients may suffer from the micro-metastasis, which cannot
be detected at early diagnosis (Messerschmitt et al., 2009). Although multiple methods for
the diagnosis and treatment of OS have been developed, new methods for the prevention
and treatment of OS are still needed. The pathogenesis of OS progression remains not
fully understood. Therefore, the identification of effective diagnostic makers and exploring
underlying molecular etiology of OS is a pressing need.

The emergence of high-throughput sequencing technology has become an effective way
to illuminate the pathogenic genes in a variety of human diseases, which help to explore
pathogenesis and develop biomarkers. Many research groups have screened multiple
biomarkers associated with OS by analyzing gene expression data. For example, Sun et al.
evaluated the difference of genes in the expression level between OS metastasis and OS
non-metastasis and discovered that TGFB1, LFT3, KDM1A, and KRAS may participate
in the occurrence of OS. Xiong et al. (2015) found that CCT3, COPS3 and WWP1 were
involved in the OS development by integrating gene expression and genomic aberration
data. Liu, Zhao & Chen (2017) constructed a co-expression network based on a Gene
Expression Omnibus (GEO) dataset and identified many potential biomarkers such as
CTLA4 and PBF for diagnosis and treatment of OS. However, the molecular mechanisms
of OS initiation and development have not been fully explored.

In this study, we retrieved GEO database and obtained four OS datasets. Subsequently,
the differentially expressed genes (DEGs) between OS samples and normal samples
were obtained and subjected to functional analysis. A protein–protein interaction (PPI)
network was constructed followed by the establishment of transcription factor (TF)-target
regulatory network. Following this, we downloaded two published GEO datasets of OS
as the validation set for assessing the expression levels of key candidate genes. Finally, the
receiver operating characteristic (ROC) analysis was conducted to evaluate the diagnostic
values of key candidate genes. This study will discover novel gene signatures associated
with OS, providing new trains of thought for the diagnosis and treatment of OS.

MATERIALS AND METHODS
Data acquisition
The datasets were retrieved from the National Center for Biotechnology Information-GEO
(http://www.ncbi.nlm.nih.gov/geo/) repository using the key terms of ‘osteosarcoma’
AND ‘Homo sapiens’[porgn]. All selected datasets in this study should meet the following
criteria: (i) the datasets contained genome-wide expression data of tumor tissues and
normal control tissues of OS patients; and (ii) all data were standardized or raw data. As
shown in Table S1, a total of five datasets were obtained. Notably, the GSE9508 dataset
contained over 50% missing data and was subsequently removed from the following
analysis. Eventually, four datasets (GSE12865, GSE19276, GSE87624 and GSE99671) were
included in this study, which included 118 OS tissues and 28 normal bone tissues. The
GSE12865 series (GPL6244 platform) included a total of 14 samples (12 OS and two
normal control tissues). The platform for GSE19276 was GPL6848 including 44 OS and
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five normal control bone tissue. The platform for GSE87624, consisting of 44 OS and three
normal control bone tissue samples, was GPL11154. GSE99671 was in GPL20148 platform,
which contained 18 OS and 18 normal control bone tissue samples. The platform and series
matrix files were downloaded. The dataset information was listed in Table S1. The impact
of different platforms on the results, we normalized the data through the log function, and
centralized and standardized the scale function to eliminate the impact of the dimension
on the data structure.

Data pre-processing and DEGs identification
The standardized data from included datasets were firstly processed as follows: (i) the
probes that mapped to several genes were deleted; and (ii) if the gene was matched by
multiple probes, the probe with the greatest gene expression value would be retained.
Overall, there were overlapping 14981 genes among four datasets. Subsequently, MetaMA
(https://cran.r-project.org/web/packages/metaMA/), an R package, was used to combine
data from four GEO datasets. Individual p-values were obtained using Limma R package.
The inverse normal method was used to combine P values in meta-analysis (Marot, Mayer
& Jaffrézic, 2009). We carried out the multiple comparison correction by Benjamini &
Hochberg approach to acquire false discovery rate (FDR). Herein, the DEGs between
OS tissues and normal controls were defined according to the cutoff of false discovery
rate (FDR) < 0.05 and those DEGs with different directionality were removed from this
study. Finally, the hierarchical clustering analysis of top 100 DEGs was also carried out by
pheatmap package in R software.

Functional enrichment analyses
To systematically explore the underlying biological functions of identified DEGs, the
Metascape (http://metascape.org/gp/index.html), an online tool that integrates multiple
data resources such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Universal Protein (Uniprot) database, was used to perform GO and KEGG
pathway enrichment analysis of DEGs. GO analysis involved three categories: biological
process (BP), cellular component (CC) and molecular function (MF). P values < 0.05 was
set as the thresholds for significant enrichment analyses.

Protein–protein interaction (PPI) network analysis
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, a
freely web-based analytic tool, can predict the interactions among proteins (Szklarczyk
et al., 2019). Here, a PPI analysis was conducted to examine the interactive associations
between protein products of DEGs. The Cytoscape software (http://www.cytoscape.org)
was utilized to establish a PPI network. In addition, the CytoNCA (http://apps.cytoscape.
org/apps/cytonca) was used to analyze topological characteristics of PPI network. The top
15 nodes were considered as hub genes according to the degree value.

TF-candidate gene network analysis
TFs can bind to specific DNA sequences in promoter region of target gene to regulate
gene expression. The top 20 up- and down-regulated genes were regarded as the
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candidate genes. The DNA sequences (2 kb) in the upstream promoter region of these
candidate genes were firstly downloaded from the University of California, Santa Cruz
(http://www.genome.ucsc.edu/) databases. Then, we employed online match tool from
TRANSFAC (http://genexplain.com/transfac) to predict potential TFs that targeted
candidate genes. Notably, the TFs that had only one binding site with target genes were
retained in this study. Finally, the Cytoscape software was used to build a transcriptional
regulatory network and perform node degree analysis.

Evaluation the expression level and diagnostic values of key genes
Two published OS datasets were obtained from GEO database for the expression level
evaluation of seven key DEGs (CAMP, METTL7A, TCN1, LTF, CXCL12, CYP4F3 and
NETO2). Then, we performed a ROC analysis using the pROC package in R software
(http://web.expasy.org/pROC/) to evaluate the diagnostic value of these seven DEGs.
Accordingly, the area under the curve (AUC) was computed and the ROC curve was built.
The AUC value > 0.8 showed a good diagnostic value for OS.

RESULTS
Identification of DEGs
After data pre-processing, a total of 1,059 DEGs (569 up-regulated genes and 490 down-
regulated genes) were identified between OS samples and normal controls according to
methods described above. The clustering analysis indicated that top 100 DEGs could
distinguish OS samples and controls from four datasets (Fig. S1). The top 20 up- and
down-regulated genes were listed in Table 1.

GO and KEGG enrichment analysis of DEGs
The GO enrichment analysis of DEGs showed that a total of 214 GO terms were enriched,
including 194 GO-BP terms, 15 GO-CC terms and 5 GO-MF terms (Table S1). Specifically,
for GO-BP analysis, these DEGs were strongly associated with positive regulation of cell
death, myeloid cell activation involved in immune response and regulation of protein
kinase activity. Meanwhile, protein domain specific binding and transcription factor
binding were significantly enriched GO-MF terms. Many DEGs were primarily involved in
multiple GO-CC terms, such as anchored component of membrane and tertiary granule.
The top 20 clusters of significantly enriched GO terms were displayed in Fig. 1. In addition,
these DEGs were markedly enriched in 20 KEGG pathways such as regulation of lipolysis in
adipocytes, protein processing in endoplasmic reticulum and pathways in cancer (Table 2).
Notably, the top 20 up-regulated genes did not enrich in any KEGG pathway. However,
four of top 20 down-regulated genes played vital roles in multiple significantly enriched
KEGG pathways, including FABP4 (fatty acid binding protein 4), CXCL12 (C-X-C motif
chemokine ligand 12), CXCL12 (C-X-C motif chemokine ligand 12) and CAT (Catalase).
More specifically, FABP4 was involved in regulation of lipolysis in adipocytes and CXCL12
participated in pathways in cancer and axon guidance (Table 2). CYP4F3 was closely
correlated with arachidonic acid metabolism pathway and CAT was significantly enriched
in biosynthesis of amino acids and AMPK signaling pathway (Table 2).
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Table 1 The list of top 20 up-regulated and down-regulated differentially expressed genes.

Gene symbol Combined.ES P_value FDR Up/Down-regulation

NETO2 1.773 5.48E−10 1.16E−07 Up-regulation
RTKN 1.664 3.90E−09 6.57E−07 Up-regulation
TMEM65 1.669 1.08E−08 1.54E−06 Up-regulation
MLLT11 1.507 1.41E−08 1.84E−06 Up-regulation
LAPTM4B 1.499 1.78E−08 2.21E−06 Up-regulation
ZC3H8 1.563 1.97E−08 2.41E−06 Up-regulation
SLC35F2 1.570 3.46E−08 3.90E−06 Up-regulation
IRX2 1.534 5.03E−08 5.19E−06 Up-regulation
ZNF593 1.404 7.11E−08 6.78E−06 Up-regulation
FLAD1 1.451 7.54E−08 7.10E−06 Up-regulation
KCNG1 1.456 1.32E−07 1.16E−05 Up-regulation
FGD1 1.304 2.59E−07 2.04E−05 Up-regulation
RPAP2 1.480 2.63E−07 2.06E−05 Up-regulation
DYRK4 1.405 2.83E−07 2.20E−05 Up-regulation
EDARADD 1.360 3.06E−07 2.33E−05 Up-regulation
PDCD5 1.285 3.77E−07 2.80E−05 Up-regulation
TMEM97 1.349 4.04E−07 2.95E−05 Up-regulation
GNL2 1.311 4.14E−07 3.01E−05 Up-regulation
HOXB6 1.527 4.47E−07 3.17E−05 Up-regulation
ZZZ3 1.504 5.79E−07 3.99E−05 Up-regulation
CAMP −4.158 0 0 Down-regulation
AHSP −3.156 0 0 Down-regulation
OLFM4 −3.108 0 0 Down-regulation
LTF −3.006 0 0 Down-regulation
ADH1C −2.814 0 0 Down-regulation
CXCL12 −2.746 0 0 Down-regulation
BPI −2.556 0 0 Down-regulation
HBD −2.615 8.88E−16 5.32E−13 Down-regulation
TCN1 −2.522 1.11E−15 6.40E−13 Down-regulation
FABP4 −2.296 7.77E−15 4.31E−12 Down-regulation
RAB37 −2.279 2.02E−14 1.08E−11 Down-regulation
FCN1 −2.320 2.95E−14 1.53E−11 Down-regulation
TMEM154 −2.279 3.13E−14 1.55E−11 Down-regulation
METTL7A −2.181 5.44E−14 2.47E−11 Down-regulation
CYP4F3 −2.304 6.66E−14 2.94E−11 Down-regulation
CAT −2.109 3.44E−13 1.43E−10 Down-regulation
CHL1 −1.974 5.51E−13 2.17E−10 Down-regulation
TMEM132C −1.860 5.19E−12 1.85E−09 Down-regulation
SERPINB2 −3.082 5.64E−12 1.97E−09 Down-regulation
SLC28A3 −2.118 8.26E−12 2.69E−09 Down-regulation
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Figure 1 Top 20 significantly enriched Gene Ontology terms of differentially expressed genes.
Full-size DOI: 10.7717/peerj.11496/fig-1

PPI network analysis
To determine the relationships among DEGs, a PPI network was built based on the
STRING database, which included 109 nodes and 196 protein pairs (Fig. 2). The top 15
hub genes contain PPBP (pro-platelet basic protein; degree = 13), CAMP (cathelicidin
antimicrobial peptide, degree = 13), LTF (lactotransferrin, degree = 12), BST1 (bone
marrow stromal cell antigen 1, degree = 12), CXCR2 (C-X-C motif chemokine receptor
2, degree = 10), OLFM4 (olfactomedin 4, degree = 10), STOM (stomatin, degree = 10),
TCN1 (transcobalamin 1, degree = 9), SLC4A1 (solute carrier family 4 member 1, degree
= 9), LTA4H (leukotriene A4 hydrolase, degree = 9), S100A9 (S100 calcium binding
protein A9, degree = 9), CXCL12 (degree = 8), CLEC12A (C-type lectin domain family
12 member A, degree = 8), RAB37 (RAB37, member RAS oncogene family, degree = 8)
andMETTL7A (methyltransferase like 7A, degree = 8). More notably, these genes were all
down-regulated.

TF-target network analysis
TF exerts crucial roles in regulating the expression of target gene. Herein, we employed
TRANSFAC to predict TFs that regulated 20 up-regulated and down-regulated DEGs.
As shown in Fig. 3, the TF-target gene regulatory network contained 95 nodes (55 TFs
and 40 genes) and 275 TF-gene pairs. The top 15 genes in TF-target network were
CHL1 (cell adhesion molecule L1 like, down-regulation, degree = 16), SERPINB2 (serpin
family B member 2, down-regulation, degree = 15), SLC28A3 (solute carrier family 28
member 3, down-regulation, degree = 11), ZC3H8 (zinc finger CCCH-type containing
8, up-regulation, degree = 10), LAPTM4B (lysosomal protein transmembrane 4 beta,
up-regulation, degree = 10), DYRK4 (dual specificity tyrosine phosphorylation regulated
kinase 4, up-regulation, degree= 9),METTL7A (solute carrier family 28 member 3, down-
regulation, degree = 9), KCNG1 (potassium voltage-gated channel modifier subfamily G
member 1, down-regulation, degree = 9), CYP4F3 (down-regulation, degree = 9), GNL2
(G protein nucleolar 2, up-regulation, degree = 8), HBD (hemoglobin subunit delta,
down-regulation, degree = 8), TCN1 (down-regulation, degree = 8), ZZZ3 (zinc finger
ZZ-type containing 3, up-regulation, degree = 8), NETO2 (neuropilin and tolloid like 2,
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Table 2 The top 20 significantly enriched KEGG pathways.

ID Term P_value Count Gene Symbols

hsa04923 Regulation of lipolysis in
adipocytes

0.0001 10 ADRB2, FABP4, PDE3B, PIK3CD, PLIN1, PTGER3, IRS2,
ABHD5, PNPLA2, ADCY4

hsa04141 Protein processing in endo-
plasmic reticulum

0.0001 19 BAG1, EIF2S1, HSPA2, LMAN1,MAN1A1,MAP3K5,
P4HB, EIF2AK2, RPN2, RRBP1, SSR2, PREB, SEC24A,
SEC61G, UBQLN2, DNAJB11, UBQLN4, DNAJC1, UBE2J2

hsa05200 Pathways in cancer 0.0002 34 BCL2L1, CASP8, CDKN2A, CEBPA, CKS1B, COL4A1,
DVL1, E2F1, EPAS1, FGF7, FGF13, FLT3,MTOR, GLI2,
GLI3, GNAQ, PIK3CD, PTEN, PTGER2, PTGER3, RARB,
RXRA, CXCL12, SKP2, STAT5A, TGFB3, TGFBR2, VEGFA,
NCOA4, FGF16, PIAS2, ARHGEF11, LEF1, ADCY4, SHC1,
CALM1, CHEK1, ELK1, FDPS, GPS2,MSX2, RANBP1,
TLN1, VCAM1, TLN2

hsa01230 Biosynthesis of amino acids 0.0004 11 CTH, ENO1, GAPDH, PC, SHMT1, TALDO1, TKT, TPI1,
SDS, RPIA, AADAT, CAT,MDH2,ME1,MCEE

hsa04974 Protein digestion and ab-
sorption

0.0019 11 COL2A1, COL4A1, COL5A2, COL10A1, COL11A1,
COL17A1, CPA3, SLC7A8, COL18A1, COL27A1, SLC16A10

hsa04722 Neurotrophin signaling
pathway

0.0022 13 CALM1,MAPK14,MAP3K5, NFKBIE, NTF3, NTRK2,
PIK3CD, PRKCD, RPS6KA2, SHC1,MAGED1, PRDM4,
IRAK3

hsa04152 AMPK signaling pathway 0.0023 13 CPT1A, ELAVL1,MTOR, LEP, PIK3CD, PPP2R5A,
PPP2R5D, PRKAB2, IRS2, CREB5, CAMKK2, STRADB,
CREB3L1, PRKCD, PRKCE, PTEN, RPS6KA2, TBC1D4,
JAK2, NFKBIE, RXRA, SOCS2, CAT, ADCY4, CALM1,
ELK1, FLOT2, PDE3B, PRKAR2B, SHC1, INPP5K, HSPA2

M00007 Pentose phosphate path-
way, non-oxidative phase,
fructose 6P =>ribose 5P

0.0026 3 TALDO1, TKT, RPIA

hsa03060 Protein export 0.0028 5 OXA1L, SRP54, SRP72, SEC61G, SRPRB
hsa04933 AGE-RAGE signaling path-

way in diabetic complica-
tions

0.0041 11 COL4A1,MAPK14, JAK2, PIK3CD, PRKCD, PRKCE,
STAT5A, TGFB3, TGFBR2, VCAM1, VEGFA, CD247,
MTOR, NFKBIE, RXRA, STAT6, IL27RA, LHB, SHC1,
SOCS2, AOX1, BCL2L1, IL5RA, LEP, PIAS2

hsa04360 Axon guidance 0.0045 16 EFNA1, EFNA3, EFNA5, EFNB1, EPHA3, EPHB2, EPHB6,
FES, PIK3CD, CXCL12, SEMA7A, SEMA3A, RHOD,
SEMA4C, NTNG2, PLXNA4

hsa04015 Rap1 signaling pathway 0.0053 18 CALM1,MAPK14, EFNA1, EFNA3, EFNA5, FGF7, FGF13,
GNAQ, ITGB3, PFN2, PIK3CD, TLN1, VEGFA, FGF16,
RAPGEF3, APBB1IP, TLN2, ADCY4, BCL2L1, COL2A1,
COL4A1,MTOR, ITGA7, JAK2, PPP2R5A, PPP2R5D,
PTEN, RXRA, TLR4, CREB5, CREB3L1, THEM4

hsa00590 Arachidonic acid
metabolism

0.0055 8 ALOX15, GGT5, GPX3, GPX7, LTA4H, CYP4F3, PLA2G5,
PTGES, GSTA4, GSTM3, SRM, GGCT

hsa04932 Non-alcoholic fatty liver
disease (NAFLD)

0.0060 14 CASP8, CEBPA, EIF2S1, LEP,MAP3K5, NDUFB9,
NDUFS5, PIK3CD, PRKAB2, RXRA, UQCRH, IRS2,
NDUFB11, NDUFA4L2

(continued on next page)
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Table 2 (continued)

ID Term P_value Count Gene Symbols

hsa00620 Pyruvate metabolism 0.0066 6 GLO1, HAGH,MDH2,ME1, PC, LDHD
hsa04924 Renin secretion 0.0073 8 ADRB2, CALM1, GNAQ, PDE1A, PDE1C, PDE3B,

PTGER2, CLCA4
hsa04750 Inflammatory mediator

regulation of TRP channels
0.0101 10 CALM1,MAPK14, GNAQ, PIK3CD, PRKCD, PRKCE,

PTGER2, TRPA1, TRPV4, ADCY4, ADRB2, ATP2B4,
PPP2R5A, PPP2R5D, CREB5, RAPGEF3, CACNG7,
CREB3L1, HSPA2, SHC1, PLA2G5, PTGIR, ARHGEF11,
PPP1R14A,MYL6B, GPX3, GPX7, SLC26A4, ELK1,
GNRH2, LHB

hsa01524 Platinum drug resistance 0.0144 8 BCL2L1, CASP8, CDKN2A, GSTA4, GSTM3,MAP3K5,
PIK3CD, PMAIP1, BCL2A1, DFFA, DFFB, EIF2S1, PARP2,
DIABLO, DAB2IP,MAPK14, VCAM1, CREB5, CREB3L1,
MLKL, CALM1, ITGB3, PLAT, VEGFA, TRPV4

hsa04071 Sphingolipid signaling
pathway

0.0146 11 MAPK14,MS4A2, GNAQ,MAP3K5, PIK3CD, PPP2R5A,
PPP2R5D, PRKCE, PTEN, SPTLC2, SGMS1

hsa00983 Drug metabolism-other
enzymes

0.0147 6 CDA, CES1, DPYD, UCK2, CES2, UCKL1

Notes.
KEGG; Kyoto Encyclopedia of Genes and Genomes.

up-regulation, degree = 8), and LTF (lactotransferrin, down-regulation, degree = 8). In
addition, the top six TFs that covered the most downstream genes were exhibited in Table
3, which contained Pax-4, 1-Oct, Nkx2-5, HNF-4, FOXD3 and Pax-6. Interestingly, TCN1,
CYP4F3, NETO2 and CXCL12 were regulated by Pax-6 (Table 3).

Evaluation the expression level and diagnostic values of key genes
An external dataset (GSE39262) was obtained from GEO database, which contained 10
human osteosarcoma cell lines and five untransformed cell lines samples. The platform
for this dataset was GPL96 [HG-U133A] Affymetrix Human Genome U133A Array.
GSE126209 was downloaded from the GEO database, which inclued 12 osteosarcomas
tumors and 11 adjacent normal tissues samples. The platform for this dataset was GPL20301
Illumina HiSeq 4000. Seven key genes (CAMP, METTL7A, TCN1, LTF, CXCL12, CYP4F3
andNETO2) were selected to verify in GSE39262. Among them, CAMP,METTL7A, TCN1,
LTF and CXCL12 acted as hub genes in PPI network.METTL7A, CYP4F3, TCN1, LTF and
NETO2 were key genes in TF-gene network. Moreover, Pax-6 regulated four key genes
(TCN1, CYP4F3, NETO2 and CXCL12). The gene differential expression analysis of the
GSE39262 dataset revealed that NETO2 was significantly up-regulated while CXCL12,
METTL7A and TCN1 were significantly down-regulated, which were consistent with our
integration analysis (Fig. 4; Table S2). The gene differential expression analysis of the
GSE126209 dataset displayed that NETO2 was significantly up-regulated while CXCL12
was significantly down-regulated, which were consistent with our integration analysis (Fig.
5; Table S3). ROC analysis is a commonly used method to evaluate the value of genetic
diagnosis and has been used in previously biomedical works (Le et al., 2019; Le, Yapp &
Yeh, 2019; Thi, Trang & Khanh, 2020). Additionally, the results of the GSE39262 dataset
showed that five genes had good diagnostic values for OS (CXCL12, CYP4F3, METTL7A,
NETO2 andTCN1; Fig. 6). The AUCofCXCL12was 1.000 and the specificity and sensitivity
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Figure 2 Protein–protein interaction networks of differentially expressed genes. Red and green el-
lipses represent up-regulated and down-regulated genes, respectively. The black borders indicate top 20
up-regulated and down-regulated genes.

Full-size DOI: 10.7717/peerj.11496/fig-2

of this model were 100.0% and 100%, respectively. The AUC of CYP4F3 was 0.840 and
the specificity and sensitivity of this model were 80.0% and 80.0%, respectively. The AUC
of METTL7A was 0.900 and the specificity and sensitivity of this model were 100.0% and
70.0%, respectively. The AUC of NETO2 was 0.860 and the specificity and sensitivity of
this model were 100.0% and 80.0%, respectively. The AUC of TCN1 was 0.820 and the
specificity and sensitivity of this model were 80.0% and 90.0%, respectively. Ultimately, the
results of the GSE126209 dataset showed that four genes had good diagnostic values for OS
(CXCL12,METTL7A,NETO2 and TCN1; Fig. 7).CXCL12was 1.000 and the specificity and
sensitivity of this model were 100.0% and 100%, respectively. The AUC of METTL7A was
0.856 and the specificity and sensitivity of this model were 100.0% and 83.3%, respectively.
The AUC ofNETO2was 0.833 and the specificity and sensitivity of this model were 100.0%
and 75.0%, respectively. The AUC of TCN1 was 0.879 and the specificity and sensitivity of
this model were 81.8% and 83.3%, respectively.

DISCUSSION
OS is a common malignant bone tumor and originates from mesenchymal stromal cells
(MSCs) (Xiao, Hogendoorn & Cleton-Jansen, 2013). The heterogeneous histopathological
characteristics and complex genomic landscape of OS have been major challenges for
elaborating underlying the molecular pathogenesis of OS. In this study, we included four
OS datasets and identified 1,059 DEGs (569 up-regulated DEGs and 490 down-regulated
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Figure 3 Transcription factor-top 20 up-regulated and down-regulated genes network.Diamonds and
ellipses represent transcription factors and top 20 up-regulated and down-regulated genes, respectively.
Red and green ellipses represent up-regulated and down-regulated genes, respectively.

Full-size DOI: 10.7717/peerj.11496/fig-3

Figure 4 Box plots of seven differentially expressed genes in the GSE39262 dataset. The x-axes repre-
sent control and case groups while the y-axes represent the relative expression levels of the genes. Seven
genes included NETO2, CAMP,METTL7A, TCN1, LTF, CXCL12 and CYP4F3.

Full-size DOI: 10.7717/peerj.11496/fig-4

DEGs) between OS and normal samples. These genes were significantly enriched in 54
KEGG pathways such as pathways in cancer.Moreover,CAMP,METTL7A,TCN1, LTF and
CXCL12 served as hub genes in PPI network.METTL7A, CYP4F3, TCN1, LTF andNETO2
were key players in TF-target gene regulatory network. Interestingly, TCN1, CYP4F3,
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Table 3 The top 6 TF that has the most downstream genes.

TF Number∗ Gene Symbol

Pax-4 31 FLAD1, ZZZ3, GNL2, EDARADD, RTKN, LTF, CAMP,
CHL1, ADH1C, TMEM154, IRX2, FABP4, LAPTM4B,
SLC28A3, FGD1, CXCL12, HBD, TCN1, CAT, SLC35F2,
DYRK4,METTL7A, OLFM4, AHSP, RAB37, TMEM97,
SERPINB2, CYP4F3, PDCD5, BPI, KCNG1

1-Oct 22 FLAD1, GNL2, RPAP2, EDARADD, ZC3H8, CHL1, CAMP,
IRX2, FABP4, TMEM65, SLC28A3, HBD, TCN1, CAT,
TMEM132C, DYRK4,METTL7A, TMEM97, HOXB6,
SERPINB2, BPI, KCNG1

Nkx2-5 19 FLAD1,MLLT11, RPAP2, EDARADD, CAMP, CHL1,
TMEM154, LAPTM4B, TMEM65, SLC28A3, FGD1, TCN1,
SLC35F2, DYRK4, AHSP, SERPINB2, CYP4F3, KCNG1, BPI

HNF-4 16 ZZZ3, ZNF593, GNL2, LTF, CHL1, CAMP, LAPTM4B,
SLC28A3, FGD1, CXCL12, HBD, SLC35F2,METTL7A,
RAB37, CYP4F3, KCNG1

FOXD3 14 GNL2, RPAP2, EDARADD, ZC3H8, CHL1, LTF, FABP4,
FGD1, HBD, DYRK4,METTL7A, OLFM4, NETO2, RAB37

Pax-6 13 EDARADD, GNL2, CHL1, TMEM65, SLC28A3, CXCL12,
HBD, TCN1, DYRK4, NETO2, SERPINB2, CYP4F3, KCNG1

Notes.
Number∗, indicates the number of genes regulated by the TF; TF, transcription factor.

Figure 5 (A-G) Box plots of seven differentially expressed genes in GSE126209 dataset. The x-axes rep-
resent control and case groups while the y-axes represent the relative expression levels of the genes. Seven
genes included NETO2, CAMP,METTL7A, TCN1, LTF, CXCL12 and CYP4F3.

Full-size DOI: 10.7717/peerj.11496/fig-5

NETO2 and CXCL12 were all regulated by Pax-6. Additionally, the expression patterns of
key genes (CAMP, METTL7A, TCN1, LTF, CXCL12, CYP4F3 and NETO2) were selected
to verify in two published OS datasets (GSE39262 and GSE126209).
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Figure 6 ROC curves of selected differentially expressed genes in the GSE39262 dataset. The x-axes
and the y-axes show 1-specificity and sensitivity, respectively. ROC, receiver operating characteristic. (A-
G) The seven genes included NETO2, CAMP,METTL7A, TCN1, LTF, CXCL12 and CYP4F3.

Full-size DOI: 10.7717/peerj.11496/fig-6

Figure 7 ROC curves of selected differentially expressed genes in the GSE126209 dataset. The x-axes
and the y-axes show 1-specificity and sensitivity, respectively. ROC, receiver operating characteristic. (A-
G) The seven genes included NETO2, CAMP,METTL7A, TCN1, LTF, CXCL12 and CYP4F3.

Full-size DOI: 10.7717/peerj.11496/fig-7

CAMP, also known as hCAP18 or LL37, is an antimicrobial peptide gene in human
(Larrick et al., 1995). The C-terminal of the protein product of CAMP contains a 37-
amino acid-long peptide with broad spectrum-antibacterial activity (Vandamme, Luyten
& Schoofs, 2012). There are positive expressions of CAMP in the multiple cell systems,
such as epithelial cells, neutrophils and macrophages (Dhawan et al., 2015; Frew et al.,
2014; Li et al., 2018). Wu et al. (2012) suggested that bone marrow stroma could express
CAMP, which may be a potential ex vivo priming factor for hematopoietic stem progenitor
cells to promote hematopoietic reconstitution after transplantation. Later, Coffelt et al.
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(2019) discovered that CAMP expression level was elevated in MSCs compared to that in
ovarian cancer cells. Herein, our analysis showed that CAMP was the most down-regulated
gene in patients suffering from OS. Besides, CAMP acted as a hub gene in PPI network,
suggesting that this gene may be involved in the pathologic mechanism of OS. Although the
underlying role ofCAMP on the initiation and progression of OS has not been investigated,
available evidence showes that CAMP plays significant roles in several cancers, including
breast cancer, lung cancer and pancreatic cancer (García-Quiroz et al., 2016; Sainz Jr et
al., 2015; Von Haussen et al., 2008). More notably, existing data indicated that CAMP had
either carcinogenic or anti-cancer effects (Chen et al., 2018;Wu et al., 2010). Therefore, the
influence of CAMP on OS occurrence and development needs to be further clarified in
future.

Our gene differential expression revealed that CXCL12 and TCN1 were down-regulated
in OS patients, which were verified in a validation dataset. Moreover, these two genes also
acted as hub genes in PPI network. In addition, up-regulated NETO2 and down-regulated
CYP4F3 had high degree in TF-gene regulatory network. Interestingly, CXCL12, TCN1,
NETO2 and CYP4F3, regulated by Pax-6, exhibited important diagnostic values for OS.
CXCL12 is also called stromal cell-derived factor-1 (SDF-1) and can bind to G-protein-
coupled chemokine receptor CXCR4 (Nagasawa, 2014). Increasing studies suggested that
CXCL12/CXCR4 axis played pivotal roles in tumor growth and development (Balkwill,
2004; Lu et al., 2015; Perissinotto et al., 2005). Li et al. (2018). highlighted that epigenetic
regulation of CXCL12 by DNA methyltransferase 1 was associated with the metastasis and
immune response in OS. Previous reports also indicated that down-regulation of CXCR4
induced OS cell apoptosis via suppressing PI3K/Akt/NF-κβ pathway (Pollino et al., 2019).
However, there is no directive evidence to support the involvement of TCN1, NETO2
and CYP4F3 in OS. Notably, Pax-6 is a highly conserved evolutionarily TF and belongs to
paired box TF family (Mansouri & Gruss, 1996). Several studies have pointed out that Pax6
participated in the regulation of cancer cell proliferation and progression (Shyr et al., 2010;
Zong et al., 2011). Yang et al. (2019) established a TF-top 20 DEGs regulatory network by
integrating and analyzing three GEO datasets (GSE66673, GSE49003 and GSE37552), and
found that Pax-6 down-regulated BMP6 expression in non-metastatic OS samples. Taken
together, we inferred that CXCL12/TCN1/NETO2/CYP4F3-Pax-6 axis may be implicated
in the pathogenesis of OS, and four genes (CXCL12, TCN1, NETO2 and CYP4F3) were
novel diagnostic biomakers for OS.

METTL7A and LTF are reported to act as tumor suppressor genes (Qi et al., 2017;
Zhang et al., 2011; Zhang et al., 2015). Similarly, our findings showed that the expressions
ofMETTL7A and LTF were decreased in OS samples. Moreover, these two genes were both
hub genes in PPI analysis and key gene nodes in TF-gene regulatory analysis. These results
implied that METTL7A and LTF may be correlated with underlying mechanisms of OS.
However, the potential effects of METTL7A and LTF down-regulation on OS progression
needs to be further investigated.

Although we have identified multiple novel gene signatures associated with OS, there
are still limitations in this work. Our conclusion was drawn based on an integrated
bioinformatic analysis. Therefore, additional experiments are required to confirm our
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findings. In addition, a larger sample size verification will also improve the reliability of
our conclusion. Moreover, the clinical information should be collected to evaluate the
diagnostic value of biomarkers for OS patients. Finally, the biological significances of key
biomarkers will be investigated in model systems or cell lines.

In summary, a total of 1,059 DEGs were identified between OS and normal samples.
Among them, up-regulation of NETO2 and down-regulation of METTL7A, TCN1, and
CXCL12may be potential gene signatures related to OS. Pax-6 was also probably associated
with the pathological process of OS. However, a comprehensive bioinformatics analysis
with larger sample size and in vivo or in vitro assays should be performed to confirm our
results.
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