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Abstract

Background: Short sequence mapping methods for Next Generation Sequencing consist on a combination of
seeding techniques followed by local alignment based on dynamic programming approaches. Most seeding
algorithms are based on backward search alignment, using the Burrows Wheeler Transform, the Ferragina and
Manzini Index or Suffix Arrays. All these backward search algorithms have excellent performance, but their
computational cost highly increases when allowing errors. In this paper, we discuss an inexact mapping algorithm
based on pruning strategies for search tree exploration over genomic data.

Results: The proposed algorithm achieves a 13x speed-up over similar algorithms when allowing 6 base errors,
including insertions, deletions and mismatches. This algorithm can deal with 400 bps reads with up to 9 errors in a
high quality Illumina dataset. In this example, the algorithm works as a preprocessor that reduces by 55% the number
of reads to be aligned. Depending on the aligner the overall execution time is reduced between 20–40%.

Conclusions: Although not intended as a complete sequence mapping tool, the proposed algorithm could be used
as a preprocessing step to modern sequence mappers. This step significantly reduces the number reads to be aligned,
accelerating overall alignment time. Furthermore, this algorithm could be used for accelerating the seeding step of
already available sequence mappers. In addition, an out-of-core index has been implemented for working with large
genomes on systems without expensive memory configurations.
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Background
In the field of bioinformatics, the term alignment [1]
refers to identifying similar areas between chains of DNA,
RNA or protein primary structures. The alignment is the
first step in most studies of functional or evolutionary
relationships between genes or proteins.
With the advent of high-throughput sequencing tech-

niques, a topic frequently addressed is the mapping of
short DNA sequences on a consensus reference genome.
In this case, differences between reads and the reference
appear, due to the natural genetic variability or failures in
the sequence digitalisation phase. For this reason, a map-
ping algorithm must allow a certain number of errors,
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guaranteeing that sequences slightly different to the refer-
ence will be mapped.
Several inexact alignment solutions available in the lit-

erature focus on dynamic programming approaches, like
the Smith-Waterman Algorithm [2,3] (SW) or the Hidden
MarkovModels [4] (HMM). However, their computational
complexity depends on the length of the read multiplied
by the length of the reference genome.
A different approach to sequence alignment are back-

ward search techniques based on the Burrows Wheeler
Transform (BWT). Its main advantage over the dynamic
programming approaches is that its computational com-
plexity depends only on the length of the read. However,
backward search techniques need to initially generate an
index of the reference using the Ferragina and Manzini
Index [5] (FM-Index).
The BWT has been originally used in data compression

techniques [6,7], but the FM-Index [8] allowed the design
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of recursive backwards searching algorithms for inex-
act mapping [9]. This is the case of BWA-backtrack [9],
SOAP2 [10], and Bowtie 1 [11]. More recently, SOAP3-
dp [12], CUSHAW2 [13], Barracuda [14] and our previous
work [15] support GPU computing. FPGA implementa-
tions [16] are also available.
Additionally, other prefix search techniques are based

on Suffix array [17] (SA) and enhanced SA [18] the-
ory with applications to bioinformatics. Specifically,
essaMEM [19] and Psi-Ra [20] are based on sparse SA.
Backward search methods can also be applied to SA in a
similar fashion as the FM-Index [21]. The computational
cost of prefix searchmethods depends on the prefix length
and a constant value that can be improved depending on
the data structures.
However, backward search methods performance

decreases with the number of errors allowed during the
alignment. Backward search inexact mapping combines
an exact search procedure with a search tree exploration
routine that checks all the possible solutions within the
number of errors allowed. All practical implementa-
tions avoid this exponential cost using pruning or greedy
strategies [9,11,22,23].
For this reason, backward search techniques are

employed to locate small segments of the reads (seeds) in
the genome, revealing alignment candidate areas. Subse-
quently, a local alignment algorithmmaps the read against
the highlighted area only, reducing the computational
cost. BWA [24], Bowtie 2 [25] and SeqAlto [26] combine
FM-Index multi-seed preprocessing with dynamic pro-
gramming methods. SSAHA2 [27] and GEM [28] locate
k-mers to be used as prefixes that are also explored using
dynamic programming approaches.
Although these combined methods are faster than per-

forming a full dynamic programming analysis and its
sensitivity is undisputed when dealing with long reads and
big gaps, it is still desirable to further improve inexact
backward search mapping methods.
The algorithm described in this paper is intended as an

extra preprocessing step before the seed location phase
of current sequence mappers. Our main objective is to
reduce the number of read locations to be analysed by
more expensive combined strategies. We need a more
efficient algorithm capable of dealing with longer reads
and able to reuse part of the backward search prepro-
cessing to accelerate the seeding phase. We demonstrate
that these goals can be achieved by improving previous
research [9,23].
This algorithm improves the inexact mapping of short

reads with several bounding strategies suited for genomic
data. We support all type of errors (insertions, deletions
and mismatches) in all the positions of the read, while
other tools impose limits due to the growth of the search
tree. Moreover, none of the bounding strategies described

in this article decrease the sensitivity of the search, return-
ing all the existing mappings given a maximum number of
errors. Experimental results show a great increase in the
performance over similar approaches, proving its viability
with longer reads.
The work described here is based on replaceable com-

ponents, providing the necessary interfaces to be com-
patible with any tool using a backward search method.
In this study, we used both our own backward search
implementation of the FM-Index and the implementation
for DNA from csalib [29], this library implements several
backward search methods based on either the FM-Index
or SA [21]. Using csalib, data structures are not loaded
intomainmemory [30], but accessed from disk by demand
using mmap. This property may be useful in memory
demanding tasks, like mapping against big genomes.

Methods
We divide the methods specification into five sections.
First of all, we introduce the backward search method
on top of which the algorithm is executed. Secondly,
we describe the compression mechanisms of the data
structures, due to its potential effect in the performance.
Thirdly, we present a simplified version of the algorithm as
a start point to include the different pruning techniques.
Fourthly, we outline the complete search tree exploration
algorithm and the remaining pruning strategies. Finally,
we detail the hardware used during the benchmarks and
the properties of the datasets.

Backward search
The backward search method used in the benchmarks is
based on our own implementation of the FM-Index data
structures, here we present a brief introduction to the FM-
Index search theory.
Let A = {A,C,G,T} be an alphabet and $ a symbol

not included in A, with less lexicographic value than all
the symbols in A. Let X = “AGGAGC$” be the reference
genome, a string of A terminated with the $ symbol.
The BWT can be obtained by sorting the suffixes of

X (equation 1) with specific suffix array sorting Algo-
rithms [31]. However, we employ a more recent approach
that computes the BWT directly [32], without storing the
full SA positions into memory.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A G G A G C $
G G A G C $ A
G A G C $ A G
A G C $ A G G
G C $ A G G A
C $ A G G A G
$ A G G A G C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
1
2
3
4
5
6

(1)

After this preprocessing, B =[C,G, $,G,G,A,A] con-
tains the BWT of X (equation 2).
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

$ A G G A G C
A G C $ A G G
A G G A G C $
C $ A G G A G
G A G C $ A G
G C $ A G G A
G G A G C $ A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

6
3
0
5
2
4
1

(2)

The backward search method is based on the FM-
Index [8] data structures. Let a ∈ A: C(a) be the
number of symbols in B lexicographically smaller than a
(equation 3) and let O(a, i) be the number of occurrences
of symbol a in B[0 : i−1] (equation 4, the first column is -1
and is always 0).

C = (
0 2 3 6

)
(3)

O =

⎛
⎜⎜⎝

0 0 0 0 0 0 1 2
0 1 1 1 1 1 1 1
0 0 1 1 2 3 3 3
0 0 0 0 0 0 0 0

⎞
⎟⎟⎠

A
C
G
T

(4)

Vector S =[6, 3, 0, 5, 2, 4, 1] is the numerical represen-
tation of the SA, with the permutation of each suffix
(equation 2). Additionally, we define R =[2, 6, 4, 1, 5, 3, 0]
as the inverse of the SA (ISA), satisfying R[S[i] ]= i. S and
R can be reconstructed from the FM-Index and the posi-
tion of the $ symbol in B [33] (see section Data structures
compression).
We also define Br ,Or , Sr and Rr as the data structures of

the reversed reference text Xr . The reverse index allows to
change the direction of the analysis during the search, but
increases the memory requirements. Bidirectional meth-
ods [23] solve this issue but may not be efficient in all
cases, see section breadth-first exploration for a more
detailed discussion.
The occurrences of a stringW in X constitute a contigu-

ous interval [k, l] in the sorted SA. S[k . . . l] contains the
positions of all the suffixes of X that start withW .
Backward search methods iteratively approximate the

[k, l] interval of a string W (Algorithm 1). The initial val-
ues are k = 0 and l = O.col − 2 = |S| − 1. On each
search_iteration a symbol of W is analysed obtaining an
equal or narrower [k, l] interval for the larger substring. At
the end, if k ≤ l stringW belongs to X.

Algorithm 1 Exact Backward Search
1: exact(IN:W , index. OUT: r.)
2: [k, l]←[0, size(index) − 1]
3: for i ← |W | − 1 . . . 0
4: [k, l]← search_iteration([k, l] ,W [i] , index)
5: if k > l break
6: end for
7: r ←[k, l] at i with [ ]
8: end function

We return the result in variable r using a special nota-
tion ([k, l] at i with [ ]), this means that we return
interval [k, l], pointing to the symbol of W at posi-
tion i (where the search stopped) and setting and empty
error list (this is exact search). The notation of the error
list is described in the Search tree exploration prototype
section.
In the case of the FM-Index search_iteration ←

fm_iteration (Algorithm 2).

Algorithm 2 FM-Index iteration
1: fm_iteration(IN: [k, l] , b, index. OUT: [k′, l′].)
2: k′ ← index.C[b]+index.O[b] [k]+1
3: l′ ← index.C[b]+index.O[b] [l + 1]
4: end function

Any backward search runtime providing an implemen-
tation of the search_iteration function and wrappers to
access the SA and ISA will be compatible with the algo-
rithm described in this paper.

Data structures compression
Matrix O has a size that depends on the length of the
genome times the size of the alphabet. Each element in O
is a long integer, so therefore, O is a huge matrix to keep
in memory. We compress matrix O, with n columns, into
two matrices.
Let Ocount be a matrix whose elements are bit vectors of

size w, such vectors can be stored as integer values. The
size of each row is n/w elements of w bits. If the i-th bit of
a row is set to 1 this indicates that in the i-th position of
B a nucleotide corresponding to the current row symbol
appears.
Let Odisp be a matrix of integers with size n/w,

where each element corresponds to a bit vec-
tor in Ocount . Odisp[a, k] contains the number of
nucleotides of type a ∈[A,C,G,T] before the first bit of
Ocount[a, k].
To obtain O[a, i] we add the number of nucleotides

stored in Odisp[a, i/w] to the total count of 1 in
Ocount[a, i/w] until the last bit corresponding to B[0..i].
The bit-count operation is implemented at hardware level
in many CPU and GPU, being a fast implementation.
Using this compression matrix O of homo sapiens

requires 2 gigabytes withw = 64, which is the typical CPU
word size.
Let S, R, Scomp and Rcomp be integer vectors. Let n

be the size of vector S and R, then Scomp and Rcomp
size is n/r where r is the compression ratio. Each ele-
ment of Scomp and Rcomp satisfies Scomp[k]= S[k ∗ r]
and Rcomp[k]= R[k ∗ r] respectively. In equation 5



Torres et al. BMC Bioinformatics  (2015) 16:18 Page 4 of 11

we define �−1 as the inverse compressed suffix array,
(�−1)(j) denotes applying �−1 for j times.
In equation 6 we reconstruct S from Scomp [33]. In

order to obtain S[ k] we repeatedly apply �−1 until we
reach some j value which satisfies that S

[(
�−1)(j)

(k)
]
is a

multiple of r stored in Scomp.

�−1(i) = C(B[ i] ) + O(B[i] , i + 1) (5)

S[k]= S
[(

�−1)(j)
(k)

]
+ j (6)

R[k]= (
�−1)(j′) (

R
[
k + j′

])
(7)

j′ = (r − (k mod r)) mod r (8)

In equation 7 we reconstruct R from Rcomp following
similar principles. To obtain R[k] we first calculate j′ with
equation 8. With j′, we are able to obtain R(k + j′), as it is
a multiple of r stored in Rcomp. After that, we apply �−1

for j′ repeated times to obtain R[k].
Vectors S and R need 0.75 GB each for the homo sapiens

genome with a compression ratio of r = 16. There are
more advanced compression techniques but our approach
is a good balance between memory and speed in a wide
range of architectures (including GPU).

Search tree exploration prototype
When performing inexact mapping a recursive approach
over a search tree can be employed [9]. This analysis
depends on three factors. The first one is the current state
of the backward search, each path from the root to any
node of the tree represents a sequence of symbols that has
lead to a different [k, l] interval. The second one is the spe-
cific variability of the reference genome studied, on the
initial tree levels only few symbols have been processed,
so branches for all possible errors widely satisfy k ≤ l
and grow uncontrollably. The third one is the singularity
of each read, which determines the minimum number of
errors needed to map it.
We developed a search tree exploration algorithm that

greatly reduces the tree growth during inexact search. It
employs a faster iterative approach, using several lists to
store partial results. These lists store previous results, next
results to explore and final results. We named these lists
rlp, rln and rlf in the pseudo-code.
Algorithm 3 is a simplified prototype of the final

approach. It lacks the bounding techniques described in
next section, so its execution is not as efficient. We use
it to explain the behaviour of the complete algorithm as
it is based on the same subroutines: a selective exact
search procedure that detects and annotates the positions
where it is worth to study sequence errors and a conser-
vative branch procedure with specific rules for genomic
data.

The execution starts by adding a single partial result
to the previous results list. This first single result con-
tains the initial interval, no symbols of W analysed and
an empty error list. After that, the exact and branch sub-
routines are executed alternatively, increasing the partial
results stored in the previous and next lists. At the end,
the last exact call returns the final results.

Algorithm 3 Search prototype
1: prototype (IN:W , index, errors. OUT: rlf .)
2: rlp.add([0, size(index) − 1] at |W | − 1 with [ ])
3: for errors . . . 1
4: rln, rlf ← exact(W ,True, 0, rlp, index)
5: rlp ← branch(W , rln, index)
6: end for
7: rlf ← exact(W , False, 0, rlp, index)
8: end function

The exact subroutine (Algorithm 4) input variables are
inexact, which indicates if it must perform an exact search
or allow errors, and last, which indicates the last symbol to
analyse (in this case the full string). It takes partial results
from rlp and analyses them, inserting in rln new partial
results for each position requiring branches. These partial
results denote other possible mappings in the reference
that differ from the current read at the detected posi-
tions. In order to detect these positions we demonstrate
the following condition.

Algorithm 4 Exact Subroutine
1: exact(IN:W , inexact, last, rlp, index. OUT: rln, rlf )
2: for r ← rlp[1 . . . rlp.size]
3: [k′, l′]← r.[k, l]
4: res′ ← l′ − k′
5: for i ← r.position . . . last
6: [k, l]←[k′, l′]
7: if k > l break
8: [k′, l′]← search_iteration([k, l] ,W [i] , index)
9: res ← res′

10: res′ ← l′ − k′
11: if res′ < res and inexact = True then
12: rln.add([k, l] at i with r.er)
13: end if
14: end for
15: if k′ ≤ l′ then
16: rlf .add([k′, l′] at last − 1 with r.er)
17: end if
18: end for
19: emptyStack(rlp)
20: end function
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Let [k′, l′]← search_iteration ([k, l] , a) be two subse-
quent SA intervals in a forward search, where a = W [i].
We define res = l − k + 1 and res′ = l′ − k′ + 1, these
values indicate respectively the number of appearances of
substrings V = W [0 : i − 1] and V ′ = W [0 : i] in
the reference X. We demonstrate that for any readW and
any BWT index res′ ≤ res is always true. If V appears res
times in X, then res′ ∈[0, res], because V is the prefix of V ′
(V ′ = Va).
We observed that the number of potential results

remains stable (res = res′) and near its final value after
several search_iteration (15 in Drosophila Melanogaster
and 31 in Homo Sapiens). The positions with possible
errors are the ones in which res′ < res, showing that
the interval has lost reads that could be mapped allowing
errors. This pruning is based on the current state of the
search.
Section “Number of partial solutions” shows the res

values of the substrings of “AGGATC” during a forward
search against the reference “AGGAGC$”. The possible
error branches should only be studied at positions 2 and 4
of the string, the substrings “AG” and “AGGA” where the
values of res change. For substring “AG” this means that
there is an alternative solution with “AGC” in the refer-
ence, instead of “AGG”. For substring “AGGA” the alter-
native solution is “AGGAG” instead of “AGGAT”. When
res = −1 the string does not belong to the reference
(k > l). When studying larger genomes, the pruning is not
effective in the first iterations, but later on the values of
res stabilise.

Number of partial solutions
Values of res during a forward search of string “AGGATC”
against the reference “AGGAGC$”.

0 1 2 3 4 5
A G G A T C
1 1 0 0 −1 −1
This technique also eliminates redundant results, i.e.

when mapping “TGGGGGA” into “. . . TGGGGA. . . ” we
would obtain five different results, one for each possible
deletion of any of the ‘G’ nucleotides. Now, the res′ < res
condition is only true in the last ‘G’, obtaining a single
deletion as result.
The branch subroutine (Algorithm 5) extracts par-

tial results from rln, generates new branches by study-
ing the outcomes of adding different errors at r.position
and stores the valid ramifications in rlp. The notation
p.{D, I(b),M(b)} : r.er indicates that we add a deletion,
insertion or mismatch with symbol b in position p to
the list of errors of the current partial result r.er. Unlike
this approach, algorithms that use backward search only
for seeding do not need to obtain alignment information
before the local alignment phase.

As the branches that do not satisfy k ≤ l are eliminated,
this pruning depends on the variability of the reference
genome.

Algorithm 5 Branch Subroutine
1: branch(IN:W , rln, index. OUT: rlp)
2: for r ← rln[1 . . . rln.size]
3: p ← r.position
4: rlp.add(r.[k, l] in p − 1 with p.D : r.er)
5: for b ∈ {A,C,G,T}
6: [k′, l′]← BWiteration(r.[k, l] , b, index)
7: if k′ ≤ l′ then
8: if b �= W [ pos] then
9: rlp.add([k′, l′] in p with p.I(b) : r.er)

10: rlp.add([k′, l′] in p − 1 with p.M(b) : r.er)
11: end if
12: end if
13: end for
14: end for
15: emptyStack(rln)
16: end function

All the pairs of consecutive errors are analysed in order
to further reduce the growth of the search tree, forbid-
ding those equivalent to a single error. For simplicity, these
restrictions are not described in the pseudo-code:

• Pairs of consecutive insertions and deletions (I-D or
D-I) are not allowed. Inserting a nucleotide and
immediately removing it has no significance. This
rule avoids indel chains like I-D-I-D-I. Also,
I-I-I-D-D chains are avoided, as I-M-M chains are
equivalent.

• A mismatch after an insertion is not allowed if the
original nucleotide in the mismatch position is the
same as the nucleotide of the insertion. In such cases
I-M is equivalent to I.

• A mismatch after a deletion is not allowed if the
nucleotide of the mismatch is the same as the
nucleotide eliminated by the deletion. In such cases
D-M is equivalent to D.

• An insertion after a mismatch is not allowed if the
nucleotide of the insertion is the same as the original
nucleotide in the mismatch position. In such cases
M-I is equivalent to I.

• A deletion after a mismatch is not allowed if deleted
nucleotide is the same as the nucleotide of the
mismatch. In such cases M-D is equivalent to D.

After applying these rules the growth of the spanning
tree is halved. In addition, inexact searches with up to 2
errors will not produce repeated results.
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Search tree exploration complete algorithm
The bounding strategies of branch and exact are based on
k ≤ l and res′ < res conditions, being not effective with
few symbols analysed. The final algorithm depicted in
Figure 1 and Algorithm 6 solves this issue with no penalty
in sensitivity.
For the complete algorithm to work we need backward

and forward versions of the branch and exact subroutines
(branchB and branchF) and a new function to change the
direction of the search in the partial results that reach the
end of the read (change_direction).
The complete algorithm is based on the work presented

in [23], with improvements to avoid repeated computa-
tions and extended support for more than two errors with
insertions, deletions and mismatches. We do not use bidi-
rectional BWT, as it may not be so efficient with backward
search methods based on SA that need a binary search
in each iteration. Moreover, keeping track of the reverse
and strand SA intervals also increases the number of
memory writes when managing the partial results. Never-
theless, a bidirectional method would reduce the memory
requirements of the algorithm.
In order to allow e errors we conceptually divide the read

in e+ 1 segments and perform e+ 1 steps. Figure 1 shows
an example for two errors (e = 2): the steps are in roman
numerals, the arrows indicate the direction of the analy-
sis in each segment and the arrow numbers the order in
which the segments are analysed.
The first segment of each step is analysed using an

exact search, if the segment is not found in the reference
the whole step is skipped. After this initial exact analysis
the pruning methods are effective and the remaining seg-
ments can be analysed with inexact search. Due to this,
the number of errors allowed by the algorithm depends on
the length of the read and the minimum segment size (31
for human genome and 15 for Drosophila Melanogaster,
segsize in Algorithm 6). Also, it is worth to mention that
these exact segments could be reused later as seeds to find
local alignment regions.

Figure 1 Complete inexact search algorithm. Example for 2 errors,
from top to down steps I, II and III.

In step I (Algorithm 6), after analysing block of arrow
2 the direction of the search is changed. As we have the
SA and ISA of the reference and its reverse in memory we
can use the change_direction subroutine to change the
direction of the search. In practical use the size of the SA
intervals when changing direction is very small (almost
always equal to 1), so this computation does not affect
the performance. Notice that at each step the starting
block and the direction maximises the number of symbols
analysed before a direction change.
In step II and III, during the analysis of partial results in

the blocks marked with errors > 0 the next partial results
must contain at least one error within the block, due to
this when the analysis reaches the end of the block the
partial result with no errors in that segment is not added
to the next results list. The logic of this bounding can be
added to the exact subroutine with an extra condition in
line 15 of Algorithm 4 to discard exact segments. This
behaviour avoids repeated computation as the segments
with no errors where already checked in the exact blocks
of previous steps. Notice that the order of the steps max-
imises the appearances of errors > 0 blocks immediately
after the exact block.

Algorithm 6 Complete Inexact Search (Step I Figure 1)
1: InexactSearch(W , index, rlp, rln, rlpi, rlni, rlf , segsize)
2: {
3: . . .
4:
5: e ← (size(W )/segsize) − 1
6: seg ←The last position of the central block
7:
8: r ←[0, size(index) − 1] at |W | − 1 with [ ]
9: r, rlf ← exactF(W , False, seg, r, index)

10:
11: if r.k ≤ r.l then
12: add_result(r, rlpi)
13: while e > 0
14: seg ← The last position of the current segment
15: rlni, rlp ← exactF(W ,True, seg, rlpi, index)
16: change_direction(rlp, index)
17: rln, rlf ← exactB(W ,True, seg, rlp, index)
18: rlpi ← branchF(W , rlni, index)
19: rlp ← branchB(W , rln, index)
20: e ← e − 1
21: end while
22:
23: rlni, rlp ← exactF(W , False, seg, rlpi, index)
24: change_direction(rlp, index)
25: rln, rlf ← exactB(W , False, seg, rlp, index)
26:
27: end if
28:
29: . . .
30: }
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The tree exploration is a combination of breadth first
search (BFS) and depth first search (DFS), being a bit more
complex than the pseudo-code in Algorithm 6. The initial
levels are explored using BFS while the last ramification,
where many partial results are discarded and only a few
final results are kept, is explored using DFS. This avoids a
great amount of memory writes in the partial results lists.
Using DFS in the initial levels has little effect in the overall
performance.
The last bounding technique depends on the uniqueness

of the read and is based on what was presented in [9], but
adapted to the new algorithm and the direction changes.
Before each step of the complete algorithm, a vector D
with the same size of the read is built. The D vectors con-
tain an approximation of the number of errors needed to
map the read at each position, based on the sub-strings of
X present inW .
In Algorithm 7, vector D for step I of the complete algo-

rithm is obtained. It receives as parameters the read W
and the start and end positions of the exact segment of the
current step, returning vector D. The values of D for the
exact segment are already calculated (D[start . . . end]=
0). The direction of the calculation is changed in the sec-
ond loop. In the last loop the values are adjusted as we
calculate vector D in the same direction of the search,
which benefits caching. The condition “is not a substring”
is implemented using a search_iteration.
In order to implement this bounding, an extra condition

at line 11 of Algorithm 4 must check the current number
of errors against the value of D[i].

Algorithm 7 Calculate D forward (Step I Figure 1)
1: calculateDF (IN: W , start, end. OUT: D.)
2: D[ . . . ]← 0
3: z ← 0
4: j ← start
5: for i ← end + 1 . . . |W |
6: if W [ j, i] is not a substring of X then
7: z ← z + 1
8: j ← i + 1
9: end if

10: D[i]← z
11: end for
12:
13: j ← start − 1
14: for i ← start − 1 . . . 0
15: if W [ j, i] is not a substring of X then
16: z ← z + 1
17: j ← i + 1
18: end if
19: D[i]← z
20: end for
21:
22: last ← D[ 0]
23: for i ← 0 . . . |W |
24: D[i]← last − D[i]
25: end for
26: end function

Experiments configuration
All the executions have been performed in a PC with an
Intel(R) Core(TM) i7-3930 K CPU running at 3.20GHz
speed, 64GB of DDR3 1066 MHz RAM and a Raid 0 of
two OCZ-VERTEX4 SSD drives. The operative system is
Ubuntu Linux 14.04 64 bit. Compiler is gcc 4.8.2. All the
tests in the results section have been launched sequen-
tially, using a single execution thread with no parallelism
involved.
The same index has been generated for all tools:

Ensembl 68 human genome built upon GRCh37. The pro-
gram dwgsim 0.1.8 from SAMtools was used to simulate
two datasets of 2 million high quality Illumina reads.
One dataset contains 250 bps reads while the other con-
tains 400 bps reads. The datasets contain reads with a
maximum of 2 N’s and 0.1% of mutations with 10% indels.

Results and Discussion
Comparison with other FM-Index only algorithms
As we stated before, our algorithm is not intended as a full
sequence mapper, only a preprocessing step for modern
sequence mappers. The purpose of this study is to provide
a fair comparison against similar algorithms based only on
FM-Index backward search, performing the experiments
under the same input, execution arguments and system
environment.
We only found similar implementations to our algo-

rithm in Bowtie 1, SOAP 2 and BWA-backtrack. Com-
paring with these tools gives an idea of the impact in the
performance of the improvements described in this paper.
The tools have been run with -a option in order to

find all the possible mappings of each read; except BWA-
backtrack, which focuses on finding the best mapping for
each read.
Our algorithm has been run with a stack size of 50.000

partial results, big enough to deal with all the partial
results without discarding any read locations. We also
conducted tests with an stack size of 500 partial results,
which increases performance without significant map-
ping location loss. The minimum segment size needed to
deal with the human genome variability is 31 nucleotides,
allowing up to 7 errors with the 250 bps dataset.
Results in Table 1 show that our algorithm with a stack

size of 50000 achieves a 8× speed-up over Bowtie 1 when
aligning with 3 errors and a 7× speed-up over SOAP2
when aligning with 2 errors. Our algorithm can map with
5 errors in less time than Bowtie 1 with 3 errors. Exe-
cution times for the exact mapping case with no errors
were similar for all the algorithms studied except BWA-
backtrack. In general our algorithm is faster than the other
approaches. This difference increases with the number of
errors.
Table 1 also shows the percentage of reads found and

the total mapping locations. The percentage represents if



Torres et al. BMC Bioinformatics  (2015) 16:18 Page 8 of 11

Table 1 Results for soap 2, Bowtie 1, BWA-backtrack and
the new algorithm

Time % Found Locations

Soap 2

0 errors 25 s 0.51% 11025

1 errors 41 s 3.22% 71365

2 errors 6 m 34 s 10.25% 243599

Bowtie 1

0 errors 24 s 0.51% 11025

1 errors 51 s 3.22% 71365

2 errors 4 m 58 s 10.25% 243599

3 errors 12 m 13 s 22.53% 594626

BWA-backtrack

0 errors 1 m 17 s 0.51%

1 errors 1 m 19 s 3.22%

2 errors 1 m 30 s 10.29%

3 errors 2 m 2 s 22.65%

4 errors 4 m 35 s 38.73%

5 errors 16 m 28 s 55.44%

6 errors 60 m 17 s 69.78%

GRyCAP-BWT Stack size 50000

0 errors 21 s 0.51% 11025

1 errors 35 s 3.22% 72546

2 errors 52 s 10.29% 253479

3 errors 1 m 28 s 22.66% 644415

4 errors 2 m 45 s 38.74% 1188595

5 errors 7 m 24 s 55.46% 1820725

6 errors 23 m 45 s 69.78% 2830556

GRyCAP-BWT Stack size 500

0 errors 21 s 0.51% 11025

1 errors 31 s 3.22% 72546

2 errors 51 s 10.29% 246841

3 errors 1 m 21 s 22.60% 515399

4 errors 2 m 1 s 38.44% 881503

5 errors 3 m 3 s 54.46% 1296682

6 errors 4 m 40 s 67.46% 1716369

7 errors 7 m 12 s 76.19% 2135443

The dataset contains 2 million 250 bps reads.

a read is found at least once in the reference, while in
the mapping locations a read may appear several times.
These values demonstrate that our algorithm performs
an equivalent computation to Bowtie 1 and Soap 2, find-
ing a similar amount of reads and mapping locations
when allowing the same number of errors. Compared
with BWA-backtrack we find the same percentage of
reads.

Regarding the experiments with an stack size of 500 ele-
ments, our algorithm is 13× faster than BWA-backtrack
when mapping with 6 errors. Results show that limit-
ing the stack size to 500 elements has little effect in
the percentage of reads found (up to 2% less with 6
errors). However, the execution time is greatly decreased
as the number of total mapping locations is reduced. As
the mapping locations found with a small stack size are
the ones with less errors, this approach is very useful for
finding the best alignments.
During execution, our implementation has a memory

footprint of 7GB, while Bowtie 1, SOAP 2 and BWA-
backtrack consumed around 3 GB of RAM. This differ-
ence is because our algorithm is using indices for both
forward and backward search. Although our algorithm
requires more memory, it is still able to run in current
desktop computers.

Preprocessing step for modern aligners
The purpose of the experiments in this section is to
quantify how well our algorithm would perform as a pre-
processing step for modern sequence mappers, concretely
Bowtie 2 v2.2.3 and BWA-MEM v0.7.10. Such mappers
combine backward search seeding with local alignment
algorithms based on dynamic programming.
We compare the execution times of these modern

sequence mappers alone against a pipeline that launches
our algorithm, annotates the reads found when it has fin-
ished and then launches one of the mappers to find the
remaining reads. Using this configuration the sensitivity is
not modified, finding the same amount of reads.
Bowtie 2 and BWA-MEM have been run with its default

execution parameters, finding in most cases the best
occurrence of each read. Our algorithm has been run with
a similar configuration by limiting the size of the partial
result lists to 500 elements.
Figure 2 shows execution times for mapping the whole

250 bps dataset. Bowtie 2 execution took 21 m 47 s
and BWA-MEM execution took 19 m 52s. For the com-
bined alignment our algorithm was executed allowing up
to 5 errors, finding 54.46% of the reads in 3 m 2s. The
remaining reads where feed to Bowtie 2 and BWA-MEM
resulting in a total execution time of 12 m 37 s and 15 m
1 s respectively. This combined approach improves total
alignment time by 42% for Bowtie 2 and 25% for BWA-
MEM. Bowtie 2 found 94.26% of the reads and BWA-
MEM found 94.48%, the same amount of reads where
found when using our algorithm as a preprocessing step.
Figure 3 shows execution times for the 400 bps dataset,

Bowtie 2 took 40 m 35 s and BWA-MEM took 33 m
09s. Our algorithm was executed allowing up to 9 errors,
finding 62.21% of the reads in 9 m 24s. The combined
approach with Bowtie 2 took 24 m 33 s (40% faster) and
with BWA-MEM took 25 m 57 s (21% faster). Bowtie 2
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Figure 2 BWT and SW tools. 2 Million 250 bps reads. Execution
times comparing the new algorithm, the modern mappers and the
combination of both.

found 94.46% of the reads and BWA-MEM found 94.48%,
the same amount of reads where found when using our
algorithm as a preprocessing step.
Interestingly, these results reveal a greater performance

improvement when combining our algorithm with Bowtie
2. In these experiments, BWA-MEM is faster than Bowtie
2 for aligning all reads. However, when using the prepro-
cessing proposed in this paper Bowtie 2 becomes faster.

Comparison between BWT and csalib runtimes
When dealing with big genomes, the size of the SA may
be greater than the memory capacity of the machine. In
this section we compare the speed of our algorithm using
the BWT and the csalib out-of-core runtimes. This library
is developed at the National Institute of Informatics in
Tokyo (Japan) [29].
The BWT runtime uses about 7GB of RAM for the

human genome index, while the csalib runtime does not

Figure 3 BWT and SW tools. 2 Million 400 bps reads. Execution
times comparing the new algorithm, the modern mappers and the
combination of both.

load the index into memory. With csalib the index is
directly read from disk using mmap, needing only a few
hundreds of Megabytes of RAM to map reads.
Figure 4 shows a 100% increase in execution time when

using the csalib runtime, across all error configurations.
When using csalib the asymptotic cost of the algorithm is
not modified, demonstrating the viability of this approach
with currently affordable SSD disk configurations.

Asymptotic analysis
In this section we analyse the asymptotic cost of the algo-
rithm. We also compare it with the other approaches
studied.
The function that defines the growth of a search tree is

O(ke), where k is the branching factor and e is the depth of
the tree. The branching factor of a search tree is obtained
by dividing the total number of branches by the number
of nodes with descendants.
In a trivial algorithm a full search tree is spawn at every

position of the search string. The branching factor of the
tree depends on the alternatives available: match, 4 mis-
matches and 4 insertions (one for each symbol). So, the
asymptotic cost for an algorithm without optimisations
is O(9e), where the depth of the tree e is the number of
errors allowed during the search.
Bowtie 1 and SOAP2 do not support indels, reduc-

ing the cost to O(5e). This cost reduction comes at the
expense of exploring less options and finding less mapping
locations.
We employ the pruning techniques described previously

to reduce the tree growth. The effectiveness of these tech-
niques depends on the read analysed and the variability of
the genome. Also, the worst case happens when few sym-
bols of W are analysed, because all the branches exist in
the reference. In practice, we perform exact search on the
first symbols allowing errors later (Figure 1). This way the
number of branches is reduced.
Due to these variant factors, we studied the average

branching factor of the search tree experimentally. We
have randomly chosen 1000 reads from the 2 Million
250 bps dataset. We aligned these reads with our algo-
rithm allowing different number of errors in order to
obtain the average branching factor. This parameter is
an estimation of the growth of the tree, obtaining an
asymptotic cost ofO(2.53e).
This is a great improvement compared with an algo-

rithm without optimisations (O(9e)), while still allowing
errors in any position of the read (including indels).

Conclusions
Improving previous research [9,23], we have developed a
fast backward search algorithm for inexact sequence map-
ping (including mismatches, insertions and deletions).
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Figure 4 BWT and csalib runtimes. 2 Million 250 bps reads. Execution times from 0 to 7 errors with stack size 500.

This algorithm is up to 13× faster than similar algorithms
implemented in Bowtie, SOAP2 and BWA-backtrack.
This impressive speed-up allows to handle more errors
than before within a reasonable amount of time.
The proposed algorithm has been validated as a map-

ping preprocessing step, reducing the number of reads to
align by 55%. This improves execution time of Bowtie 2
and BWA-MEM by about 40% and 20% respectively, map-
ping the same amount of reads in the same positions.
The practical limit of errors allowed in this preprocessing
appears when the seeding and local alignment becomes
faster. We obtain good results with both 250 bps and
400 bps datasets, allowing up to 5 and 9 errors respec-
tively.
Our implementation is built upon a modular architec-

ture, being compatible with different backward search
techniques. We tested an out-of-core implementation of
the FM-Index provided by csalib library, obtaining rea-
sonable execution times, showing the viability of cost-
effective secondary memory configurations.
As future work, the computation of the exact segments

done by the algorithm could be reused in the seeding
phase, improving even further the speed of the overall
process.
Furthermore, the mapping locations obtained by the

algorithm must processed taking into account quality
scores and gap penalties to match the criteria of the map-
ping tool on which is integrated. This post-process will
not affect the logic nor the performance of the proposed
algorithm.
The source code of our implementation is available

under the LGPL license and could be easily integrated in
current mapping software. The source code, binaries and

datasets of the experiments can be found at http://josator.
github.io/gnu-bwt-aligner/.
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