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Background: Understanding how tumors subvert immune destruction is essential to

the development of cancer immunotherapies. New evidence suggests that tumors limit

anti-tumor immunity by exploiting transcriptional programs that regulate intratumoral

trafficking and accumulation of effector cells. Here, we investigated the gene expression

profiles that distinguish immunologically “cold” and “hot” tumors across diverse

tumor types.

Methods: RNAseq profiles of tumors (n = 8,920) representing 23 solid tumor types

were analyzed using immune gene signatures that quantify CD8+ T cell abundance.

Genes and pathways associated with a low CD8+ T cell infiltration profile (CD8-Low)

were identified by correlation, differential expression, and statistical ranking methods.

Gene subsets were evaluated in immunotherapy treatment cohorts and functionally

characterized in cell lines and mouse tumor models.

Results: Among different cancer types, we observed highly significant overlap of

genes enriched in CD8-Low tumors, which included known immunomodulatory genes

(e.g., BMP7, CMTM4, KDM5B, RCOR2) and exhibited significant associations with Wnt

signaling, neurogenesis, cell-cell junctions, lipid biosynthesis, epidermal development,

and cancer-testis antigens. Analysis of mutually exclusive gene clusters demonstrated

that different transcriptional programs may converge on the T cell-cold phenotype as

well as predict for response and survival of patients to Nivo treatment. Furthermore,

we confirmed that a top-ranking candidate belonging to the TGF-β superfamily, BMP7,

negatively regulates CD8+ T cell abundance in immunocompetent murine tumor models,

with and without anti-PD-L1 treatment.

Conclusions: This study presents the first evidence that solid tumors of diverse

anatomical origin acquire conserved transcriptional alterations that may be operative in
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the T cell-cold state. Our findings demonstrate the potential clinical utility of CD8-Low

tumor-associated genes for predicting patient immunotherapy outcomes and point to

novel mechanisms with potential for broad therapeutic exploitation.

Keywords: tumor biology, immune evasion, tumor-infiltrating T cells, transcriptomics, bioinformatics, bone

morphogenetic protein 7 (BMP7), REST corepressor 2 (RCOR2)

INTRODUCTION

The immune system plays a pivotal role in limiting cancer
growth (1), and insights into the mechanisms that govern how
immune cells sense, interface with, and respond to cancer have
led to the development of immunotherapeutic strategies that
enhance anti-tumor immunity. Critical to the establishment of
effective anti-tumor immunity is the tumor-localized recruitment
of antigen-specific CD8+ T cells and their subsequent activation,
intratumoral migration, and resilience to immunosuppressive
signals in the tumor microenvironment (TME). The abundance
of tumor-infiltrating lymphocytes (TILs), and CD8+ T cells,
in particular, is associated with favorable clinical prognoses in
a wide range of solid malignancies, including melanoma and
cancers of the head and neck, breast, bladder, ovaries, and
colon (2). T cell infiltration associated with good prognosis
is often accompanied by the presence of other activated
proinflammatory cells [e.g., TH1 T cells, natural killer (NK) cells,
and antigen-presenting cells (APCs)] indicative of a T cell-
inflamed phenotype that has also been associated with a positive
response to immune checkpoint blockade (ICB) (3–6). Moreover,
an increase in CD8+ T cell tumor infiltration induced by ICB is
associated with durable treatment response in both patients and
animal models (7–9). Thus, the establishment and maintenance
of an immunologically hot TME, characterized by abundant
effector T cell infiltration, is clinically desirable.

By contrast, a non-T cell-inflamed or immunologically cold
tumor state is associated with poor patient prognosis (6) and
ICB non-responsiveness (10), and is believed to arise from
mechanisms of immune suppression and evasion employed by
cancer cells to avoid immune destruction (11). Mechanisms of
tumor immune escape include antigen deletion, downregulation
of antigen-presentation machinery, and the establishment of
an immunosuppressive TME via PD-L1 upregulation or tumor
cooption of immunosuppressive myeloid cells and regulatory
T cells (12). Physical exclusion of CD8+ T cells by tumor
enrichment of fibrotic stroma has also been associated with an
immune-cold TME (13). However, the extent to which these
mechanisms explain the immunologically cold phenotype of
solid tumors is unclear. A number of studies indicate that
the expression of certain TME- and tumor-derived factors can
functionally limit the infiltration of CD8+ T cells into tumors,
thereby attenuating anti-tumor immune responses. For example,
VEGF, endothelin-1 (ET-1), and EGFL7 are tumor-secreted
proteins that decrease cellular adhesion molecule (CAM)

Non-standard Abbreviations: CulPRITs, candidate protein regulators of immune

trafficking; EBP, exact binomial probability; MPR, median percentile rank; Nivo,

nivolumab; Ipi, ipilimumab.

expression by tumor endothelium, which in turn blocks T cell
transendothelial migration and subsequent trafficking of T cells
into tumors (11, 14, 15). Pharmacological neutralization of the
ET-1-endothelin B receptor (ETBR) signaling axis in a preclinical
ovarian cancer model resulted in increased intratumoral CD8+
T cell infiltration and subsequent tumor response to an otherwise
ineffective autologous cancer cell vaccine (14). In line with
this and similar observations, the inability of CD8+ T cells to
penetrate tumors is increasingly recognized as a contributing
factor in immunotherapy failure (16). Thus, strategies to increase
tumor penetration by CD8+ T cells via targeting mechanisms
that restrict their intratumoral trafficking and accumulation
would likely favor anti-tumor immunity and bolster the efficacy
of current ICB therapies.

In the current work, we hypothesized that a comprehensive
transcriptomic analysis of immunologically cold tumors would
reveal candidate genes and pathways that may potentiate
the negative regulation of effector cell abundance. Using
an informatics-guided approach, we recently developed a de
novo discovery platform for identifying immunological gene
signatures from the TME that are conserved across solid
tumors of diverse tissue origin (17). Composed of genes with
immune-specialized functions, these gene signatures reflect the
relative abundance of distinct tumor-infiltrating immune cell
populations. Several T cell-related signatures that were identified
showed strong correlation with previously reported gene
signatures of effector cell subsets associated with reduced risk
of distant metastasis, improved patient survival, and response
to immunotherapy (17–23). Here, we utilize a CD8+ T cell-
focused gene signature, quantified from RNAseq gene expression
data, to investigate the relationship between intratumoral T cell
abundance and tumor expression profiles in 23 solid tumor
types. Using correlative and statistical ranking methods, we
identify genes consistently overexpressed in CD8+ T cell-
Low (CD8-Low) tumors, termed candidate protein regulators of
immune trafficking (CulPRITs), and investigate their underlying
biological properties. In the case of one such CulPRIT, bone
morphogenetic protein 7 (BMP7), we demonstrate a functional
role in limiting intratumoral CD8+ T cell abundance in murine
tumor models.

MATERIALS AND METHODS

Cancer Data Sets and Metagene
Construction
The Cancer Genome Atlas (TCGA) solid tumor data sets
composed of 100 or more tumor samples were accessed from
Firebrowse.org (Broad Institute, MIT/Harvard). Level 3 Illumina
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HiSeq RNAseqV2 data (RSEM-normalized) was downloaded and
log2-transformed (with pseudocount +1). Tumor data sets were
culled to exclude non-cancer tissue specimens. Metagene scores
were calculated for each tumor by taking the geometric mean of
the log2 expression values of (1) CD8A, CD8B, CD3D, and CD3E
(TSIG); or (2) GZMA, GZMB, GNLY, and PRF1 (CSIG). Relative
to Figure 7, the Riaz et al. RNAseq data set of melanoma biopsies
pre- or on-nivolumab (Nivo) treatment (24) was accessed
via the Gene Expression Omnibus (accession no. GSE91061).
FPKM normalized data in the form originally processed by Riaz
et al. was used in our analyses. Supplementary Table 2 of that
publication was used to align patient clinical characteristics with
corresponding RNAseq profiles. Patient 3 RNAseq data were
omitted according to the authors’ recommendations. In total,
the 96 samples from patients annotated for tumor responses
by RECIST v1.1 criteria were utilized [pre-treatment (1–7 days
prior to first dose), n = 48; on-treatment (days 23–29), n =

48]. Genes comprising the metagene signatures were mapped
to this data set using the NHGRI’s HGNC Multi-Symbol
Checker (https://www.genenames.org/tools/multi-symbol-
checker/). Signature scores were computed as the geometric
mean of the log2 expression values. Signature quartiles were
established in pre- and on-treatment samples, independently.
Gene identifiers comprising the C1 and C2 signatures derived
from the median percentile rank (MPR) CulPRITs (Figure 4B),
their corresponding metagene scores, and associated clinical
annotations are shown in Supplementary Datasheet 1. Of note,
the C1 and C2 signatures derived from the exact binomial
probability (EBP) CulPRITs (Figure 6B) were also analyzed
in the Riaz et al. data set and found to possess similar or
lesser therapy-predictive and prognostic associations (data
not shown).

Gene Ranking Metrics
For each TCGA tumor group, immune signature scores were
used to rank genes for their association with the CD8+ T cell-
cold state. Two ranking strategies were employed. In the first,
tumors were partitioned into tertiles based on immune signature
(TSIG or CSIG) scores, and differential gene expression analysis
was performed comparing tumor profiles of the low vs. high
tertiles using the “Limma” R package (25). For each gene (n =

20,501), the average log fold change (LFC method) and FDR-
corrected q values were computed. Genes were ranked on LFC,
where negative values reflected genes overexpressed in CD8-
Low tumors relative to CD8-High tumors, and then assigned
a corresponding percentile rank (0–100), with higher percentile
ranks corresponding to genesmore highly expressed in CD8-Low
tumors. In the second strategy, Spearman correlation analysis
(SC method) was applied to assess the correlation between
tumor immune signature scores and tumor gene expression
profiles. Similar to above, genes were ranked and assigned
percentile ranks using the Spearman correlation coefficient,
where the most negatively correlated genes were assigned a
higher relative percentile rank. To analyze the significance of
genes overlapping in the 99th percentile of two (pairwise)
cancer groups, Chi-squared analysis with Yates correction
was performed.

CulPRIT Selection
CulPRITs are genes of interest based on their repeated (pan-
tumor) associations with the CD8+ T cell-depleted phenotype.
Two selection strategies were employed to select CulPRITs. In
the first, each gene’s pan-tumor MPR (i.e., the median of a
gene’s percentile rank values across the 23 tumor groups) was
computed based on the LFC and SC methods (in parallel). Genes
with a MPR of ≥75 by both LFC and SC methods and also
having a median FDR q value ≤0.1 by both methods were
identified as MPR CulPRITs. In the second strategy, Bonferroni-
corrected exact binomial probabilities were calculated to assess
the significance of genes identified in the 99th percentile of
ranked genes k out of 23 times (for 23 tumor groups). Genes
that occurred in the 99th percentile of 5 or more of the 23 tumor
groups were identified as EBP CulPRITs.

Gene Enrichment Analyses
Gene ontology analyses were conducted using Ingenuity Pathway
Analysis 2.4 (Qiagen) (26), the DAVID bioinformatics resource
v6.7 (27), and the PANTHER statistical overrepresentation test
v14.1 (28). Gene Set Enrichment Analysis (GSEA) (29) was
performed using GSEA Desktop v3.0 and MSigDB v6.1 (http://
software.broadinstitute.org/gsea/index.jsp).

Mutual Exclusivity/Co-occurrence
Analyses
Tumor RNAseq expression profiles were subset to comprise
only those belonging to the TSIG-Low tertiles. CulPRIT genes
were selected as indicated elsewhere. Gene expression values
were mean-centered within tumor groups and binarized to
low (below-mean = 0) or high (above-mean = 1) expression
categories. Data were then concatenated across tumor groups
for pan-tumor analysis. Fisher’s exact test log2 odds ratios (ORs)
and FDR-adjusted q values were computed for all pairwise gene
combinations. Genes comprising pairwise combinations with
significant ORs were selected using indicated cutoffs. Selected
genes were clustered and visualized using Cluster 3.0 (30)
(Spearman correlation similarity metric, complete linkage) and
Java Treeview (31).

Association of Gene Copy Number With
Cytotoxic T-Lymphocyte Status
The somatic copy number alteration (SCNA) module of the
Tumor IMmune Estimation Resource (TIMER) (32) was used to
associate genetic copy number alterations of BMP7 with relative
abundance of tumor-infiltrating CD8+ T cells.

Expression Constructs and Cell Line
Generation
Refer to the Supplementary Methods for detailed descriptions of
cloning procedures and cell line generation.

In vivo Mouse Studies
4T1 Breast Cancer Model

2 × 105 cells (4T1, 4T1-S, 4T1-S-pR26, or 4T1-S-pR26-mBMP7)
were injected s.c. into the right fourth mammary fat pad of
6- to 8-week-old female BALB/c mice (Jackson Laboratories).
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Mice inoculated with 4T1-S-pR26 and 4T1-S-pR26-mBMP7 cell
lines were administered 2µg/ml doxycycline hyclate in drinking
water containing 5% sucrose (w/v) and allowed to drink ad
libitum. Control mice were given sucrose water. Tumors were
measured longitudinally via caliper [volume formula: V =

((L+W)/2)∗L∗W∗0.52)], and tumors were harvested at 2, 3, and
4 weeks (n = 5 mice per group, per time point) for anti-CD8a
immunofluorescence analysis.

MC38 Colon Adenocarcinoma Model

1 × 106 cells (MC38-pR26-CMVconst or MC38-pR26-
CMVconst-mBMP7) were injected s.c. into the right flank
of 6- to 8-week-old female C57BL/6 mice (Envigo). On days
8, 12, 16, and 20, post-inoculation mice were administered i.p.
injections of either 10 mg/kg anti-PD-L1 (Bio X Cell cl. 10F.9G2)
or isotype control antibody (Bio X Cell cl. LTF-2). Tumors were
measured longitudinally via caliper, and tumors were harvested
at 5 weeks for anti-CD8a immunofluorescence analysis and flow
cytometry analysis of TILs (n = 10 mice per group). Note: refer
to the Supplementary Methods for a detailed description of
immunofluorescence and flow cytometry analyses.

Ethics Approval Statement

All animal experiments were approved by the Institutional
Animal Care and Use Committee (IACUC) of Wake Forest
University (protocol no. A16-045) and were conducted in
accordance with the NIH guidelines for the care and use of
laboratory animals.

Single Cell RNAseq Analysis
4T1-S-pR26-CMVconst control and BMP7-expressing tumors
were harvested at 3 weeks post-inoculation. Tumor fragments
were collagenase-digested, and single cell suspensions were
purified by filtering and density gradient centrifugation (as
described in the Supplementary Methods). Single cell cDNA
libraries were prepared using a 10X Genomics Chromium
Controller, and indexed libraries were paired-end sequenced on
an Illumina NextSeq 500 at a targeted read depth of 100,000
reads per cell. Raw bcl and fastq data were demultiplexed,
normalized, and post-processed using R-based CellRanger
mkfastq pipelines and QC algorithms. The machine learning
technique t-distributed stochastic neighbor embedding (t-SNE)
was used to reduce data dimensionality and cluster cells based
on global gene expression patterns. The Loupe Cell Browser
(10X Genomics) was used to examine cluster-specific gene
expression and compute FDR-adjusted p values for differentially
expressed genes.

RESULTS

Genes Upregulated in CD8-Low Tumors
Are Conserved Across Cancer Types
We investigated the relationship between tumor gene expression
patterns and a measure of tumor-infiltrating CD8+ T cells
to identify genes (CulPRITs) recurrently associated with a
CD8-Low tumor phenotype. CD8+ T cell abundance was
quantified from tumor RNAseq profiles using a four-gene

expression signature score (referred to as TSIG) derived from
the geometric mean of the normalized log2 read counts for
the genes CD8A, CD8B, CD3D, and CD3E. In parallel to TSIG,
which reflects cell identity, we also considered a second gene
signature reflective of cytotoxic T-lymphocyte (CTL) and/or
NK cell cytolytic activity (referred to as CSIG), consisting of the
genes GZMA, GZMB, GNLY, and PRF1. We computed TSIG and
CSIG scores for 8,920 TCGA tumors grouped according to 23
solid tumor types. Notably, within tumor groups, we observed
that the TSIG and CSIG scores were highly significantly and
consistently correlated with each other, as well as correlated
to reported gene signatures that reflect T cell abundance in
tissues (Supplementary Figure 1; Supplementary Table 1).
Furthermore, TSIG and CSIG scores were both broadly associated
with favorable patient survival in the TCGA cohorts after
adjusting for clinical variables (Supplementary Figure 2)
and were significantly and consistently associated with
histologic TIL abundance in TCGA samples as assessed by
pathology review and histological scoring, defined in Saltz
et al. (33) (Supplementary Figure 3). (Note that, given the
high degree of correlation between TSIG and CSIG, we report
TSIG results in the main figures and CSIG results in the
Supplementary Datasheet 2.) While TSIG scores varied by
magnitude across tumor types (Figure 1A), they exhibited
consistent positive or negative correlations with certain other
immunological measures previously annotated for TCGA
tumors (23) (Figure 1B). Across cancer groups, TSIG scores were
consistently positively correlated with the lymphocyte infiltration
signature, TCR Shannon index (a measure of T cell receptor
clonal diversity), and signatures of CD8+ T cells and IFN
gamma response, confirming the positive association between
TSIG and a T cell-inflamed tumor phenotype. Additionally, and
to a lesser extent, TSIG was negatively correlated with signatures
of Mast cells, CD4+ naïve T cells, and M0 and M2 macrophages
(Figure 1B).

As depicted in Figure 1C, we investigated gene expression
patterns inversely associated with T cell abundance by two
parallel methods: (1) differential gene expression, referred to as
the LFCmethod, and (2) Spearman correlation, referred to as the
SC method. For the LFC method, within cancer types, tumors
were stratified on signature score and then categorized into
lower, intermediate, and upper signature tertiles—corresponding
to a relative measure of CD8-Low, CD8-Intermediate, and
CD8-High tumor subgroups. Gene expression levels were then
compared between CD8-Low and CD8-High tumors to calculate
the average LFC in gene expression for each of the 20,501 genes
annotated in the RNAseq data matrix. Genes were then rank-
ordered by their LFC, and this ordering was normalized across
cancer groups as gene percentile ranks, with higher percentile
ranking indicative of genes more highly overexpressed in CD8-
Low tumors vs. CD8-High tumors. Using the SC method,
within cancer types, the expression of each gene was tested
for correlation to the signature score (irrespective of tertiles),
and the resulting Spearman rho values were used to rank-
order genes and compute their percentile ranks. By this method,
higher percentile ranking is indicative of genes more negatively
correlated with signature score. We then compared gene ranks
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FIGURE 1 | Characterization of TSIG and schematic of approach. (A) The distribution of TSIG metagene scores within The Cancer Genome Atlas (TCGA) tumor groups

is shown. (B) Within tumor groups, TSIG scores were compared by Spearman rank correlation (SC) to various tumor immunological measures as previously defined

and annotated by Thorsson et al. (23), including CIBERSORT (34) immune cell proportion estimates. Shown are correlates selected from the most positive and

negative pan-tumor associations. (C) Schematic of bioinformatics approach applied to candidate protein regulator of immune trafficking (CulPRIT) discovery and

ranking. Input: TSIG and CSIG metagene scores are used to quantify relative T cell infiltration levels using tumor RNAseq profiles spanning 23 tumor types. Statistics:

Metagene scores are used to perform log fold change (LFC) analysis of differentially expressed genes (low vs. high signature tertiles) and, in parallel, SC analysis to

identify genes negatively correlated to metagenes. Ranking: Genes are assigned percentile ranks within tumor groups based on LFC and SC analyses. The top 1%

(99th percentile) of ranked genes are compared across tumor types. CulPRITs are defined as the subset of genes that, across tumor types, show consistent or

significant associations with a CD8-Low tumor phenotype. Using LFC and SC ranks, median percentiles and exact binomial probability are used in parallel to rank and

independently define CulPRITs. Mutual exclusivity and pathway analyses are applied for the further characterization of CulPRITs.
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across the different cancer types to test the hypothesis that
transcriptional characteristics of CD8-Low tumors are shared
among cancers of different anatomical origin. First, we analyzed
all pairwise combinations of the 23 cancer types, comparing the
top percentile of ranked genes identified in each cancer type
(i.e., the 99th percentile of genes defined by either LFC or SC,
n = 205 genes), and determined the significance of overlapping
genes by Chi-squared test (Figure 2, Supplementary Figure 4).
Strikingly, we observed that the large majority of pairwise
comparisons between one tumor type and another showed
statistically significant overlap among the 99th percentile genes
after false discovery correction (q < 0.05). This observation held
true for genes ranked by either LFC or SC methods, or according
to TSIG or CSIG [81 and 70.4% of pairs overlap at q < 0.05
for TSIG LFC and SC methods, respectively (Figure 2); 90.9 and

FIGURE 2 | Genes associated with the T cell–cold phenotype are shared

across diverse cancer types. Genes comprising the top (99th) percentile rank

for each of 23 tumor types were compared by Chi-squared test for all pairwise

tumor group combinations. Heat maps show the significance (see color key) of

overlapping 99th percentile genes for each tumor group pairwise combination,

where gene ranking was based on (A) the LFC method or (B) the SC method.

Bar charts display the percent of pairwise comparisons that achieved

statistical significance (q, FDR-corrected p values) at indicated thresholds for

each method.

85.8% of pairs overlap at q < 0.05 for CSIG LFC and SC methods,
respectively (Supplementary Figure 4)]. These findings suggest
that the transcriptional programming of T cell-cold tumors is,
in part, composed of genetic features conserved across cancers
in tumor-agnostic fashion and support the hypothesis that
tumors exploit common transcriptional programs to regulate the
intratumoral volume of CD8+ T cells.

Biological and Transcriptional
Characterization of CulPRITs
Next, we investigated the underlying biology of genes and
pathways enriched in immunologically cold tumors. Here,
we defined CulPRITs based on their cross-tumor MPRs
(Figure 3). As each gene has a percentile rank in each tumor
type, the MPR is the median of a gene’s percentile ranks
across the 23 tumor types. In this analysis, MPR CulPRITs
were defined as the genes most consistently overexpressed
in CD8-Low tumors by LFC (having LFC MPR ≥ 75th
percentile) and, simultaneously, most inversely correlated with
TSIG score by SC (having SC MPR ≥ 75th percentile)
(Figure 3B). Notably, a number of top CulPRITs having high
SC and LFC MPRs have been implicated in pathways of
immune modulation (Figure 3A, Supplementary Table 2) and
include CMTM4 (promotes PD-L1 protein stabilization), BMP7
and LRP5 (promote alternative/anti-inflammatory macrophage
polarization), TOX3 (transcription factor related to TOX, which
regulates T cell development), and REST corepressor 2 (RCOR2),
KDM5B, DUSP9, and GTF2IRD1 (involved in regulation of
interferon and inflammatory signaling), indicating that genes
reported to modulate immune signaling rank highly within
our candidate gene pool. Gene ontology analysis of the MPR
CulPRITs revealed enrichment of genes involved in biological
processes related to Wnt signaling, neurogenesis, and cell-cell
junctions, which were reproducibly identified using different
ontology assessment algorithms (IPA, DAVID, and PANTHER,
q < 0.1; Figures 3B,C). GSEA further verified the association
of these genes with Wnt signaling and cell junction biology
(N-cadherin pathway) (Figure 3D).

Next, we studied the transcriptional properties of the MPR
CulPRITs in CD8-Low tumors. Examination of the pan-cancer
gene expression correlation structure demonstrated the existence
of numerous synexpression groups, equating with 39 gene
clusters with average correlation >0.15 (Figure 4A). However,
the majority of clusters fell within one of two larger, inversely
correlated gene clusters, whose inverse correlation suggested
the possibility of transcriptional mutual exclusivity among
CulPRITs in CD8-Low tumors. In cancer, multiple genetic
alterations that confer the same selective advantage are not
required; as such, different driver mutations that alter the
same oncogenic pathway seldom occur within the same tumor,
but display mutually exclusive occurrence patterns. Thus,
mutually exclusive relationships tend to underlie functionally
relevant, phenotypically conserved genetic alterations in cancer.
To determine if CulPRIT expression profiles exhibit mutual
exclusivity in CD8-Low tumors, we examined all pairwise
combinations of CulPRITs for statistically significant mutual
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FIGURE 3 | Gene- and pathway-level analysis of median percentile rank (MPR) CulPRITs. (A) Scatter plot of the pan-tumor MPRs of genes ranked by the LFC and SC

methods. Genes with a median q > 0.1 (by either method) were omitted. Genes with interesting immunomodulatory functionality are highlighted (discussed in

Supplementary Table 2). (B) Scatter plot of CulPRIT genes from (A) with MPRs ≥ 75 and annotated for involvement in enriched gene ontology categories.

(C) Significant gene ontology categories identified among the CulPRIT genes by IPA, DAVID, and PANTHER algorithms are shown. (D) Gene Set Enrichment Analysis

(GSEA) of CulPRIT genes shown for pathways related to Wnt signaling and cell-cell junction biology.

exclusion patterns. Shown in Figure 4B are the pairwise log2
ORs (Fisher’s exact test) of MPR CulPRITs exhibiting the
most significant relationships (log2OR < −1, q < 1 × 10−30;
n = 341 genes). Two predominant gene clusters exhibiting
highly significant mutual exclusivity emerged (clusters C1
and C2). Notably, the mutually exclusive relationship between
the two clusters appeared largely independent of cancer
type (Supplementary Table 4), and neither cluster displayed
significant enrichment for specific biological processes or
pathways according to gene ontology analysis. In fact, the
genes comprising the previously identified enriched terms
related to Wnt signaling, neurogenesis, and cell-cell junction
were proportionally distributed among the two gene clusters
(Figures 4C–E, Supplementary Figure 5), suggesting that
these biological pathways likely do not independently explain
these mutually exclusive transcriptional patterns. Analysis
of individual gene pairs identified NR2F6 (a component

of C2, Figures 4B,C) and ATF2 (a component of C1) as
the most statistically significant mutually exclusive gene
pair from a total of 1,003,236 CulPRIT pair combinations
analyzed (OR = 0.23, q = 2.4 × 10−77, Fisher’s exact test).
Strikingly, both genes have been mechanistically associated
with suppressive functions in tumor immune surveillance.
While expression of NR2F6 (an orphan nuclear receptor) has
been linked to malignant growth and progression in multiple
cancer types, in tumor-reactive T cells, NR2F6 functions
to repress expression of effector cytokines and acts as an
intracellular immune checkpoint that inhibits CD8+ T cell
infiltration and suppresses anti-tumor immune responses
(35). ATF2 is a transcription factor with emerging regulatory
roles in inflammatory signaling and was recently shown
to inhibit IFNβ expression and type I interferon signaling
in melanoma (36). Together, these findings suggest that
transcriptional programs shared across tumors may reflect

Frontiers in Immunology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 57

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Routh et al. Transcriptomic Conservation of T Cell–Barren Tumors

FIGURE 4 | Mutual exclusivity analysis of MPR CulPRITs. We conducted pan-tumor correlation studies of CulPRIT genes (n = 1,417) identified by median MPRs.

(A) Pan-tumor correlation matrix of MPR CulPRIT gene expression. Heat map colors reflect Spearman rho values. Colored dendrogram clusters (with average

correlation of R ≥ 0.15) highlight synexpression groups (orange and green distinguish adjacent clusters). (B–E) Pan-tumor analysis of gene mutual exclusivity or

co-occurrence was performed on CulPRIT gene subsets. Shown are clustered heat maps of gene-pair log2 odds ratios (ORs) derived from Fisher’s exact test analysis.

Blue denotes negative associations (mutual exclusion); yellow depicts positive associations (co-occurrence; see color key). Gray indicates sub-significant associations

(q > 0.001). Genes comprising the major dendrogram clusters are indicated by cluster 1 (C1, orange branch) and cluster 2 (C2, blue branch). (B) Shown are the

genes from (A) with highly significant involvement in any one pairwise gene combination having the threshold of log2OR < −1.0 (for mutual exclusion) and q < 1 ×

10−30. Subsequent panels show similar heat maps for the subsets of (C) neurogenesis-annotated genes (D) cell-cell junction-annotated genes, and (E) Wnt

signaling-annotated genes; shown are genes belonging to any one pairwise gene combination having the threshold of log2OR < −0.5 and q < 0.001. See

Supplementary Table 4 and Supplementary Figure 5 for additional details.

immunomodulatory mechanisms that contribute to the CD8+ T
cell-depleted state.

In parallel to the above studies, we also considered a more
statistically rigorous definition for CulPRITs. We computed the
EBP that a gene, by random chance, would belong to the 99th
percentile (by LFC or SC) of k out of 23 tumor types. Accordingly,
we determined that the probability of identifying a single gene
belonging to the 99th percentile in 5 out of 23 tumor types is

p= 0.058. As shown inTable 1, one ormore genes were identified
at k values ranging from 5 to 12 tumor types, for a total of 90
and 63 genes identified in the top percentile rank of at least
5 of 23 tumor types by the LFC and SC methods, respectively
(see also Supplementary Datasheet 1, Supplementary Table 3,
and Supplementary Figure 6). We termed these genes EBP
CulPRITs. Notably, the majority of these genes showed overlap
with theMPR CulPRITs identified in theMPR studies (Figures 3,
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TABLE 1 | Exact binomial probabilities associated with the discovery and ranking of candidate protein regulators of immune trafficking (CulPRITs).

k* out of 23 Bonferroni p** LFC

(no.

genes)

Gene SC

(no.

genes)

Gene

12 2.48 × 10−14 1 RCOR2 0 –

11 2.46 × 10−12 0 – 0 –

10 2.06 × 10−10 1 FREM2 0 –

9 1.46 × 10−8 2 CASKIN1, TOX3 1 CMTM4

8 8.65 × 10−7 1 SLC6A10P 5 ACVR2B, AKAP1, MAP7, RCOR2, TOM1L1

7 4.28 × 10−5 8 BMP7, DUSP9, EEF1A2, KIF1A, PPARGC1A,

RAP1GAP, SLC15A1, SOX11

14 ACACA, ARHGAP32, CLDN12, FAM168B, GPR125,

GTF2IRD1, HOOK1, KIAA1804, MAGI1, NCKAP1,

PPME1, SUN1, ZCCHC14, ZFYVE9

6 1.74 × 10−3 24 ATP2C2, B4GALNT4, CA12, CECR2, CHP2,

COL2A1, COL9A3, CREG2DLX2, FSTL4,

LPPR1, MAGEA6, MAGEA9B, MYT1, PKP1,

PLA2G4F, RPS6KA6, SLITRK6, SOSTDC1,

SPRR1B, WDR72, WNT7B

14 CAMSAP1L1, EPCAM, EXTL2, F11R, FASN, KCTD3,

KIAA1549, LRP6, POMT2, RAP1GAP, XPO5, ZNF74,

CASKIN1, GTF3C2

5 5.76 × 10−2 53 AGR2, AR, C1QL4, CA9, CACNA1D, CACNG4,

CAPN9, COL25A1, CPLX2, DLX3, DNAH2,

DSG1, EREG, ESM1, FAM155B, FBN3, FIBCD1,

GJB6, GPX2, GREB1, GRHL3, HMGA2, IYD,

KIAA1244, KRT17, LGALS7B, LGR5, MAGEA2,

MAGEA3, MUM1L1, NOTUM, ODZ2, OPRK1,

PHGR1, PNCK, PTPRT, RAB3B, RASEF,

ROBO2, SHANK2, SNORD116-4, SOX3,

SPRR1A, SSPO, ST8SIA2, SYT13, SYT7,

SYTL5, TFF3, TMEM38A, UNC5D, UPK1B, ZIC2

29 ACLY, C19orf26, C1orf27, CYP51A1, DDR1, DHCR7,

EPB41L5, ESRP1, FNBP1L, HMGCR, HMGCS1, ICA1,

KDM4B, KIAA1543, LCLAT1, LRP5, MIPOL1, MYEF2,

PLA2G12A, RMND5A, TTC3, ZKSCAN2, ADNP,

C14orf128, KDM5B, L2HGDH, MYO10, PCYOX1, TET3

*The number of times that a gene falls into the top percentile rank out of 23 tumor types.

**The likelihood of any one gene falling into the top percentile rank k out of 23 times.

LFC, log fold change; SC, Spearman correlation.

FIGURE 5 | REST corepressor 2 (RCOR2) negatively regulates human endogenous retrovirus (hERV), IFN, and interferon-stimulated gene (ISG) expression.

shRNA-mediated downregulation of RCOR2 in MCF7 cells resulted in significantly increased expression of (A) hERVs and (B) type I IFNs, type III IFN, and ISGs.

Significance codes: *p < 0.05; **p < 0.01; ***p < 0.001 (Student’s t-test). Error bars show the standard error of the mean (n = 3). Refer to Supplementary Table 5

for qPCR primer pairs used in this analysis.

Frontiers in Immunology | www.frontiersin.org 9 February 2020 | Volume 11 | Article 57

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Routh et al. Transcriptomic Conservation of T Cell–Barren Tumors

4). The top CulPRIT identified in this analysis, as well as being
a top CulPRIT identified in Figure 3A, was RCOR2. RCOR2
encodes an epigenetic modifier that binds to and promotes the
H3K4 demethylation activity of LSD1/KDM1A (37). In a recent
report, LSD1 ablation in a melanoma tumor model increased
CTL infiltration into tumors and reversed ICB resistance (38).
Mechanistic studies using MCF7 cells showed that LSD1 ablation
de-repressed human endogenous retrovirus (hERV) expression,
which induced dsRNA stress and subsequent expression and
activation of type I and type III IFNs and interferon-stimulated
genes (ISGs) (38). We therefore sought to determine if RCOR2
silencing in MCF7 cells would phenocopy LSD1 ablation. As
shown in Figure 5, shRNA-mediated knockdown of RCOR2
resulted in significant transcriptional upregulation of hERVs,
type I and III IFNs, and ISGs, consistent with the hypothesis
that RCOR2 upregulation in tumors promotes a T cell-
depleted phenotype by facilitating LSD1-mediated suppression of
IFN signaling.

To gain further insight into the expression dynamics of
the EBP CulPRITs, we analyzed their pan-tumor expression
correlation structure. Similar to the analysis of Figure 4A, we
observed numerous gene synexpression groups equating with
13 gene clusters with average correlation >0.15 (Figure 6A).
Mutual exclusivity analysis resulted in 57 genes with highly
significant mutually exclusive or co-occurrence relationships
(Figure 6B) that mirrored the two predominant mutually
exclusive CulPRIT clusters identified in Figure 4B. However,
in this analysis, the mutually exclusive gene clusters coincided
with different significantly enriched gene ontologies. Cluster 1
genes showed significant enrichment for the gene ontology term
lipid biosynthesis (FASN, ACACA, ACLY, HMGCR, HMGCS1,
CYP51A1, and LCLAT1), while cluster 2 genes showed
enrichment for the terms epidermal development (GRHL3,

KRT17, SPRR1A, and SPRR1B) and tumor antigen (MAGEA2,
MAGEA3, MAGEA6, and MAGEA9B) (Figure 6B), suggesting
possible roles for these biological processes in the promotion of
the T cell-cold phenotype.

ACulPRITGene Signature Is AssociatedWith
Immunotherapy Response and Survival
The mutually exclusive gene clusters identified in CD8-Low
tumors may reflect biological signatures of immune escape
that correlate with poor response to immunotherapy. To test
this, we leveraged the RNAseq data set of Riaz et al. (24),
who profiled melanoma biopsies of nivolumab (Nivo)-treated
patients who either progressed on ipilimumab (Ipi Prog) or were
ipilimumab-naïve (Ipi Naïve) prior to Nivo treatment. Gene
signature scores based on the C1 and C2 clusters from MPR
CulPRITs (see Figure 4B, the largest of the mutually exclusive
clusters identified, comprising 278 and 57 genes, respectively)
were computed for both pre-treatment and on-treatment tumor
biopsies and analyzed for associations with treatment response
and overall survival (Figure 7A). As anticipated, both C1 and
C2 signatures were found to be inversely correlated with the
TSIG signature in this data set (C1: rho = −0.33, p = 9.3 ×

10−3; C2: rho = −0.49, p = 6.4 × 10−7). Pre-treatment and
on-treatment tumor samples were classified into C1 and C2
signature quartiles (Q) and analyzed for associations with Nivo
response (Figure 7B). In both pre- and on-treatment biopsies,
the C2 signature, in particular, showed significant associations
with Nivo response. In both pre- and on-treatment data sets, two-
thirds of responding patients (CR/PR) were classified into the
C2 signature low expression quartile (Q1), while one-third and
zero responding patients were classified into the C2 interquartile
range (Q2+Q3) and the C2 high expression quartile (Q4),

FIGURE 6 | Mutual exclusivity analysis of exact binomial probability (EBP) CulPRITs. We analyzed the pan-tumor correlation structure of the 150 EBP CulPRIT genes

(defined by EBP analysis) in CD8-Low tumors. (A) Pan-tumor correlation matrix of EBP CulPRIT gene expression. Heat map colors reflect Spearman rho values.

Colored dendrogram clusters (with average correlation of R ≥ 0.15) highlight synexpression groups (orange and green distinguish adjacent clusters). (B) Pan-tumor

analysis of gene mutual exclusivity or co-occurrence was performed. Shown is a clustered heat map of gene-pair log2 odds ratios comprised of the subset of genes

from (A) that showed significant involvement in any one pairwise gene combination having the threshold of log2OR > −1.5 and q > 0.001. Blue denotes negative

associations (mutual exclusion); yellow depicts positive associations (co-occurrence; see color key). Gray indicates sub-significant associations (q > 0.05). Genes

comprising the predominant dendrogram clusters are indicated by cluster 1 (orange branch) and cluster 2 (green branch). Gene ontology analysis of genes comprising

cluster 1 or 2 revealed the significant enrichment of lipid biosynthesis (cluster 1) and epidermal development and tumor antigenicity (cluster 2). GO term-associated

genes are highlighted.
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FIGURE 7 | The C2 signature of CD8-Low tumors is associated significantly with nivolumab (Nivo) response and survival of melanoma patients. Genes comprising the

MPR CulPRIT C1 and C2 clusters (n = 278 and n = 57 genes, respectively) described in Figure 4B were analyzed for associations with melanoma response and

patient survival following Nivo treatment (Tx). The RNAseq data comprise 96 samples corresponding to Pre Tx and On Tx biopsies from patients who progressed on

ipilimumab (Ipi Prog) or received no prior ipilimumab Tx (Ipi Naïve). (A) Heat map expression profiles of C1 and C2 signature genes (rows) in tumor samples (columns,

oriented left to right by ascending signature score) are shown in association with the CD8+ TSIG signature and patient clinical correlates (colored categories). (B)

Profiles of Pre Tx (n = 48) and On Tx (n = 48) biopsies were sorted into C1, C2, and TSIG signature quartiles (Q) to examine associations with patient response. CR,

complete response; PR, partial response; PD, progressive disease; SD, stable disease. *p < 0.05, Fisher’s exact test, indicated Q group compared to Q1. (C) C2

signature score distributions within patient response groups are shown according to Tx cohort and biopsy type. *p < 0.05, Fisher’s exact test, indicated response

group compared to CR/PR. (D) C2 quartile groups were compared for overall survival (OS) in Pre and On Tx samples (left Kaplan-Meier plots) and within Tx cohorts

and biopsy types (right Kaplan-Meier plots). Log-rank p values are shown.

respectively (Q1 vs. Q4, p= 0.014, and Q1 vs. Q2+Q3, p= 0.036,
Fisher’s exact test). Associations with the C1 signature quartiles
were notably weaker, with significance achieved only in the on-
treatment biopsies for Q1 vs. Q4 (p = 0.037, Fisher’s exact
test). Of note, TSIG quartiles exhibited a positive association with
response, as compared to the negative association observed of C1
and C2. However, the TSIG association did not reach significance
(Figure 7B). The C2 signature also showed consistent expression
differences between patient response groups (CR/PR, SD, PD)
in both Ipi Naïve and Ipi Prog cohorts (Figure 7C), as well as
significant and near-significant associations with patient overall
survival in Ipi Naïve (pre-treatment) and Ipi Prog (pre- and on-
treatment) cohorts, despite small patient numbers (Figure 7D).
Together, these findings demonstrate significant relationships
between C2 gene expression level in melanoma biopsies and
clinical outcomes following anti-PD1 treatment.

BMP7 Limits Abundance of
Tumor-Infiltrating CD8+ T Cells
As a number of our top CulPRIT genes have known roles in
immunemodulation, we reasoned that somemay have previously
unidentified functions in T cell exclusion. To examine this
possibility, we performed phenotypic assays on one of our
top CulPRITs, BMP7 (Figure 3A, Table 1). BMP7 is a TGF-β
homolog whose family members are known tomodulate immune
responses, including the promotion of immunosuppression
(39). BMP7 has reported immunomodulatory roles that include
regulation of monocyte adhesion and migration, antagonism of
inflammatory cytokine production, and promotion of alternative
M2 macrophage polarization (Supplementary Table 2). In our
study, BMP7 ranked in the top percentile of LFC-ranked tumors
in 7 out of 23 cancer types (p = 4.28 × 10−5; Table 1).
Moreover, we observed that amplification of the BMP7 gene
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FIGURE 8 | Bone morphogenetic protein 7 (BMP7) copy number gain is associated with significant reduction in CD8+ T cell infiltration across cancer types. Analysis

of somatic copy number alterations associated with gene signature estimates of CD8+ T cell infiltration as described in Li et al. (32). BMP7 copy number was

quantified by GISTIC 2.0 (40). The infiltration level for each copy number category is compared with normal ploidy using two-sided Wilcoxon rank sum test.

Significance codes:
†
p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

locus is significantly associated with reduced CD8+ T cell
infiltrates across a range of cancers (Figure 8) and is upregulated
in immune-privileged organs such as the brain and placenta
(Supplementary Figure 7). BMP7 has been reported to be
overexpressed by themalignant epithelial cells of some breast and
colorectal tumors (41, 42). Therefore, to test if overexpression
of BMP7 can promote a T cell-cold state, we exogenously
expressed BMP7 in murine 4T1-S (breast) and MC38 (colon)
cancer cells (both of which lack endogenous BMP7 expression)
and studied the in vivo effects of BMP7 on intratumoral CD8+ T
cell abundance. The murine 4T1-S cell line is an immunogenic
variant of the syngeneic triple negative breast cancer cell line,
4T1 (43) (Supplementary Figures 8–10). BMP7-expressing and
control tumors were grown in the mammary fat pad of BALB/c
mice and examined for CD8+ T cell infiltration during tumor
growth. Immunofluorescence analysis of tumor sections showed
a significant BMP7-dependent reduction in CD8+ T cells at both
the 2- and 3-week time points (Figures 9A,B; p = 0.012 and
p < 0.001, respectively). Using the MC38 immunogenic colon
cancer model, BMP7-expressing and control tumors were grown
in the flanks of C57BL/6 mice treated with anti-PD-L1 or isotype
control antibody, and examined for CD8+ T cell infiltration at

5 weeks post-inoculation (Supplementary Figures 8, 9, 12). By
immunofluorescence and flow cytometry analysis, a significant
BMP7-dependent decrease in CD8+ T cell abundance was
observed in tumors of mice treated with the isotype control
antibody (p < 0.01, Figures 9C–E). In tumor-bearing mice
treated with anti-PD-L1, a significant increase in tumor-
infiltrating CD8+ T cells was observed in both experimental
groups (p < 0.05). However, the anti-PD-L1-mediated increase
in CD8+ T cell numbers was significantly attenuated by BMP7
expression (p < 0.01; Figures 9D,E).

Interestingly, no difference in tumor growth was observed
between the BMP7-expressing and control tumor groups of the
4T1-S model (Supplementary Figure 11), and BMP7 expression
in the MC38 model did not decrease the efficacy of anti-PD-L1,
but rather, in a somewhat paradoxical fashion, the combination
of BMP7 expression and anti-PD-L1 resulted in a significant
reduction of tumor growth (Supplementary Figures 12B,C). In
cancer cells, BMP7 has both oncogenic and tumor suppressor-
like functions (44) and is known to antagonize the TGF-
β signaling axis (45). Single cell RNAseq analysis of 4T1-
S BMP7-expressing and control tumors revealed that while
BMP7 expression is associated with increased Mrc1 (Cd206) and
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FIGURE 9 | BMP7 limits T cell abundance in mouse tumor models. (A) Representative immunofluorescent images of CD8+ T cell staining [CD8 (yellow) and DAPI

(blue)] in control vs. BMP7-expressing mouse 4T1-S tumors harvested at 2, 3, and 4 weeks post-tumor cell implantation. (B) CD8+ T cell abundance in 4T1-S tumors

by CD8 staining (n = 5 tumors per condition, per time point; five to six random fields per section were counted). (C) Representative immunofluorescent images of

CD8+ T cell staining [CD8 (yellow) and DAPI (blue)] in control vs. BMP7-expressing mouse MC38 tumors treated with anti–PD-L1 or isotype control antibody,

harvested at 5 weeks post–tumor cell inoculation. (D) CD8+ T cell abundance in MC38 tumors by CD8 staining (n = 10 animals per group; five to six random fields

per section were counted). (E) CD8+ T cell abundance in MC38 tumors by flow cytometry assessment and as a percentage of CD45+ cells. Significance codes:

*p < 0.05; **p < 0.01; ***p < 0.001 (Student’s t-test). Error bars show the standard error of the mean.

Arg1 myeloid-specific expression (p < 0.001; Figures 10A–F)
consistent with BMP7’s role in M2 macrophage polarization, the
single most differentially expressed gene was Tgfb1. In BMP7-
expressing tumors, Tgfb1 was significantly and simultaneously
decreased in myeloid cells (p < 0.001), cancer associated
fibroblasts (p < 0.05), and T cells (p < 0.001) (Figures 10G,H).
This suggests that while BMP7 may act to limit T cell abundance
in tumors, a TME-wide repression of Tgfb1 (mediated by BMP7)
could alleviate Tgfb1-dependent immunosuppression and in turn
promote anti-PD-L1 efficacy. Together, these results support
the hypothesis that BMP7 expression in tumors may negatively

regulate CD8+ T cell infiltration, but with variable phenotypic
effects on tumor growth. These findings support the credibility of
our CulPRIT discovery platform for identifying novel drivers of
the T cell-cold state.

DISCUSSION

In this study, we describe the development and implementation
of a large-scale pan-cancer informatics platform to shed
light on the transcriptional programming that underlies the
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FIGURE 10 | Single cell RNAseq analysis of BMP7-expressing and control 4T1-S tumors. (A) t-distributed stochastic neighbor embedding (t-SNE) plot of

K-means-clustered tumor cell populations representing two control (Ctl) and two BMP7-expressing (BMP7) tumors (n = 2,519 cells, total). (B) Z-score-normalized

expression of gene markers that uniquely define the cell clusters depicted in (A). (C,E,G) Shown are t-SNE plots illustrating the relative cell expression levels of (C)

Mrc1, (E) Arg1, and (G) Tgfb1. (D,F) Bar plots of the percentage of tumor-infiltrating myeloid cells positive for expression of (D) Mrc1 and (F) Arg1. ***p < 0.001

(Chi-squared test). (H) Violin plots of Tgfb1 expression distributions in tumor-infiltrating T cells, fibroblasts, and myeloid cells. *p < 0.05; ***p < 0.001 (Student’s t-test).

immunologically cold tumor state. A novel and key finding in
this study was the highly significant and pervasive overlap of
CD8-Low associated genes (CulPRITs) found among tumors of

diverse tissue origin. Indeed, just as certain driver mutations
are repeatedly selected for in tumors of diverse tissue origin,
this finding may indicate that the pathologic upregulation
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of certain genes may be broadly acquired by tumors to
facilitate immune evasion by T cell exclusion. Among the
CulPRITs identified were genes enriched for biological pathways
with immunomodulatory implications. Wnt/β-catenin signaling,
identified in our analysis, is a confirmed driver of T cell exclusion
in melanoma (46). Wnt/β-catenin signaling in melanoma cells
promotes immunological tolerance by limiting DC maturation,
promoting IDO production, and suppressing IFNγ production
by CTLs (47, 48). Our finding that genes involved in Wnt/β-
catenin signaling are enriched in the CD8-Low tumor phenotype
in multiple tumor types corroborates a recently published study
implicating this pathway in immune exclusion in different solid
tumors (49), thereby supporting the potential of our approach to
discover functionally relevant gene pathways.

Genes involved in neurogenesis were also enriched among
CulPRITs. This finding is intriguing, as the central nervous
system (CNS) has traditionally been viewed as an immune-
privileged site (50). While a more modern understanding of
the CNS suggests that its immune privilege may be context
dependent, it is widely believed that at baseline homeostasis,
the CNS promotes a subdued state of immune surveillance in
order to reduce the potential inflammatory reactions that could
otherwise cause neuronal bystander damage (51). Our finding
that CD8-Low tumors are enriched for genes associated with
neurogenesis may reflect the repurposing of CNS-specific gene
transcription by tumors to induce a CNS-like anti-inflammatory
state that facilitates immune evasion. Further studies to confirm
the activation of CNS-specific transcriptional networks in tumors
and their subsequent impact on the immune microenvironment
are warranted.

Our findings also point to a role for cell-cell junctions
in tumor T cell exclusion. The importance of cell junction
integrity and regulation of inflammation is well-documented
in models of experimental colitis. Immuno-pathological
conditions such as inflammatory bowel disease are associated
with a dysfunctional epithelial barrier that results in
increased leukocyte recruitment and inflammation (52).
Tight junction dysfunction that gives rise to leaky intestinal
walls can promote colorectal cancer development through
induction of a chronically inflamed state (52). In this study,
observation of an inverse association between cell junction
biology and tumor inflammation suggests that our findings
may relate to transcriptional programs that strengthen
cell-cell junctions or impede transcellular migration of
T cells resulting in the suppression of T cell penetration
into tumors.

Intriguingly, we observed evidence of mutually exclusive
transcriptional programs among the MPR CulPRITs. This
suggests the existence of parallel mechanisms that may be
exploited by tumors to actuate the immune-cold phenotype. At
the individual gene level, the nuclear orphan receptor NR2F6
together with the transcription factor ATF2 emerged as the
most significant mutually exclusive gene pair in pan-tumor
analysis. Consistent with this observation, NR2F6 has been
documented to function as a gatekeeper of anti-tumor immunity
through transcriptional repression of proinflammatory cytokines
including IL-2, IFNγ, and TNFα (35, 53). Furthermore,

NR2F6 inhibition has been shown to augment the efficacy
of ICB in preclinical prostate, melanoma, and colorectal
cancer models, as well as increase tumor infiltration by
IFNγ-positive T cells (35, 54). However, an immunoevasive
function for NR2F6 cancer-specific expression has not yet
been described. ATF2 is a leucine zipper transcription factor
with documented roles in inflammatory pathologies such as
obesity, inflammation-induced pain, hepatitis, and asthma,
and its known functions include transcriptional regulation
of CAMs, proinflammatory cytokines, and chemokines (55).
Importantly, an anti-inflammatory role of ATF2 in cancer has
recently been established whereby PKCε-mediated activation of
ATF2 directly inhibits IFNβ expression and type I interferon
signaling in melanoma (36). As type I interferon signaling in
cancer is a potent inducer of anti-tumor immune surveillance,
our findings are consistent with a role for ATF2-mediated
suppression of IFNβ in the T cell exclusion phenotype. Other
notable genes that displayed mutually exclusive expression
patterns in T cell-cold tumors include the Wnt signaling gene
DVL1 (Figure 4C) and the cell-cell junction-annotated genes
BAIAP2 and PRKCZ (Figure 4D). DVL1 has been reported
to decrease CD8+ T cell abundance in intestinal tissues and
suppress activation and degranulation of trafficking T cells (56).
BAIAP2 and PRKCZ have inflammation-suppressing functions.
BAIAP2 has been shown to control the expression of the
proinflammatory cytokines IL-6 and IL-1α (57), and PRKCZ
has been noted to play a role in controlling inflammatory
dermal mesenchymal stem cells in psoriasis, a T cell-mediated
disease (58).

Intriguingly, the mutually exclusive gene clusters observed
among the EBP CulPRITs showed differential enrichment for
genes associated with the GO terms lipid biosynthesis (Figure 6B,
cluster 1), epidermal development, and tumor antigens
(Figure 6B, cluster 2). The FASN gene (lipid biosynthesis)
of cluster 1 encodes a key metabolic enzyme in lipogenesis
whose elevated expression has been associated with intratumoral
T cell depletion in advanced-stage ovarian cancer (59). This
observation was recapitulated in a murine ovarian cancer model,
where FASN overexpression reduced TIL numbers and impaired
antigen presentation by dendritic cells, resulting in defective
T cell priming (59). GRHL3 (epidermal development), which
encodes an epidermal differentiation-promoting transcription
factor essential for skin barrier function, has been shown to
suppress the expression of alarmins and proinflammatory genes
during immune-mediated epidermal hyperplasia (60). Finally,
the MAGE genes (tumor antigens) encode cancer-testis antigens
(CTAs) that are physiologically expressed only in male germ
cells but aberrantly expressed in various malignant tissues (61).
These proteins are considered ideal immunotherapeutic targets
in cancer due to their highly immunogenic nature and their
restricted expression in normal tissues (61). MAGE-A proteins,
including three of the four genes identified in our analysis
(MAGEA2, MAGEA3, and MAGEA6), have recently been
implicated in resistance to CTLA-4 ICB in melanoma patients
(62). In that report, MAGE-A gene and protein overexpression
in tumors was observed in ICB non-responders, and a
negative correlation was observed between MAGE-A protein
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expression and key activators of autophagy with roles in antigen-
specific T cell priming and stimulation of immunogenic cell
death (62).

The findings from our mutual exclusivity studies support
the possibility that in solid tumors, two predominant gene
cassettes may functionally converge on the T cell-depleted tumor
phenotype. To further examine this possibility, we tested these
gene cassettes for clinical associations with immunotherapy
response. Using RNAseq data from two cohorts of patients
treated with nivolumab (Ipi Naïve and Ipi Prog), we found that
a mean-based signature of the cluster 2 (C2) gene cassette was
significantly inversely associated with nivolumab response in
both pre-treatment and on-treatment tumor biopsies, as well
as inversely associated with overall survival of patients in both
cohorts. These findings indicate a potential clinical value for
the C2 signature as a treatment-predictive biomarker. How the
predictive power of the C2 signature compares to other markers
of immunotherapy response warrants further investigation in
larger treatment cohorts.

The non-random overrepresentation of CulPRIT genes within
the 99th percentiles of many cancer types may reflect a
selective advantage for their transcriptional upregulation that
equates with immune evasion. Interestingly, several of our
most consistently top-ranked CulPRITs have known functional
roles in immune regulation. RCOR2 was ranked in the 99th
percentile (by LFC method) in 12 of 23 tumor types. RCOR2
encodes a nuclear transcriptional corepressor that promotes
the epigenetic silencing of gene transcription in neural stem
cells (37) and suppresses the production of proinflammatory
cytokines in a mouse model of aging (63). Moreover, RCOR2
binds and activates LSD1, a histone lysine demethylase recently
identified as a potent inhibitor of anti-tumor immunity (37,
38). In the latter study, LSD1 ablation in a mouse melanoma
model activated endogenous retrovirus (ERV) expression and
type I IFN signaling, which stimulated the potent induction
of T cell infiltration into tumors and enhanced ICB efficacy
(38). Our finding that shRNA repression of RCOR2 leads
to the induction of ERV, IFN, and ISG expression supports
the hypothesis that RCOR2 expression phenocopies the T
cell-excluded state induced by LSD1. Thus, that RCOR2
was discovered as a top CulPRIT may indicate that the
transcriptional upregulation of RCOR2 in tumors confers a
selective advantage via LSD1-mediated immune evasion—a
mechanism with likely relevance to many cancer types according
to our findings.

Interestingly, another top-ranking candidate in our study,
KDM5B, also encodes a histone lysine demethylase, not unlike
that of LSD1. KDM5B has been reported to suppress STING
expression in breast cancer cell lines, thus short-circuiting the
cGAS–STING–TBK1–IRF3 signaling axis important for innate
immunity (64). Inhibition of KDM5B has also been shown to
increase the expression of ISGs and potentiate resistance to
infection by both DNA and RNA viruses (64). The CMTM4 gene
ranked in the 99th percentile (by SC method) in 9 of 23 tumor
types. CMTM4 and its homolog CMTM6 encode transmembrane
proteins that positively regulate the PD-L1 protein pool in human
tumor cells and dendritic cells (65). CMTM6, which has been

functionally characterized to a greater extent than CMTM4,
promotes PD-L1 stability through a direct binding interaction
that reduces PD-L1 ubiquitination, thereby increasing its half-
life (65). It has been suggested that such a stabilizing effect
could occur in the immunological synapse between PD-1+
CD8+ T cells and PD-L1+ APCs, short-circuiting T cell
priming (66).

Our in vivo confirmation of BMP7 as a negative regulator
of intratumoral T cell abundance exemplifies the utility of
our CulPRIT discovery platform for identifying candidate
regulators of T cell trafficking in tumors for downstream
functional analysis. In vivo, the expression of BMP7 in murine
breast and colon cancer models led to the significant decrease
in abundance of tumor-infiltrating CD8+ T cells. Indeed,
BMP7 expression in the MC38 model also limited T cell
infiltration characteristically induced by effective ICB treatment.
However, in this model, BMP7 expression synergized with ICB
treatment to suppress tumor growth. This observation may
be explained, in part, by the fact that BMPs can function
in cancer as tumor suppressors depending on the cancer
type and context (44). Results from our scRNA-seq studies
support the possibility that a BMP7-mediated repression of
TGFB1 expression in multiple cell types within the TME may
function to alleviate immunosuppression, and thus, enhance ICB
effectiveness. Nevertheless, our findings support roles for BMP7
in both T cell exclusion and ICB-mediated suppression of MC38
tumor growth.

Several limitations of this study are notable. First, not all
CulPRITs identified are expected to functionally contribute to
the T cell-cold tumor state. Some could merely reflect passenger
genes expressed within larger transcriptional networks without
direct functional consequences. Second, our analyses did not
seek to discern the cellular origin of CulPRITs, whose mRNA
transcription could originate in either cancer cells or non-
malignant stromal cells within the TME. Third, it is also possible
that a fraction of our CulPRITs are genes expressed at steady-state
levels in immune-cold tumors but transcriptionally repressed
by leukocyte-derived cytokines overexpressed in immune-hot
tumors. Further biological characterization will be necessary
to establish the immune modulatory functions of the genes
identified in this study.

CONCLUSION

This work demonstrates that immunologically cold tumors of
diverse histologic origin share more transcriptomic similarities
than previously recognized. Genes and gene subsets identified
in this study may function to facilitate tumor immune
evasion, as evidenced by confirmatory phenotypic observations
associated with RCOR2 and BMP7 expression. In addition,
CulPRIT gene subsets, such as the C2 gene signature, are
predictive of immunotherapy response and survival of melanoma
patients. Further understanding of how these genes and their
associated pathways function in immune regulation could reveal
novel, tumor-agnostic immunotherapeutic targets with broad
translational potential.
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