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A moment of realization is worth a 
thousand prayers.
From the movie Natural Born Killers, 1994

Abstract

Natural killer (NK) cells, a prominent component of the 
innate immune system, are large granular lymphocytes 
Homing of NK cells into the CNS

The central nervous system (CNS) is an immune privi-
leged organ because of the lack of endogenous dendritic 
cells (DCs) (Ransohoff et al., 2003). In many patho-
logical conditions including stroke, traumatic injury, 
encephalitis, and demyelinating autoimmune disorders, 
however, a massive infiltration of peripheral immune 
cells occurs in the CNS. Although natural killer (NK) 
cell-related gene expression is readily detected within 
the CNS (Bryceson et al., 2005; Lund et al., 2007), evi-
dence of direct demonstration of the presence of NK 
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that respond rapidly to a variety of insults via cytokine 
secretion and cytolytic activity. Recently, there has 
been growing insight into the biological functions 
of NK cells, in particular into their roles in infection, 
tumour surveillance and autoimmunity. Under these 
pathophysiological circumstances, NK cells readily 
home to the central nervous system (CNS) tissues to 
combat infection and presumably to curb progression 
of tumours. Bystander neuronal and/or glial cell damage 
can occur in this setting. Paradoxically, NK cells appear 
to have an inhibitory role for autoimmune responses 
within the CNS. As in the periphery, NK cells act in 
concert with T cells and other lymphocytes responsible 
for CNS pathology and immune regulation. Insights 
into the molecular signals and pathways governing 
the diverse biological effects of NK cells are keys for 
designing NK cell-based therapy for CNS infections, 
tumours and autoimmune diseases.
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cells in human CNS tissues is still lacking. This is partly 
because of the lack of suitable antibodies for staining 
human NK cells in situ (see Chapter 31). Visualization 
of NK cells in mouse brains during experimental 
autoimmune encephalomyelitis (EAE) was achieved 
using anti-NK1.1 mAb (PK136) (Hammarberg et al., 
2000). Antibodies such as Ly49 have been successfully 
used for staining NK cells in lymphoid organs (O’Leary 
et al., 2006). Suitability of these antibodies for staining 
CNS NK cells needs to be verified in additional studies.

Although direct visualization of NK cells in CNS tis-
sues is technically challenging, there is little doubt that 
NK cells, as with other types of lymphocytes, enter the 
CNS during inflammatory processes. In fact, it has been 
reported that NK cells are among the earliest recruited 
cells during adoptive transfer EAE (Kerfoot and Kubes, 
2002; Wekerle and Fierz, 1985). Chemokine recep-
tors such as CCR2, CCR5, CXCR3, CX3CR1 as well 
as lysophospholipid sphingosine 1-phosphate (S1P) are 
involved in the rapid NK-cell mobilization that occurs in 
inflammatory conditions (Ajuebor et al., 2007; Hokeness 
et al., 2005; Huang et al., 2006; Inngjerdingen et al., 
2001; Jiang et al., 2004; Khan et al., 2006; Kveberg  
et al., 2002; Lavergne et al., 2003; Martin-Fontecha et al.,  
2004; Thapa et al., 2007; Wald et al., 2006; Walzer  
et al., 2007; Yu et al., 2007), and several of these chem-
okine receptors (CCR5, CX3CR1) are directly involved 
in NK cell homing to the CNS (Huang et al., 2006; 
Martin-Fontecha et al., 2004; Thapa et al., 2007). The 
biological implication of chemokine-guided homing 
of NK cells during CNS inflammation is discussed in 
greater detail in the following section.

NK cell-mediated neuron, 
oligodendrocyte and glial  
cell damage

The ability of NK cells to kill various transformed and 
virus-infected cells raises an important question whether 
direct NK cell cytolytic effects contribute to the patho-
genesis of inflammatory, degenerative and autoimmune 
disorders of the nervous system. Neurodegenerative dis- 
eases such as Parkinson’s disease and Alzheimer’s  
disease are characterized by the death of neurons  
in distinct functional neuron-anatomic systems. Multiple  
sclerosis (MS), on the other hand, is characterized 
by inflammation and demyelination within the spinal 
cord and brain, and axonal damage and brain atrophy 
also occur during the course of disease. The peripheral 
form of MS is Guillain–Barré syndrome, which is also  
characterized by demyelination and cellular infiltrates of 
the peripheral nervous system. Some of these diseases 
involve immunologic components or reactions, and 
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some have been characterized extensively in the differ-
ent systems. Autoreactive T cells and adaptive immune 
system components in the pathogenesis in some of these 
disorders are well characterized. As discussed here, evi-
dence for direct NK cell cytolytic effects is emerging. 
Although the in vivo relevance of a great proportion  
of these studies needs to be validated, the current  
data emphasize the importance of NK cells either in 
direct cytotoxic effects or in collaboration with cells 
from both innate and adaptive immune systems in the 
initiation of these neurodegenerative and inflammatory 
diseases.

Neuron

The NK cell-dependent death of sympathetic neurons 
resident in the superior cervical ganglia of rats, observed 
after the exposure to the drug guanethidine (Hickey  
et al., 1992; Hougen et al., 1992), is the first in vivo dis-
order of the nervous system in which NK cells appear to 
be the dominant effector cells. The pathogenic mecha-
nism observed appeared to represent a novel type of 
autoimmune reaction: an exogenously/chemically induced 
alteration in a specific subset of cells that was suggested 
to target them for direct NK cell-mediated killing.

Interestingly, neuronal cells from the peripheral sys-
tem and the CNS appear to have different susceptibility 
to NK cell killing. Ljunggren and colleagues have car-
ried out a series of well-designed studies addressing this  
puzzling phenomenon. Initially, it was demonstrated that 
NK cells could readily kill syngeneic dorsal root ganglia 
(DRG) neurons by a perforin-dependent mechanism 
(Backstrom et al., 2000, 2003). Ventral spinal cord neu-
rons and hippocampal neurons of the CNS were resist-
ant to lysis. The resistance to NK cell-mediated lysis of 
the latter neurons was not related to protection by MHC 
class I molecules, since similar 2-micro-globulin/ 
neurons were equally resistant to lysis (Backstrom et al., 
2003).

NK cell function is tightly regulated by multiple sig-
nals transmitted via inhibitory and activating receptors. 
The prerequisite for NK cell killing is its activation via 
signalling from activating receptor ligand pathways. 
NK cell activation generally appears to be elicited by 
a distinct set of molecules that have weak homology 
with MHC class I molecules. The activating receptor 
NKG2D which differs dramatically from other NKG2 
receptor proteins is of particular interest since it, in con-
trast to other NK cell-activating receptors, is constitu-
tively expressed on NK cells. The endogenous ligand of 
NKG2D in the mouse was recently identified as retinoic 
acid early inducible gene-1 (RAE-1)-encoded proteins 
and minor histocompatibility antigen H60 (Cerwenka 
et al., 2000; Diefenbach et al., 2000; Malarkannan  
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et al., 1998). Differential expression of NKG2D and its 
ligand on neuronal cells from the peripheral system or 
the CNS appears a key mechanism underlying variable 
susceptibility to NK lyses. RAE-1, the product of which 
is a ligand for the NK cell-activating receptor NKG2D, 
was expressed at high levels in the DRG neurons. In con-
trast, RAE-1 was expressed only at very low levels in the 
resistant CNS-derived neurons. Blocking NK cells with 
anti-NKG2D antibodies inhibited NK cell-mediated  
killing of the DRG neurons.

These findings are important in revealing novel immu-
nopathologic effects of several CNS diseases. Indeed, 
progressive motor and sensory neuropathy developed in 
a patient with chronic NK cell lymphocytosis (CNKL) 
(Noguchi et al., 2005). A sural nerve biopsy revealed infil-
tration of NK cells into the nerve fascicles, and demyeli-
nating changes with secondary axonal degeneration. The 
infiltrating NK cells were adjacent to myelinated fibres, 
showing damage of Schwann cell membranes. Treatment 
with oral prednisolone resulted in rapid improvement 
of sensory disturbance and weakness with a significant 
decrease of NK cells in the blood and disappearance of 
the conduction block. These observations suggest that 
the infiltrating NK cells may directly damage myelin and 
Schwann cells, thus causing demyelination.

Since expression of NKG2D ligands is likely regulated 
by viral infection or transformation, and the inhibitory 
MHC class I expression is low or absent in the nervous 
system, it is plausible that a viral infection or transforma-
tion could well break the balance of activating/inhibiting 
activities on NK cells, and NK cell-mediated immune  
pathology would occur in such circumstances.

Oligodendrocyte

Human oligodendrocytes do not express MHC class II 
molecules; thus, direct MHC-restricted injury mediated 
by myelin-reactive CD4 T cells is less likely to occur. 
The migration of NK cells to the CNS during inflamma-
tory responses and lack of inhibitory signal MHC class I 
expression within the CNS invites prediction that direct 
cytolytic effects of NK cells contribute to oligodendro-
cyte damage and demyelination to CNS diseases such 
as MS. Antel and colleagues demonstrated using in vitro 
assays that human oligodendrocytes, as well as other glial 
elements (astrocytes, microglia), were susceptible to 
injury mediated by peripheral blood-derived mononu-
clear cell preparations (MNCs), which were enriched for 
NK cells by depleting CD3, with or without CD19 
cells through the use of either magnetic beads or cell 
sorting (Antel et al., 1998; Morse et al., 2001). Cytotoxic 
effects of the NK cell-enriched effectors were dependant 
on pre-exposure of these cells to IL-2. Furthermore, it 
was found that autologous oligodendrocytes were as  
susceptible to injury mediated by IL-2-activated NK 
cells as were heterogonous oligodendrocytes.

In searching for receptor ligand pathways that con-
trol the NK cell and oligodendrocyte interactions, it 
was found that human adult oligodendrocytes and foe-
tal astrocytes expressed ligands for NKG2D in vitro, 
whereas neurons, microglia, and adult astrocytes did 
not (Saikali et al., 2007). Disruption of the NKG2D–
NKG2D ligand interaction using blocking antibodies 
significantly inhibited killing of primary human oli-
godendrocytes mediated by activated human NK cells 
(Saikali et al., 2007). These results imply that NKG2D–
NKG2D ligand interactions can potentially contribute 
to cytotoxic responses mediated by activated immune 
effector cells in the inflamed CNS, as observed in MS.

In the context of tissue injury that occurs in MS, the 
inflammatory milieu in MS lesions may provide condi-
tions required for NK cell activation, raising the pos-
sibility that such effector cells would play a role in the 
pathogenesis. In addition to direct cytotoxicity, cytokine 
release by NK cells may also participate in tissue dam-
age as well as in regulating T cell immune responses. 
Interferon-gamma (IFN-) is a pleiotropic cytokine  
produced by T cells and NK cells that has been impli-
cated as a deleterious factor in MS, the immune-mediated 
demyelinating disorder. In vitro, purified developing and 
mature oligodendrocytes die in the presence of IFN- by 
apoptosis and necrosis, respectively. Transgenic expres-
sion of PLP/SOCS1 (proteolipid protein regulating 
suppressor of cytokine signalling 1), brings about dimin-
ished oligodendrocyte responsiveness to IFN- attribut-
able to the targeted expression of SOCS1 in these cells 
(Balabanov et al., 2006). Consequently, oligodendrocytes 
in the PLP/SOCS1 transgenic mice are protected against 
the injurious effect of IFN-. Although both NK cells and 
T cells produce IFN-, NK cells are the principal sources 
of early IFN- production prior to T cell activation. This 
time kinetic might be particularly relevant for early oli-
godendrocyte damage during inflammation.

NK cells in infection of the CNS

Efficient early control of viral infections is determined 
by viral tissue tropism and rate of replication as well 
as the host’s ability to mount an effective immune 
response. Cellular cytotoxicity, in particular, that of NK 
cells and cytotoxic T cells, is central to the early antiviral 
immune response. Table 28.1 illustrates several immune- 
deficient conditions in humans, which stem from muta-
tions affecting NK cells (Biron et al., 1989; Gilmour et al., 
2001; Markel et al., 2004; Moins-Teisserenc et al., 1999).  
A number of studies have demonstrated the recruitment  
and activation of NK cells following infection with a 
wide range of viruses. However, not all viral infections 
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are susceptible to NK-mediated clearance, and suscep-
tibility depends upon the effector mechanisms induced. 
For example, the induction of both cytotoxicity and 
IFN- production by NK cells following murine cytome-
galovirus (CMV) and influenza virus infection results in 
reduced virally induced disease and enhanced survival. 
Along the same time, deficient IFN- production by NK 
cells correlates with the absence of an effective innate 
response to lymphocytic choriomeningitis virus infec-
tion. Moreover, the organs targeted by viral infection can 
also influence the participation of NK cells. Indeed, it has 
been shown that the NK response to murine CMV is per-
forin-dependent within the spleen, whereas production 
of IFN- is required for viral clearance from the liver. 
These results indicate that the importance of the NK cell 
response to viral infection can depend upon multiple fac-
tors, including the tissue infected, as well as the effector 
mechanisms induced.

Although a number of studies have documented the 
possible role for NK cells in controlling CNS infection 
with CMV, influenza and other viruses, the following 
studies provide relatively direct evidence for the impor-
tance of NK cells during CNS viral infection:

Theiler’s murine encephalomyelitis virus

Theiler’s murine encephalomyelitis virus (TMEV) is a 
picornavirus. Infection of susceptible mice (SJL) with 
TMEV causes a biphasic disease characterized by grey 
matter inflammation followed by late chronic demy-
elination (Roos and Wollmann, 1984; Rosenthal et al., 
1986). After inoculation, CNS TMEV titres were higher 
in SJL mice compared with C57BL/10 mice, correlating 

Table 28.1  Genetic mutation or aberrant expression of cytokines 
affecting NK cells leads to infection and autoimmunity in humans

Mutations Patient 
phenotype

Immune 
phenotype

References

IL-2R/IL-15R NK/ SCID 
phenotype

Pronounced 
reduction in 
NK cells

Alsharifi et al. 
(2006)

Not known Herpes virus 
infection

Absence of 
CD16 NK 
cells

Armstrong 
et al. (2001)

TAP-
deficiency

Chronic 
infection and 
systemic 
autoimmunity

Defective 
CD8 T cell 
responses

Whitley 
(2002), Bellner 
et al. (2005)

SCID: combined severe immunodeficiency 
TAP: transporter associated with antigen processing
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with a 50% lower NK cell activity in the SJL mice than 
in the C57BL/10 mice (Paya et al., 1989). Clinically, 
SJL mice are much more susceptible than C57BL/10 
mice to TMEV. When resistant (C57BL/10) mice were 
depleted of NK cells using either mAb NK1.1 or poly-
clonal anti-asialo-GM1, TMEV induced the develop-
ment of diffuse encephalitis and meningitis early in 
the post-infection period. However, the second phase 
of TMEV-induced CNS disease (demyelination) was 
observed only in resistant C57BL/10 mice treated with 
anti-asialo-GM1. Experiments with beige/beige mice of 
C57BL/10 background showed a mild degree of grey 
matter inflammation but no demyelination (Paya et al.,  
1989). NK cells are critical effectors in protecting 
against TMEV-induced grey matter disease, whereas a 
different population of either NK1.1–NK cells, or other 
activated lymphocytes, may be critical in resistance or 
susceptibility to demyelination.

In support of the involvement of NK cells during 
TMEV of the CNS, another study demonstrated that 
stressed mice developed clinical signs of encephalitis, 
thymic atrophy, and adrenal hypertrophy after infection 
with Theiler’s virus (Welsh et al., 2004). This syndrome 
was associated with significantly reduced virus-induced 
NK cell cytotoxic activity in restrained mice at 1 day 
post-infection, which may account for the reduced viral 
clearance from the CNS.

Mouse hepatitis virus

Mouse hepatitis virus (MHV) is a coronavirus that 
causes infection of the CNS (Marten et al., 2001; Wang 
et al., 1990). Intracerebral infection of susceptible 
strains of mice with MHV results in an acute enceph-
alomyelitis followed by a chronic immune-mediated 
demyelinating disease that is similar in pathology to the 
human demyelinating disease MS (Walsh et al., 2007; 
Zuo et al., 2006). Intracerebral infection of RAG1/ 
mice with a recombinant CXCL10-expressing murine 
coronavirus (MHV) resulted in protection from disease 
and increased survival that correlated with a significant 
increase in recruitment and activation of NK cells within 
the CNS (Walsh et al., 2007). Accumulation of NK cells 
resulted in a reduction in viral titres that was dependant 
on IFN- secretion (Walsh et al., 2007). These results 
indicate that the CXCL10-guided NK cell homing to 
the CNS might play a pivotal role in defence following 
coronavirus infection of the CNS.

Semliki Forest virus

Semliki Forest virus (SFV) is a positive-stranded RNA 
virus (Atkins et al., 1999; Smithburn and Haddow, 1944).  
Infection of C57BL/6 mice with SFV leads to  
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pronounced CNS cellular infiltration and apoptosis of 
microglial and neuronal cells (Alsharifi et al., 2006). In 
this model, NK cells and, to a lesser degree, cytotoxic T 
cells are major contributors in combating SFV infection. 
Mice lacking the Tc cell compartment (2-microglobu-
lin-deficient mice, and thus CD8 T cells) exhibit sus-
ceptibility similar to wild-type mice. Depletion of NK 
cells significantly delayed the mean time to death but 
did not prevent mortality in SFV-infected B6 mice sug-
gesting that cytolytic activity of NK cells is detrimental, 
while IFN- production is beneficial for recovery from 
SFV infection (Alsharifi et al., 2006).

Herpes simplex virus

With greater than 1.6 million Americans infected 
annually (Armstrong et al., 2001), herpes simplex 
virus type 1 and 2 (HSV-1, HSV-2) are pathogens 
with a significant impact on public health. Typically, 
infection results in a life-long latent infection of the 
host (Halioua and Malkin, 1999; Whitley, 2002). 
The transmission of HSV-2 in the human population 
includes asymptomatic shedding of the virus even in 
the presence of CD8 cytotoxic T lymphocytes and 
the production of a viral glycoprotein that indirectly 
elicits NK cell death (Bellner et al., 2005; Posavad 
et al., 2000; Wald et al., 2000). In a mouse model of 
HSV-2 infection, it was shown that mice deficient in 
CCR5 (CCR5/) displayed a significant reduction 
in cumulative survival following infection in com-
parison with wild-type HSV-2–infected controls. 
Associated with decreased resistance to viral infec-
tion, CCR5/ mice yielded significantly more virus 
and expressed higher levels of tumour necrosis fac-
tor alpha (TNF-), CXCL1, CCL2, CCL3 and CCL5 
in the vagina, spinal cord, and/or brain stem than did 
wild-type mice. In addition, when comparing wild-
type HSV-2–infected mice with CCR5/ mice prior 
to or after infection, there were significantly more 
NK cells (NK1.1 CD3) residing in the brain stem 
and spleen of infected wild-type mice. Functionally, 
NK activity from cells isolated from the brain stem of 
HSV-2–infected wild-type mice was greater than that 
from HSV-2–infected CCR5/ mice. Further, anti-
body-mediated depletion of NK cells resulted in an 
increase in HSV-2 levels in the vaginal, spinal cord and 
brain stem tissue of wild-type mice but not CCR5/ 
mice (Kveberg et al., 2002). Collectively, the absence 
of CCR5 expression significantly impacts the ability of 
the host to control genital HSV-2 infection, inflamma-
tion and spread associated with a specific reduction in 
NK cell expansion, infiltration and activity in the nerv-
ous system.
Toxoplasma gondii

Congenital toxoplasmosis poses a public health problem, 
being capable of causing foetal death and ocular and 
neurological sequelae in congenitally infected children. 
Congenital infection occurs only when mothers first 
encounter Toxoplasma gondii (T. gondii) during preg-
nancy (Remington et al., 1994; Roberts and Alexander, 
1992). Resistance to T. gondii is mainly mediated by 
type 1 cytokines, such as IFN- and interleukin 2 (IL-2),  
whereas type 2 cytokines, such as IL-4 and IL-10, are 
associated with increased susceptibility to infection 
(Hunter et al., 1996; Khan et al., 1994). Susceptibility 
of the pregnant host to toxoplasmosis may be attribut-
able to a type 2-cytokine bias that is maintained dur-
ing gestation (Shirahata et al., 1992). Cell-mediated 
immune responses involving CD4 and CD8T cells and 
NK cells play a protective role in T. gondii primary 
infection (Goldszmid et al., 2007; Scharton-Kersten 
et al., 1998; Scorza et al., 2003; Scott and Trinchieri, 
1995; Subauste et al., 1992). To clarify the roles of NK 
cells and IFN- in protection against primary congeni-
tal toxoplasmosis, Abou-Bacar and colleagues (2004) 
used recombination activating gene 2 knockout (KO)  
(RAG-2/) mice, which lack T and B lymphocytes, in 
comparison with the wild-type BALB/c model. RAG-2/ 
mice had a significantly lower risk of foetal toxoplasmosis 
than BALB/c mice. This protection was associated with 
an increased number of maternal NK cells, IFN- secre-
tion by spleen cells, and decreased parasitemia. In the 
RAG-2/ mice, NK cell depletion increased the rate of 
foetal infection. These data suggest that a partially protec-
tive immunity against congenital toxoplasmosis is achieved 
owing to the increased number of NK cells in RAG-2/ 
mice (Abou-Bacar et al., 2004). Protective effect of NK 
cells was confirmed in another study using the SCID 
model (Kang and Suzuki, 2001).

NK cells and tumour immune 
surveillance of the CNS

The innate immune system plays an instrumental 
role in generating and directing the adaptive immune 
responses (Shi et al., 2001). NK cells represent a critical 
first line of defence against malignant transformation. 
Earlier results by Karre and Ljunggren demonstrated 
that NK cells can preferentially kill and reject cells 
that fail to express ‘self ’ MHC class I molecules (Karre  
et al., 1986). These findings led to the formation of the 
famous ‘missing self hypothesis’ (Ljunggren and Karre, 
1990). Over the years, the missing self hypothesis has 
been repeatedly demonstrated in a variety of experimen-
tal tumour systems by different groups of investigators,  
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and a number of molecular pathways governing the 
interactions of NK cell–target cells have been revealed. 
Surveillance against ‘missing self ’ may thus be one, 
but not the only function of NK cells (Ljunggren and 
Malmberg, 2007).

Non-surgical resectable tumours within the CNS con-
stitute significant challenges for physicians. Furthermore, 
studies have documented frequent immune system 
defects in intracranial tumour-bearing patients and an 
inability of certain lymphocyte subset to mediate anti-
tumour effector functions in the CNS.

Metastatic melanoma

Malignant melanoma is notorious for metastasis to 
discrete locations such as testis and brain. Malignant 
melanoma is the third most common type of can-
cer that metastasizes to the brain (Prins et al., 2006), 
which presents clinicians with few treatment options. 
Although nearly a dozen melanoma antigens specifically 
recognized by T cells have been identified, melanoma 
cells are still able to avoid immune destruction in most 
instances. Because the generation of an effective anti-
tumour immune response requires both the presence 
of foreign antigen and a costimulatory molecule or sig-
nal, tumour cells displaying tumour antigens may avoid 
immune detection because of the absence of appropri-
ate costimulation. Thus, anti-tumour immune responses 
might be achieved by more effective local delivery of 
costimulatory molecules. Activation and expansion of 
NK cells may independently lyse tumour cells, or pro-
vide T cells with costimulatory molecules including 
cytokines, and overall enhance antigen presentation to  
T cells.

Several attempts have been made in an effort to use 
NK cells to target CNS melanoma. The specific recep-
tor for IL-2 on NK cells allows several approaches to 
deliver IL-2 intrathecally and activate NK cells. Ewend 
and associates carried out a study in C57BL/6 mice 
that were simultaneously given intracranial injections of 
tumour and of irradiated B16F10 melanoma cells trans-
duced to secrete IL-2 (Prins et al., 2006). IL-2 therapy 
generated antitumour responses capable of extend-
ing the survival of animals that received simultaneous 
intracranial tumour challenges either locally or at distant 
sites in the brain. Non-transduced melanoma cells had 
little effect. Elimination of T-cell and NK subsets using 
gene KO mice and antibody-depletion techniques dem-
onstrated that NK cells were most important for the ini-
tial anti-tumour response, whereas CD4 T cells were 
not necessary. These studies demonstrate that local IL-
2 therapy in the brain not only generates an immediate 
local antitumour immune response, but also establishes 
long-term immunologic memory capable of eliminating  
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subsequent tumour challenges within and outside of the 
CNS. Furthermore, the antitumour response to para-
crine IL-2 in the brain differed significantly from that 
in the flank, suggesting that the intrinsic CNS cells 
involved in initiating immunity within the brain have 
different cytokine requirements from their peripheral 
counterparts.

Using the same model, a recent study showed that DCs 
administration induced dramatic anti-tumour immune 
protection in CD8 KO mice that were challenged with 
B16 melanoma both subcutaneously and in the brain 
(Ewend et al., 2000). The CNS anti-tumour immu-
nity was dependant on both CD4 T cells and NK cells. 
Administration of non-Ag-loaded, immature DC resulted 
in significant CD4 T cell and NK cell expansion in the 
draining lymph nodes at 6 days post-vaccination, which 
persisted for 2 weeks. Finally, Ag-loaded DC administra-
tion in CD8 KO mice was associated with robust infiltra-
tion of CD4 T cells and NK cells into the brain tumour 
parenchyma (Ewend et al., 2000).

Glioma

Glioma cells interfere with anti-tumour immune 
responses by expressing immune inhibitory cell sur-
face molecules, such as HLA-G, or by releasing soluble 
immunosuppressants such as transforming growth factor 
(TGF-). They rarely metastasize outside the brain, rais-
ing the possibility of immune-mediated control of these 
cells outside, but not inside, the brain.

IL-2, as well as growth hormone, is potent in enhanc-
ing NK cell activity against glioma both in human trials 
and in several experimental systems (Eisele et al., 2006; 
Hayes et al., 1995; Shimizu et al., 2005; Wischhusen  
et al., 2005). As receptors governing NK cell action and 
effector functions are being elucidated, more sophisti-
cated means of manipulating NK cells have been gener-
ated. As noted above, NKG2D is a powerful, activating 
NK cell receptor (Wischhusen et al., 2005). Accordingly, 
activating the innate immune system by forcing glioma 
cells to express danger signals such as NKG2D ligands 
is a promising strategy of immunotherapy for these 
tumours. The remaining challenges would be to down-
regulate HLA-E expression on glioma cells and suppress 
production of TGF- by glioma. Both HLA-E and TGF-
beta can down-regulate NKG2D expression on glioma, 
which enable these tumour cells to escape NK cell 
surveillance.

Other CNS tumours

Various studies have documented the role of NK cells 
in surveillance and suppression of other type of CNS 
tumours including medulloblastoma (Castriconi et al., 
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2007), astrocytoma and neuroblastoma (Kang et al., 
2004). On the other hand NK cells appear to have little, 
if any, role in suppressing CNS lymphomas (Yamasaki  
et al., 2003).

Clearly, cumulative evidence suggests that NK cells 
play a role in curbing malignant transformation and pro-
gression of many primary and metastatic CNS tumours
 (Table 28.2). Direct cytotoxic effects and collabora-
tion with T cells and other immune cells are required to 
achieve these functions (Table 28.2). Effective therapies 

Table 28.2  NK cells in CNS pathology

CNS pathology Functions Mechanisms References

Viral infection

TMEV Suppress viral 
infection

Not studied Paya et al. 
(1989)

Theiler’s virus Inhibit viral 
replication

Kill viral 
infected cells

Welsh et al. 
(2004)

Mouse hepatitis 
virus

Inhibit viral 
replication

Not studied Walsh et al. 
(2007), Zuo  
et al. (2006)

Herpes simplex 
virus

Confine viral 
infection

IFN- 
production by 
NK cells

Alsharifi et al. 
(2006)

Semliki Forest 
virus

Inhibit viral 
replication

Cytotoxicity 
IFN- 
production

Kveberg et al. 
(2002)

Tumours

CNS melanoma Suppress 
tumour growth

NK cytotoxicity Prins et al. 
(2006)

Glioma Suppress 
tumour growth

TGF- 
production 
and NKG2D 
activation

Wischhusen  
et al. (2005)

Astrocytoma NO significant 
role

– Kang et al. 
(2004)

Medullbostoma NO significant 
role

– Castriconi et al. 
(2007)

Inflammation

Multiple sclerosis 
and EAE

Suppression Kill CNS APC 
inhibit myelin-
reactive T cells

Zhang et al. 
(1997), Huang 
et al. (2006), 
Bielekova et al. 
(2006)

TMEV: Theiler’s Murine Encephalomyelitis Virus
EAE: Experimental Autoimmune Encephalomyelitis 
harnessing NK cells will be facilitated through under-
standing of the molecular signalling pathways that will 
be governing NK cell activation, expansion and main-
tenance. Specific anatomical factions within the CNS 
should also be considered. Furthermore, effort must 
be taken in suppressing the capacity of certain tumours 
to down-regulate activating signals and production of 
inhibitory proteins against NK cells.

Regulatory functions of NK 
cells in CNS inflammation and 
autoimmunity

During CNS infection, cytolytic activity of NK cells 
contributes to elimination of viral and bacterial infected 
cells and controls the magnitude of inflammation. 
Debris from neuronal and/or glial cell death is taken 
up by antigen-presenting cells (APCs) and presenta-
tion to T cells. Cytokine (IFN-) secretion by NK cells 
increases MHC class II expression by APC and, thus, 
favours generation of Th1 type of T helper cells. Thus, 
NK cells function not only as the initial line of host 
defence, but also as fuel to the generation of adaptive 
immune responses. Overall, NK cells are expected to 
boost immune response within the CNS. Paradoxically, 
emerging evidence suggests that NK cells can inhibit 
CNS inflammation and control the magnitude of 
autoimmunity (Table 28.2).

MS is a classic autoimmune disease characterized by 
extensive CNS inflammation and immune-mediated  
destruction of myelin. Consequently, the function of  
myelin sheaths becomes compromised and neuro-
logical impairment occurs. The pathogenesis of MS is 
mirrored, in part, in EAE, which can be induced in sus-
ceptible strains of mice with neuron-antigens and com-
plete Freund’s adjuvant. The roles of NK cells in the 
pathogenesis of MS and EAE have been investigated. 
In patients with MS, NK cells (CD56 and CD57) are 
present in the peripheral blood with reduced num-
bers and cytolytic activity (Shibatomi et al., 2001; 
Trinchieri, 1989). This finding is not unique to MS and 
similar phenotype of NK cells have been documented 
in many other types of autoimmune diseases such as 
rheumatoid arthritis, systemic lupus erythematosus, 
myasthenia gravis, etc (Shibatomi et al., 2001). In par-
allel, patients with MS and other autoimmune diseases 
have defective functions of ‘regulatory cells’, including 
NKT cells and CD4CD25 regulatory T cells (Treg) 
(La Cava et al., 2006). A reduced number and/or com-
promised function of NK cells, NKT cells and Treg cells 
invite a hypothesis that autoimmunity is associated with 
a result of global defective regulatory cell functions in 
these patients.
379
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This hypothesis has been tested in several EAE mod-
els. Because gene encoding NK cells cannot be targeted 
by the current technology, several depleting antibo- 
dies have been used to study the function of NK cells in 
vivo. Several groups have utilized anti-NK1.1 mAb and 
observed that depletion of NK cells by injecting anti-
NK1.1 mAb leads to exacerbation of EAE (Zhang et al., 
1997). Apparently, both peripheral and CNS NK cells 
are absent in this experimental system. It is, therefore, 
not possible to differentiate the role of NK cells in the 
periphery and in the CNS.

NK cell homing to CNS is controlled by a specific 
chemokine receptor ligand pathway involving CX3CR1 
and fractalkine (CX3CL1). CX3CR1 is expressed 
almost exclusively by CNS glial cells (Boehme et al., 
2000; Cardona et al., 2006). Thus, germ-line deletion 
of CX3CR1 leads to impaired homing of NK cells to 
the CNS. This model would be ideal in addressing CNS 
inflammation/autoimmunity in relation to NK cells. 
Interestingly, upon immunization, CX3CR1-deficient 
mice with reduced NK cells in the CNS and intact NK 
cells in the periphery developed their wild-type con-
trols. Thus, lack of CNS NK cells alone is sufficient to 
cause exacerbated CNS inflammation and autoimmunity 
(Huang et al., 2006). It is also conceivable that chemok-
ine guided NK cell homing to CNS might serve as path-
way that can be therapeutically targeted (Figure 28.1).

Infection is suggested to play a role triggering the ini-
tiation of MS in some patients (Bendelac and Medzhitov, 
2002; Pulendran and Ahmed, 2006; Shirahata et al., 
1992). The use of complete Freund’s adjuvant in the 
induction of EAE may mimic this process (Fearon and 
Locksley, 1996). In these patients or in EAE animals, 
NK cells may contribute to the demyelination through 
bystander damage while controlling the infection. Once 
infection is controlled, NK cells may function to inhibit 
the excessive (auto) immune responses elicited by  
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pathogens. The immune system may use NK cell as a 
versatile regulator to tune its capacity in combating 
infection and avoiding autoimmunity.

The mechanism underlying this unique role for NK 
cells within the CNS during EAE is still elusive. A close 
survey of the literature reveals multiple steps where NK 
cells can regulate inflammation and intervene in the loss 
of self-tolerance. Importantly, the findings also caution 
against inferring a similar role for NK cells in all types 
of autoimmune phenomena or during separate stages of 
the same disease (Flodstrom et al., 2002; Yokoyama and 
Plougastel, 2003). NK cells can both promote and inhibit 
autoreactive T cells. These possibilities have been exten-
sively reviewed recently (Shi and Van Kaer, 2006). The 
specific CNS anatomical location, as reflected by diverse 
CNS APCs and multiple antigens may also influence 
the outcome of autoimmunity. As with EAE, it appears 
that NK cells control T cell proliferation in an antigen 
non-specific manner, both in the periphery and within 
the CNS (Shi, et al., unpublished). Recently, it has  
been demonstrated that human NK cells kill resting but 
not activated microglia via NKG2D- and NKp46-mediated 
recognition (Lünemann et al., 2008). This study empha-
sizes the potential importance of interactions between NK 
cells and CNS resident APCs. However, whether the reg-
ulatory effects of NK cells can be attributed to the action 
of NK cells on APCs, directly on T cells, or both, is not 
known and currently under investigation.

Summary and future research 
directions

NK cells readily accumulate in homing to CNS tissues 
under the pathophysiological situations. This process 
is tightly controlled by a number of chemokines and  
chemokine receptors. There is ample of evidence that 
Figure 28.1 l Chemokine-guided recruitment of NK cells as in the CNS. Inflammatory responses as seen in EAE or MS may result in the 
production of chemokines, in particular fractalkine by microglia. Fractalkine recruits NK cells to the CNS. Subsequently, NK cells may 
control the magnitude of CNS inflammation and severity of EAE via several pathways: (1) directly kill APCs and interfere with reactivation 
of myelin-reactive T cells; (2) directly kill myelin-reactive T cells; altered expression of MHC class I on those APCs and T cells may 
trigger the killing; (3) suppress differentiation of T helper cells. This can be achieved by depleting cells which produce Th cell-polarizating 
cytokines, or cytokines produced by NK cells themselves.
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NK cells within the CNS contribute to the control 
of infections and might limit progression of certain 
tumours. Bystander neuronal and/or glial cell dam-
age can occur. In certain autoimmune conditions of 
the CNS, NK cells appear to have an inhibitory role. 
Activation and expansion of NK cells through engaging 
IL-2 receptors on NK cells not only inhibit several CNS 
tumours, but also might slow the progression of MS and 
other autoimmune diseases (Bielekova et al., 2006; Li  
et al., 2005). Furthermore, the ability of IFN- and 
IFN- to ameliorate MS in humans and IFN- to inhibit 
EAE in mice may reflect the ability of these cytokines to 
transiently activate NK-dependent regulatory responses. 
However, because IFN treatment also upregulates Qa-1 
expression on T cells (Ota et al., 2005), the short dura-
tion and usually modest nature of these therapeutic 
effects may reflect a Qa-1-dependent decrease in NK 
cell activation and associated immunoregulatory activity 
(Lu et al., 2007).

Disassociation of disease-inhibiting versus disease-
promoting effects of NK cells is a key to harnessing 
NK cells for therapeutic purposes. To achieve this goal, 
a generation of genetic models with selective NK cell 
deficiency, and development of reagents (antibodies) 
for visualizing subsets of NK cells in situ will be neces-
sary. Optimization of methods to produce NK cells in 
large quantities for therapeutic usage is also important. 
Clearly, understanding the molecular signals and path-
ways governing these differential biological effects of 
NK cells as well as their cross talk with T cells is key 
to designing NK cell-based therapy for CNS infections, 
tumours and autoimmune diseases.
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