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Purpose: To use diffusion measurements to map the spatial dependence of the mag-
netic field produced by the gradient coils of an MRI scanner with sufficient accuracy 
to correct errors in quantitative diffusion MRI (DMRI) caused by gradient nonlinear-
ity and gradient amplifier miscalibration.
Theory and Methods: The field produced by the gradient coils is expanded in regu-
lar solid harmonics. The expansion coefficients are found by fitting a model to a 
minimum set of diffusion- weighted images of an isotropic diffusion phantom. The 
accuracy of the resulting gradient coil field maps is evaluated by using them to com-
pute corrected b- matrices that are then used to process a multi- shell diffusion tensor 
imaging (DTI) dataset with 32 diffusion directions per shell.
Results: The method substantially reduces both the spatial inhomogeneity of the 
computed mean diffusivities (MD) and the computed values of the fractional anisot-
ropy (FA), as well as virtually eliminating any artifactual directional bias in the ten-
sor field secondary to gradient nonlinearity. When a small scaling miscalibration was 
purposely introduced in the x, y, and z, the method accurately detected the amount of 
miscalibration on each gradient axis.
Conclusion: The method presented detects and corrects the effects of gradient non-
linearity and gradient gain miscalibration using a simple isotropic diffusion phantom. 
The correction would improve the accuracy of DMRI measurements in the brain and 
other organs for both DTI and higher order diffusion analysis. In particular, it would 
allow calibration of MRI systems, improving data harmony in multicenter studies.
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1 |  INTRODUCTION

Quantitative diffusion MRI (DMRI) comprises several re-
lated types of studies, such as computations of the apparent 
diffusion coefficients (ADCs),16,18,22,30 computations of dif-
fusion tensor imaging (DTI) metrics,1,5 precise determination 
of the directions in which diffusion is the fastest from high 
angular resolution diffusion imaging (HARDI) datasets3,7,35 
(primarily used for fiber tracking), and studying microscopic 
structure.8,14,21,29 All these applications are susceptible to 
systematic errors due to gradient nonlinearity and miscali-
bration that typically are not accounted for.

Gradient nonlinearity is described by gradient coil field 
maps (GCFMs).10 The GCFM for the x- gradient coil specifies 
the magnetic field as a function of position produced by the 
x- gradient coil divided by the gradient of the field in the x- 
direction present at magnet isocenter. Analogous GCFMs are 
defined for the y-  and z-  gradient coils. The GCFMs depend 
on the physical structure of the gradient coils and are not ex-
pected to change unless the coils are damaged in some way.

Gradient miscalibration is described by gradient gain correc-
tion factors (GGCFs). The x- gradient GGCF is defined as the 
gradient actually produced by the x- gradient coil at the origin 
when a unit gradient is requested. Analogous GGCFs are defined 
for the y-  and z- gradients. Gradient calibration is performed on- 
site. Error in the calibration procedure and drift in gradient am-
plifiers can result in the GGCFs having values different from 1.

The product of each GCFM and the corresponding GGCF 
results in one set of field maps, the gain corrected gradient 
coil field maps (gcGCFMs), that describes both effects.

The diffusion weighting of an acquisition is typically de-
scribed by a b- matrix,19 or alternatively, by a b- value and a 
b- vector. In an “ideal” acquisition, the diffusion weighting is 
uniform over the volume imaged and equal to the values pre-
scribed by the user. Bammer et al2 have shown that the effects 
of gradient nonlinearity and miscalibration can be described 
by a spatially varying b- matrix. They also showed how the 
gcGCFMs, if known, can be used to compute the “actual” b- 
matrices, which can then be used in subsequent data analysis 
to eliminate the systematic errors. Unfortunately, the GCFMs 
and GGCFs are not in general known to the users. Many man-
ufacturers treat GCFMs as proprietary, and GGCFs describe 
errors that remain after on- site gradient calibration.

Different methods have been proposed to permit users to 
compute accurate b- matrices, although none is routinely used 
in either research or clinical diffusion MRI studies. Rogers 
et al26 suggests measuring the GCFMs using phase contrast B0 
mapping.28 Their method involves multiple scans of a large oil 

phantom with different values of the linear shim settings. Since 
linear shim correction is usually performed by adding a DC 
offset to the current supplied to the gradient coils, the GCFMs 
can be computed from the differences in the field maps. As 
currently presented, this method focuses on the correction of 
gradient nonlinearities but not on the effects of gradient mis-
calibration. Tan et al32 suggest computing the GCFMs using 
image distortions caused by the gradient nonlinearity, although 
they do not describe a protocol for measuring the distortions, 
which makes their method difficult to use in practice. In con-
trast, Tao et al33 describe in great detail a fiducial phantom 
specially designed for measuring image distortion and an al-
gorithm for constructing the GCFMs from the imaging data; 
potential disadvantages of their method is the requirement 
of a special phantom required and the complexity of the data 
processing. It is also possible to use diffusion measurements 
to extract information about the gradient nonlinearity, which 
has the advantage of higher sensitivity; b- values scale with the 
square of the gradient amplitude, while geometric distortions 
and phase shifts scale linearly. Published studies using diffu-
sion measurements bypass the computation of the GCFMs 
and directly compute the corrected b- matrices. Teh et al34 pro-
posed modeling the effects of gradient nonlinearity as spatially 
dependent GGCFs, which can be computed from 3 sets of 
diffusion- weighted images, each of which has diffusion sensi-
tization by only one of the gradient coils. Lee et al17 proposed 
scanning a uniform isotropic phantom with the same protocol 
used to scan the subject. The results of phantom measurements 
are then used to compute spatially dependent b- values. In the 
Discussion section, we discuss the theoretical underpinnings 
of these methods with respect to those of the proposed method.

In this paper, we present a general method for measur-
ing the gcGCFMs from a set of diffusion- weighted images 
of a phantom having isotropic diffusion characteristics. Our 
method combines the advantages of the increased sensitivity 
(quadratic vs linear) of the diffusion- based approaches with the 
theoretical rigor of the field mapping that is currently obtained 
only with the non- diffusion- based approaches. The method is 
designed to provide a general solution to the problem and the 
measured gcGCFMs can then be used to reduce systematic 
errors in all types of diffusion MRI studies, including ADC 
measurements, DTI, HARDI, and microstructural studies. In 
the subsequent sections, we present our method and demon-
strate its efficacy by comparing uncorrected and corrected di-
rection encoded color (DEC) maps,23 mean diffusivity (MD) 
maps and histograms, and fractional anisotropy (FA) maps 
and histograms of a DTI study of the phantom. We use the 
previously proposed NIH PVP diffusion MRI phantom.11,25
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2 |  METHODS

Note on units: The units we use in this paper are 
μm2∕ms( = 10−3mm2∕s) for the diffusivity D and 
ms∕μm2( = 103s∕mm2) for the b- value b.

2.1 | The cost function

Our goal is to measure the gcGCFMs by scanning an iso-
tropic phantom with a Stejskal- Tanner diffusion- weighted 
pulse sequence. We begin by noting that the attenuation E(r) 
due to diffusion in such images is

where r is a position vector,
S�(r) is the measured voxel value at r for series � (=1, 2, 

…, N), where N is the number of diffusion weighted images 
in the dataset,

S0(r) is the voxel value at r in the absence of diffusion 
weighting,

D is the diffusivity of the phantom, and

tr(b�(r)) is the trace of the b- matrix,6 a symmetric tensor 
with components b�

ij
 that describes the diffusion weighting of 

series �.
Since the diffusivity D in the phantom is uniform, the spa-

tial dependence of E is caused entirely by the spatial depen-
dence of b, which in turn depends on all sources of magnetic 
field gradients: B0 inhomogeniety, eddy- currents, magnetic 
susceptibility, and the fields described by the gcGCFMs. The 
method presented in this paper only corrects errors caused by 
fields described by the gcGCFMs. We also neglect the effects 
of the concomitant fields, which have been shown to be neg-
ligible for Stejskal- Tanner pulse sequences.4

We use a coordinate system in which B0, the main field of 
the scanner, points in the z- direction. The gcGCFMs are the 
functions Bk(r) that specify the normalized z- component of 

the magnetic field at location r produced by gradient coil k 
(= x, y, or z). The gcGCFMs are normalized such that for an 
"ideal" gradient coil

Bammer et al2 have shown that the effect of gradient non-
linearity on the diffusion weighting can be described by the 
equations

where G�,pre is the prescribed diffusion weighting (b- value × b- 
vector) for series �, G�,actual(r) is the actual diffusion weighting 
(b- value × b- vector) for series � at point r, and L is the trans-
formation matrix whose elements Ljk(r) are components of the 
gradient of the gcGCFMs.

If imaging gradients are neglected the components of the b- 
matrix are

Using Equations (5), (3) and (4), tr(b) becomes

where tr(b), which depends on r, is the trace of the “true” b- 
matrix and bpre

kl
 are the elements of the prescribed b- matrix.

Since the gcGCFMs obey Laplace’s equation, we can 
express them as a sum of solid harmonics13 (see Appendix 
A). We then use Equations (1), (6), (A1)– (A5), and either 
Equation (A6) or (A7) to express the attenuation E(r) as a 
function of either the expansion coefficients clm and slm (if 
Equation A6 is used) or the expansion coefficients c̃lm and 
s̃lm and the gain factors gk (if Equation A7 is used). The 
GCFMs are then described by Equation (A6) or (A7) with 
the expansion coefficients taking the values that minimize 
the cost function
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where q runs over the pixels in the mask and tr(b�

q
) is the 

trace of the “true” b- matrix in series � at the location of voxel 
q defined by Equation (6) (which implicitly depends on the 
expansion coefficients). In the Supporting Information, we 
show that for symmetric gradient coils and subject to signal- 
to- noise (S/N) limitations, 1 non- diffusion- weighted “b = 0” 
image and 3 diffusion- weighted images with b- vectors (1,0,0), 
(0,1,0), and (0,0,1), contain sufficient information to deter-
mine all the expansion coefficients except cx

00
, cy

00
, and cz

00
 , 

which are not important for our purposes since the basis func-
tions corresponding to those terms are constants which don’t 
contribute to L, and cx

10
, sx

11
, cy

10
, cy

11
, cz

11
, and sz

11
, which are 

zero for properly constructed gradient coils.
In the case where one wants to measure all the expan-

sion coefficients, Equation (A6) should be used. In this 
case, tr(b) and therefore Φ depend on the the gcGCFM 
expansion coefficients clm and slm. On the other hand, if 
the GCFM expansion coefficients are known and one only 
wishes to check the gradient calibration, Equation (A7) 
should be used, in which case tr(b) and therefore Φ depend 
on the gain factors gi and the (known) GCFM expansion 
coefficients c̃lm and s̃lm.

2.2 | Diffusivity of the phantom and its 
effect on results

To obtain best fit values for the expansion coefficients slm 
and clm, the value of the diffusivity D of the phantom used 
for the calibration must be known. The diffusivity D of a 
PVP solution11,25 depends on temperature T and the PVP 
concentration CPVP. Previous calibration experiments27 
provide an empirical expression of diffusivity D as a func-
tion of T and CPVP:

where D is in μm2∕ms, Cpvp is a mass fraction and T is in Celsius. 
While the PVP concentration is generally well known, it is dif-
ficult to control and measure the temperature of the phantom, 
so the true value of D during a calibration measurement is 
generally not known with high accuracy. However, D can be 
estimated directly from the calibration dataset. To do this, we 
define an ROI near magnet isocenter, assume that the effects of 
gradient inhomogeneity are negligible (which should be true 
near isocenter) and fit the data to Equation (1) to determine D. 
The accuracy of this procedure is limited by 2 sources of sys-
tematic error: (1) incorrect gain settings and (2) time- varying 
temperature of the phantom due to RF heating during the scan.

If the assumed value of D is incorrect, each of the 3 gain 
coefficients will be in error by the same factor

(
√

(Dtrue∕Dassumed)). (This is true because Equation (6) 
depends only on the product D tr(b), and if expansion of 
Equation (A7) is used, tr(b) is a homogeneous function of 
degree 2 of the gis.) Since the gain coefficients are all scaled 
by the same factor, the ratio of any 2 gain coefficients is un-
affected by the error in D.

2.3 | Data acquisition

2.3.1 | Calibration datasets

Specification of diffusion weighting using b- values and 
b- vectors, as is done by most manufacturers, is not gen-
eral enough to describe the contribution to the diffusion 
weighting of the imaging gradients,19 which is therefore 
neglected. If the contribution to the diffusion weighting of 
the imaging gradients is not negligible, their effects can be 
greatly reduced by acquiring, for each diffusion direction, 
an additional image with the antipodal gradients, ie, the 
polarity of the diffusion pulses is reversed.20 To an excel-
lent approximation, the error in the log of the attenuation 
due to the imaging gradients in the pair of images will be 
equal and opposite and therefore cancel each other out. 
Since no duplicate image is required of the non- diffusion- 
weighted image, this increases the minimum number of im-
ages to 7. Since the user in general doesn’t know whether 
or not the effect of the imaging gradients is negligible in 
the pulse sequence used, we recommend acquiring at least 
7 images. For this paper we acquired multiple shells and 
multiple copies of the “b = 0” images. Results of analysis 
using only a single shell (not shown) were essentially the 
same as results using the complete dataset, confirming our 
expectation that only one shell is needed.

The calibration dataset was acquired with a spin echo 
echo- planar pulse sequence with a classical Stejskal- 
Tanner pair of diffusion gradients and the follow-
ing parameters: 77 axial slices, slice thickness = 2.5 
mm, FOV = 256 mm, matrix size 104 × 101 zero- filled to 
112 × 112, TE = 127.5 ms, TR = 13.338 s. It comprises of 35 
images: 5 “b = 0” images with almost no diffusion weighting 
(b = 5 × 10−3ms∕μm2), and 30 diffusion- weighted images. 
The diffusion- weighted images comprise of 5 “shells” 
with b- values (0.5 ms/μm2, 1.0 ms/μm2, 1.5 ms/μm2,  
2.0 ms/μm2, and 2.5 ms/μm2) and, for each b- value, 3 
pairs of single axis antipodal gradients, ie, the b- vectors 
were  (1,0,0), (−1,0,0), (0,1,0), (0,−1,0), (0,0,1), and 
(0,0,−1).

(8)D=0.93445+ (−2.4033Cpvp+1.171C2
pvp

)+ (. 056603−0.12862Cpvp+0.086C2
pvp

)T
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2.3.2 | Gain factor datasets

To test our ability to detect errors in the gain settings of the 
gradients, we acquired 7 additional calibration datasets for 
which we changed the gain settings in the calibration file, 
which determines the scaling between the amplitude of the 
gradient waveform generated by the pulse sequence and the 
amplitude of the current supplied by the gradient amplifiers. 
One of these datasets was a repeat of the standard calibration 
dataset; in each of the others, the gradient along one axis was 
either increased or decreased by 1%.

When analyzing the “gain” calibration datasets, we no-
ticed that diffusivity changed from series to series. To in-
vestigate this further, we acquired an additional series of 23 
calibration datasets without changing any parameters.

2.3.3 | Oil phantom datasets

For comparison purposes, we also measured the GCFM using 
phase contrast B0 mapping28 on images of a large oil phantom 
acquired with different linear shim settings.26

2.3.4 | Test datasets

To test the effectiveness of our correction method, we acquired 
a DTI dataset of the phantom with the same scan parameters 
as the calibration data but different diffusion weightings. The 
test data comprise102 images; 6 “b = 0” images with almost 
no diffusion weighting (b = 5 × 10−3 ms∕μm2), 32 images 
with b = 0.5 ms∕μm2, 32 images with b = 1.0 ms∕�m2, and 
32 images with b = 2.5 ms∕μm2. The same sets of directions, 
which have the b- vectors uniformly distributed on the unit 
sphere, are used in each shell.

2.4 | Image registration and ROI selection

All of the datasets used were preprocessed for eddy current 
correction using TORTOISE12,24 (https://www.torto isedti.
org) with its default settings. To exclude background voxels 
from our ROI we used a mask computed in 3 steps: 

1. Compute the average of the “b = 0” images,
2. Exclude all voxels in the average “b = 0” image with val-

ues less than 0.1 times the largest voxel value, and
3. Eroding the mask slice- by- slice with a square 3 × 3 tem-

plate to remove voxels on the edges.
Step 3, which can be repeated if necessary, is needed be-

cause in- plane epi distortions in the image, which we don’t cor-
rect for in this paper, can cause artifacts at the boundary of the 

phantom. In particular, the phantom may have an air bubble at 
the top which causes large local image artifacts.

2.5 | Data analysis

To evaluate the efficacy of the our proposed correction, we 
computed 4 sets of b- matrices and used each set to compute 
DEC maps, MD images, and FA images of the test dataset. 
The b- matrices used were: 

1. the prescribed (uncorrected) b- matrices (Unc),
2. the prescribed b- matrices corrected as described in the 

theory section using coefficients supplied by the manufac-
turer (MFG),

3. the prescribed b- matrices corrected as described in the 
theory section using coefficients computed by fitting the 
oil phantom data (OP), and

4. the prescribed b- matrices corrected as described in the 
theory section using coefficients computed by fitting the 
diffusion calibration data (DIFF).

For the gain factor dataset, the gradient gain settings were 
computed only using the proposed DIFF method using first 
a constant diffusivity and later correcting for temperature in-
duced changes in diffusivity of the phantom during the acqui-
sition. The details of the temperature correction are reported in 
the Results section.

The MFG and OP gradient field models contain terms of 
higher order than are included in the DIFF GCFMs, but the 
contributions of the extra terms are negligible in the volume 
imaged in this study.

3 |  RESULTS

Figure 1 shows axial, sagittal, and coronal slices of DEC 
maps through the center of the phantom. In the first row, 
which shows the results with no gradient inhomogeneity cor-
rection, the effect of gradient nonlinearity appears as large 
areas of uniform color. The artifacts are greatly reduced in the 
corrected images. Interestingly, the dominant green hue still 
observable in the MFG and OP images is attenuated with the 
DIFF corrected images. This could be related to slight gradi-
ent miscalibration that is not accounted by MFG and OP.

Figure 2 shows axial, sagittal, and coronal slices of the 
MD map through the center of the phantom. In the first row, 
which shows the results with no gradient inhomogeneity cor-
rection, the systematic error is clearly visible. In the remain-
ing rows, which show results with inhomogeneity correction 
applied, the effect is greatly reduced. The 3 sets of corrected 
images are similar.

https://www.tortoisedti.org
https://www.tortoisedti.org


3264 |   BARNETT ET Al.

Figure 3 shows a histogram of the values of MD in an ROI 
that includes most of the phantom. The ROI was chosen using 
the same criteria described in Section 2.4. The inhomogene-
ity correction reduces the standard deviation of the measured 
MD values in the ROI by a factor of more than 2 (see Table 
1). On the right side of the histogram, one can observe that 
the tail of the distribution from DIFF data is slightly less pro-
nounced than in the other correction methods. This is also 
consistent with the lowest SD reported in Table 1 and this 
small improvement may represent a contribution by the gra-
dient miscalibration correction offered by DIFF.

Figure 4 shows axial, sagittal, and coronal slices of the FA 
map through the center of the phantom. In the first row, which 
shows the results with no gradient inhomogeneity correction, 

the systematic error due to gradient inhomogeneity is clearly 
visible. In the remaining rows, which show results with inho-
mogeneity correction applied, the effect is greatly reduced.

Figure 5 shows a histogram of the values of FA in the 
same ROI used for the MD histogram. As expected, the ef-
fect of the correction is to reduce the number of voxels with 
large values of FA; compared to the uncorrected histogram, 
the peaks in the corrected histograms are much narrower and 
shifted to the left (see Table 2). As noticed for MD, the DIFF 
method has the least pronounced tail among all the correction 
methods.

To more extensively test the ability of our method to de-
tect and correct errors in the gradient gain settings, we ana-
lyzed the “gain factor” dataset. In the first (reference) series, 
the default gradient coil gain settings were used. For each of 
the other sets, one of the gain settings was either increased or 
decreased by 1%. In the fitting procedure, we defined the cost 
function using Equation (A7), setting the expansion coeffi-
cients to the manufacturer supplied values and varying only 
gx, gy, and gz.

Figure 6A shows the computed gain coefficients for all 7 
series. The series labels describe the direction and polarity 
of the gain miscalibration. The series labeled (1,1,1) is the 
reference series that used the default gain settings set by the 
site engineer. The results in this series show a small but de-
tectable miscalibration (up to 0.5% in the x axis).

Figure 6B shows the ratios of the measured gain in each 
gradient in each deliberately miscalibrated series to the mea-
sured gain in the corresponding gradient in the reference 
series. The renormalization removes the effect of the initial 

F I G U R E  1  Direction encoded color (DEC) maps. Matrix of 
mean DEC maps. Each column contains a different plane: midline 
axial (Ax), midline sagittal (Sag), and midline coronal (Cor). Each row 
contains images computed using different GCFMs for the gradient 
nonuniformity correction: uncorrected (Unc), corrected using the 
manufacturer supplied GCFM (MFG), corrected using a GCFM 
computed from phase contrast images of an oil phantom (OP), and 
corrected using the method presented in this paper (DIFF). DEC 
maps depict the anisotropy of the computed diffusivity tensor; the 
color codes the direction of the eigenvector corresponding to the 
largest eigenvalue (L/R is red, A/P is green, and S/I is blue), and the 
brightness codes the fractional anisotropy. The images are scaled so 
that colors reach full brightness for an FA of .015. The bottom image 
shows the color corresponding to an FA of 0.15 for each point in the 
“Northern Hemisphere.” Since the true FA of an isotropic phantom is 
0, the DEC map for an isotropic phantom should be black. The effect 
of thermal noise in the measurement results in a mottled map with 
no preferred direction. Gradient inhomogeneity introduces a spatial 
pattern of preferred directions, which appear as spatial patterns of 
color. The effects of gradient inhomogeneity is clearly seen as the 
red areas in the uncorrected coronal slices which do not exist in the 
corrected maps. The bright white regions with large errors at the top of 
the axial and sagittal images are caused by large local susceptibility- 
induced field gradients due to the meniscus of the air bubble
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miscalibration. This plot is hard to interpret because of errors 
in the determination of D, which changes during the course 
of the study due to RF heating of the phantom.

Figure 6C shows the same data renormalized to remove 
the effect of error in the determination of D. This plot shows 
how sensitive our method is to relative gradient miscalibra-
tion; the RMS error in the relative gain measurements is 
about 6 × 10−4.

The difference between the Figures 6 B and C are due to 
errors in the estimation of the diffusivity D. To examine this 
more closely, we acquired a series of 23 calibration datasets.

F I G U R E  2  Mean diffusivity orthogonal slices. Matrix of mean difffusivity maps. Each column contains a different plane: midline axial (Ax), 
midline sagittal (Sag), and midline coronal (Cor). Each row contains images computed using different GCFMs for the gradient nonuniformity 
correction: uncorrected (Unc), corrected using the manufacturer supplied GCFM (MFG), corrected using a GCFM computed from phase contrast 
images of an oil phantom (OP), and corrected using the method presented in this paper (DIFF). The uncorrected maps have a much wider range of 
values and a clearly organized spatial pattern. The range of values in the corrected images is much smaller. The 3 GCFMs used for the corrections 
yield similar results. The regions with large errors at the top of the axial and sagittal images are caused by large local susceptibility- induced field 
gradients due to the meniscus of the air bubble

F I G U R E  3  Mean diffusivity (MD) histograms. The figure shows 
histograms of values of MD. The traces are color coded to show 
the GCFMs used in the analysis: uncorrected (Unc, black), GCFM 
supplied by the manufacturer (MFG, red), GCFM measured from 
phase contrast images of an oil phantom (OP, green), and GCFM 
measured using the method presented in this paper (DIFF, blue). The 
effect of gradient nonlinearity is to widen and distort the shape of the 
MD histogram. The corrected histogram is much narrower and more 
symmetric; values for the standard deviations are given in Table 1

T A B L E  1  Width of peaks in MD histograms

Correction method

Standard 
deviation of MD 
(10

− 2𝛍m2∕ms)

Unc 1.19

MFG 0.48

OP 0.51

DIFF 0.46
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Figure 7 shows the diffusivity as a function of time com-
puted for an ROI near isocenter, as described above. The linear 
increase of D with time is consistent with a linear increase in the 
temperature of the phantom, presumably caused by RF heating. 
Using Equation (8), we find that the temperature of the phantom 
increased from about 22◦C for series 1 to 26◦C for series 23.

4 |  DISCUSSION

We have described and tested a method for measuring the 
gain corrected gradient coil field maps (gcGCFMs) of an MR 

F I G U R E  4  Fractional anisotropy (FA) orthogonal slices. Matrix of FA maps. Each column contains a different plane: midline axial (Ax), 
midline sagittal (Sag), and midline coronal (Cor). Each row contains images computed using different GCFMs for the gradient nonuniformity 
correction: uncorrected (Unc), corrected using the manufacturer supplied GCFM (MFG), corrected using a GCFM computed from phase contrast 
images of an oil phantom (OP), and corrected using the method presented in this paper (DIFF). The uncorrected maps contain larger values and a 
clearly organized spatial pattern. The 3 GCFMs used for the corrections yield similar results. The regions with large errors at the top of the axial 
and sagittal images are caused by large local susceptibility- induced field gradients due to the meniscus of the air bubble

F I G U R E  5  Fractional anisotropy (FA) histograms. The figure 
shows histograms of values of FA. The traces are color coded to show 
the GCFMs used in the analysis: uncorrected (Unc, black), GCFM 
supplied by the manufacturer (MFG, red), GCFM measured from 
phase contrast images of an oil phantom (OP, green), and GCFM 
measured using the method presented in this paper (DIFF, blue). The 
effect of gradient nonlinearity is to widen the peak in the histogram 
and to move it to the right. The correction narrows the peak and moves 
it to the left. The mean values of the peaks are given in Table 2

T A B L E  2  Mean values of FA

Correction Method Mean of FA

Unc 1.31 × 10
− 2

MFG 0.83 × 10
− 2

OP 0.81 × 10
− 2

DIFF 0.79 × 10
− 2
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scanner from diffusion measurements of an isotropic phan-
tom. The approach was demonstrated by analyzing data ac-
quired on a Philips scanner with symmetrical gradient coils 
using a classical Stejskal- Tanner spin echo pulse sequence (2 
identical diffusion sensitization pulses on opposite sides of 
the RF- refocusing pulse).

The method presented in this paper computes the maps 
from a set of at least 4 (7 if diffusion weighting from imaging 

gradients is unknown and non- negligible) diffusion- weighted 
images of a spherical PVP phantom. (A theoretical analysis of 
the number of images required is presented in the Supporting 
Information.) The method can be used to correct errors in 
gradient amplifier calibration, and it is simple enough to be 
used for routine QA. We have shown that the residual sys-
tematic errors in FA and MD after correction using GCFMs 
computed using the proposed method are smaller than those 

F I G U R E  6  Measured gain factors for 7 calibration scans with different machine gain settings. Each column is labeled with the prescribed gain 
vector (g

x
, g

y
, g

z
), normalized such that the default calibration is (1,1,1). Subplot A shows the raw measured gain vectors. The different values of the 

gains in the first column indicate an error in the default gain calibration values. To isolate the effect of changing the calibration values, subplot B 
shows the ratio of measured gains in each scan to the measured gain in the corresponding direction in the first series. In this plot, in each column 
the ratios of the gains are correct, but there is an error in the absolute scaling, presumably due to an error in estimating D. In subplot C this error is 
removed by multiplying each column by an appropriate factor. The RMS error in the relative gain measurements is about 6 × 10

− 4
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remaining after correction using GCFMs determined using 
the oil phantom method (the OP field maps used in this paper 
did not include GGCFs) or by those provided by the man-
ufacturer. This superior performance is probably due to the 
inclusion of correction for gradient calibration errors.

Although we have collected multi- shell data to estimate the 
GCFMs, since the diffusion attenuation of PVP is known to 
be monoexponential,25 a set of images with a single shell data 
should suffice. The problem of finding the best b- value to use 
for diffusion imaging has been investigated by Jones et al15 and 
Xing et al36. If the effects of T2 decay are neglected, the optimum 
b- value to use to measure D from a single- shell acquisition with 
1 b = 0 image and 6 diffusion- weighted images is b = 1.4∕D

.36 We expect that the optimal b- value for our purposes will be 
similar. Since the diffusivity of the 40% PVP phantom at room 
temperature is about 0.62 μm2∕ms, this acquisition would be 
specified by b- values (0, 2.2, 2.2, 2.2) ms∕μm2 and b- vectors 
(1,0,0), (0,1,0), and (0,0,1) for the diffusion- weighted images.

The methods of Teh et al34 and Lee et al17 also use diffu-
sion measurements of an isotropic phantom to compute cor-
rected b- matrices.

Teh et al use the same set of 4 images that comprise our 
minimum set of calibration data. They compute, for each 
voxel, 3 “gain factors,” one for each gradient coil, which are 
then used to rescale the corresponding components of the b- 
vectors (which are no longer unit vectors). This is equivalent to 
setting each diagonal element of L(r) equal to the correspond-
ing “gain factor” and setting the off- diagonal elements to zero.

Lee et al scan an isotropic diffusion phantom with the 
same set of b- values and b- vectors used to scan the subject, 
and use the results to compute, for each voxel and each image, 
a unique scaling factor for the b- values. This is equivalent to 

working in a reference frame in which one axis (call it axis 
1) points in the direction of the b- vector, setting L11(r) to the 
measured scaling factor and all the other elements of L(r) to 
zero, and then rotating L(r) back to the lab frame. Note that 
the reference frame used is different for each image, but is the 
same for all voxels in a given image.

In both of these methods, we expect systematic errors to 
be introduced by the fact that these methods set to zero many 
elements of L that Equation (4) requires to be non- zero. An 
additional source of systematic error in Lee et al is the use 
of a different L in each image; since all the data are acquired 
using the same hardware, every image should be described 
by the same matrix L. Although the effects of these errors 
will be very small in scans of isotropic media, which are only 
sensitive to the symmetric part of L, they would be relevant 
for anisotropic media. Therefore, for a general correction of 
gradient nonlinearity and gradient miscalibration that would 
work for both isotropic and anisotropic media, one needs to 
employ an approach in which the off- diagonal elements of 
L are properly computed. In the Supporting Information, we 
show that the proposed method accomplishes this goal.

Three other non- diffusion based methods potentially 
available for measuring the GCFMs are: (1) phase contrast 
SPGR imaging of a suitable oil phantom,26,28 (2) image dis-
tortion of images of a fiducial phantom,33 and (3) field cam-
era.9 Of these 3 methods, we provided a direct comparison 
only with the oil- phantom method. The histogram analysis 
of DTI- derived quantities (Figure 3) and the analysis of the 
variance across the phantom after correction (Tables 1 and 
2), show that the proposed method is slightly superior to the 
oil- phantom based method. However, the main improvement 
for both methods is with respect to the uncorrected data.

F I G U R E  7  Changes in diffusivity and its effect on measurements of gradient gain measurements in a series of calibration scans. The figure 
shows the diffusivity D plotted against time for a series of calibration scans. Each calibration scan took about 551s to acquire, and they were 
acquired consecutively. The diffusivities were computed by defining an ROI in the center of the phantom and assuming that the actual diffusion 
weighting was the prescribed diffusion weighting. The measured diffusivity increases linearly with time, consistent with the expected effect of RF 
heating of the phantom during the scan. Using Equation (8), we find that during the scan, which took about 2 hr and 20 minutes, the temperature of 
the phantom increased from about 22. 1

◦
C to 25. 8

◦
C
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The primary potential limitation of our method is the qual-
ity of EPI images of the phantom. In EPI images, magnetic 
field gradients caused by the magnetic susceptibility of the 
sample can cause significant distortions. To minimize such 
distortions, parallel imaging is commonly used. SENSE, one 
common method of parallel imaging, can generate ghosting 
artifacts. These ghosting artifacts are much more noticeable 
in images of phantoms than in images of brains. The im-
ages we present in this paper were acquired without parallel 
imaging.

Because the magnetic fields inside a uniform paramag-
netic or diamagnetic sphere embedded in a uniform mag-
netic field are uniform and parallel to the applied field, there 
will be no susceptibility induced image distortions in an EPI 
image of such a sphere. The phantom we used is spherical, 
but due to imperfections in manufacturing, it has a small air 
bubble that causes image distortions. Use of a diffusion phan-
tom without a meniscus would improve the performance of 
our method.

All the data used in this paper to validate our method 
were acquired with pulse sequences that contain pairs of 
identical diffusion sensitization gradients separated by an 
inversion RF pulse. Evaluation and optimization for dif-
fusion pulse sequences with diffusion gradients that lack 
that symmetry will require further study. Although such 
sequences are frequently used because they are more ef-
ficient and generate smaller eddy currents, they generate 
images that contain artifacts caused by concomitant fields 
that cause additional systematic errors in quantitative dif-
fusion imaging.31,32

The primary intended use of our GCFMs is the calculation 
of accurate b- matrices for quantitative diffusion imaging. To 
simplify use of our method, software for using our method to 
analyze DTI data will be included in future versions the soft-
ware package TORTOISE (www.torto isedti.org). The output 
of TORTOISE will include corrected voxelwise b- matrices 
that in turn could be used to compute corrected voxelwise 
b- values and b- vectors that most software packages use. As 
mentioned previously, the correction provided is valid for 
both isotropic and anisotropic media and would be useful 
for all applications of diffusion MRI from the simplest ADC 
computation to HARDI- based tractography and microstruc-
tural imaging.

We are hopeful that the method presented in this paper 
will evolve into practical quality assurance protocols to 
help reduce errors and improve intersite harmony of DMRI 
results.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.
TEXT S1 The purpose of this supplement is to put our 
method on a sound theoretical footing by studying the mathe-
matical problem of constructing the gcGCFMs (and a fortiori 
the transformation matrix L) from diffusion measurements 
of an isotropic phantom. We will show that, in general, a set 
of seven images (one b = 0 image and six images with dif-
fusion sensitization directions) are sufficient to uniquely de-
termine all the elements of L to within an additive constant, 
which is known to be zero for a properly constructed coil, and 
that only four images (one b = 0 image and three diffusion 
weighted images) are required if it is known a priori that the 
fields possess certain symmetries under reflection.
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APPENDIX A

EXPANSION OF gcGCFMs USING 
SOLID HARMONICS BASIS 
FUNCTIONS
The real solid harmonics are:

where
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where the spherical polar coordinates of the position vector are 
(R0�, �,�), R0 is a scale factor with dimensions of distance, and 
Pm

l
(q) is the associated Legendre polynomial of degree l and 

order m. These basis functions are related to the usual Spherical 
Harmonics Ylm

13 by the formulas

(To within a normalization constant, this is the same set of 
basis functions that most manufacturers use to describe their 
gradients.)

The gcGCFMs can be expanded in solid harmonics:

where k labels the gradient direction (x, y, or z), and ck
lm

 and sk
lm

 
are the expansion coefficients for the gcGCFMs.

It is sometimes useful to write the gcGCFMs in terms of 
gain factors gk and the GCFM expansion coefficients clm and 
slm:

Note that

and the expansion coefficients for the GCFMs and the gcG-
CFMs are related by

The basis functions included in our fits and their spatial deriva-
tives are: For the x- gradient coils.
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For the y- gradient coils.

For the z- gradient coils.
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= −3xz

(A49)
�ucos

50

�x
= −

5

2
xz(−3x2−3y2+4z2)

(A50)

�ucos
70

�x
= −

21

8
xz(5x4+5y4−20y2z2+8z4+10x2(y2−2z2))

(A51)
�ucos

10

�y
=0
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(A52)
�ucos

30

�y
= −3yz

(A53)
�ucos

50

�y
= −

5

2
yz(−3x2−3y2+4z2)

(A54)

�ucos
70

�y
= −

21

8
yz(5x4+5y4−20y2z2+8z4+10x2(y2−2z2))

(A55)
�ucos

10

�z
=1

(A56)
�ucos

30

�z
= −

3

2
(x2+y2−2z2)

(A57)
�ucos

50

�z
=

5

8
(3x4+3y4−24y2z2+8z4+6x2(y2−4z2))

(A58)

�ucos
70

�z
= −

7

16
(5x6+5y6−90y4z2+120y2z4−16z6+15x4(y2−6z2)+

15x2(y4−12y2z2+8z4))


