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Abstract

Capirona (Calycophyllum spruceanum (Benth.) K. Schum.) and Bolaina (Guazuma crinita

Lam.) are fast-growing Amazonian trees with increasing demand in timber industry. There-

fore, it is necessary to determine the content of cellulose, hemicellulose, holocellulose and

lignin in juvenile trees to accelerate forest breeding programs. The aim of this study was to

identify chemical differences between apical and basal stem of Capirona and Bolaina to

develop models for estimating the chemical composition using Fourier transform infrared

(FTIR) spectra. FTIR-ATR spectra were obtained from 150 samples for each species that

were 1.8 year-old. The results showed significant differences between the apical and basal

stem for each species in terms of cellulose, hemicellulose, holocellulose and lignin content.

This variability was useful to build partial least squares (PLS) models from the FTIR spectra

and they were evaluated by root mean squared error of predictions (RMSEP) and ratio of

performance to deviation (RPD). Lignin content was efficiently predicted in Capirona

(RMSEP = 0.48, RPD > 2) and Bolaina (RMSEP = 0.81, RPD > 2). In Capirona, the predic-

tive power of cellulose, hemicellulose and holocellulose models (0.68 < RMSEP < 2.06,

1.60 < RPD < 1.96) were high enough to predict wood chemical composition. In Bolaina,

model for cellulose attained an excellent predictive power (RMSEP = 1.82, RPD = 6.14)

while models for hemicellulose and holocellulose attained a good predictive power (RPD >
2.0). This study showed that FTIR-ATR together with PLS is a reliable method to determine

the wood chemical composition in juvenile trees of Capirona and Bolaina.

Introduction

The Amazonian Forest plays an important role in human being and environmental welfare;

however, the growing deforestation could reach a summit point thus this forest will turn to

non-forest ecosystem [1, 2]. Just in the last 10 years, agriculture, mining, narcotraffic and
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growing population [2] have contributed to the disappearance of 26 million Ha of Amazonian

Forest [3], an area close to New Zealand surface. Thus, Amazonian deforestation has increased

the intensity of global warming, loss of biodiversity and affects indigenous communities

adversely (migration, prostitution, etc) [2]. Deforestation also increases risk of human contact

with zoonotic pathogens [4].

In this context, tree breeding is a competitive and environmentally friendly opportunity to

recover and increase woody biomass [5]. Tree breading programs increase wood quality and

forestry production; such is the case of Scots pine, Norway spruce, Stika spruce, Eucalyptus pel-
lita and Acacia mangium [5, 6]. In the amazon forest there is interest in tree breading pro-

grams of Capirona and Bolaina [7]. These fast-growing trees deliver wood products at an early

stage [8] and can be coppiced for successive harvests [9]. Both species have a high wood market

demand and are widely used for reforestation [10–12]. Furthermore, the production of both

species is a sustainable activity for small farmers across Amazon and provides environmental

services like carbon capture, conservation of biodiversity and soil fertility [8].

Selection of superior trees (plus-tree) is normally based on visual properties rather

than quality parameters such as cellulose, hemicellulose and lignin content [5, 6]. The

chemical composition is a key feature that determines wood quality and the end-use of

wood in early stage [13, 14]. For instance, lignin is particularly appreciated in timber indus-

try but not in pulp production, while cellulose is quite valued in pulp industry [13]. The

information of chemical composition can help breeders in the selection process of superior

trees [6]. However, determination of chemical composition using conventional methods is

expensive (USD 1000 per tree), time consuming, destructive and requires chemical reagents

[6, 15].

On the contrary to conventional techniques, FTIR-ATR spectroscopy is a practical and eco-

nomical analytic method to determine wood chemical composition [15]. This method has

been successfully used to identify cellulose, hemicellulose, lignin, monosaccharide, extractive

compounds and proteins in forest species [15–18]. The complex data generated by FTIR-ATR

(vibration of chemical bonds and functional groups) is processed by multivariate analysis [19]

such as partial least squared (PLS). This multivariate method is one of the most used ones and

can predict sample properties by a number of latent variables which compress spectral infor-

mation [20]. Despite the successful application and numerous advantages of these methods,

they are barely applied in native Amazonian trees.

To the best of our knowledge, there is no FTIR-ATR spectroscopy coupled to PLS in fast

growing trees in juvenile stages. Therefore, the aim of this work was to develop efficient mod-

els to predict cellulose, hemicellulose, holocellulose and lignin content in juvenile trees of

Capirona and Bolaina.

Material and methods

Plant material

100 Capirona trees and 150 Bolaina trees acquired from Ayahuasca Ecolodge E.I.R.L. and

Est. Exp. Agraria Pucallpa–Ucayali–INIA, were kept in a net house in La Molina (12˚05’ S,

76˚57’ W and 243.7 masl). When trees reached 1.8 year-old, the samples were collected from

apical and basal stem to expand range of wood chemical variability. We grouped 4 and 6

plants as a sample for Capirona and Bolaina, respectively, to reach enough dry matter (5 g)

for chemical analysis. In both species, the third and fourth internode from the upper stem

were taken as apical samples while the third and fourth internodes from the lower stem as

basal samples.
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Wood chemical analysis

The harvested stems were cut into small pieces, dried at 60ºC and milled to quantify cellulose,

hemicellulose, and lignin content according to Van Soest and Robertson [21]. This method

determines neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin

(ADL) after digesting samples with chemical reagents. NDF is first obtained after digestion in

neutral detergent solution, and it mainly consists of cellulose, hemicellulose and lignin. After

digesting NDF with acid detergent, ADF is obtained and contains cellulose and lignin predom-

inantly. To obtain ADL, cellulose was removed from ADF with H2SO4. Cellulose content is

calculated from the difference between ADF and ADL, hemicellulose from the difference

between NDF and ADF. Lignin content is expressed as ADL and holocellulose was determined

by addition of cellulose with hemicellulose [22]. We analysed 25 samples per apical and basal

stem and all experiments were run twice for each sample. Analysis of variance (ANOVA) fol-

lowed by Tukey comparison test (α = 0.05) between the chemical composition of apical and

basal stem was performed using R studio.

FTIR-ATR spectroscopy

Spectra from dried, milled and sieved (60 Mesh) samples of both species were collected. All

samples were kept in sealed containers at air-dry moisture content [27]. Triplicated FTIR spec-

tra of each sample were acquired by attenuated total reflection (ATR) in Spectrum 100 Perkin

Elmer spectrometer equipped with a diamond ATR accessory, a Tantalato de Litio detector

and a KBr beam splitter. Thirty-two scans were run per sample in the spectra range between

4000 cm-1 and 400 cm-1 at 4 cm-1 spectral resolution. Before each measurement, background

spectra with the same settings were collected.

Chemometrics

Data acquisition and pre-processing. Spectral data were acquired through Spectrum 10

software in SP format. Prior to pre-procesing, spectral data were mean-centered. To remove

the effect of interference factors (light scattering, noise, and pathlength variations) from spec-

tral data, the following pre- processing methods (Savitzky-Golay first derivative, Savitzky-

Golay second derivative, Smoothing, standard normal variation, multiplicative scatter correc-

tion, straight line correction and min-max normalization) were evaluated. Pre-processing was

applied in the full spectra region (3700–850 cm-1) and the fingerprint region (1800–850 cm-1).

Partial Least Squares (PLS) analysis. PLS regression was used to build models for pre-

dicting cellulose, hemicellulose, holocellulose and lignin content from FTIR spectra. A cross

validation was performed in the Peak spectroscopy software (https://www.essentialftir.com/)

to select the best pre-treatment for each compound in the full spectra and the fingerprint

region. Once identified the best pre-treatment for each compound, the data were split into cal-

ibration set (100 spectra) and validation set (50 spectra). Models were built using calibration

set and evaluated using validation set.

Determination of number of latent variables. Two methods were performed to deter-

mine the number of latent variables: Haaland and Thomas [23] and Gowen et al. [24]. This last

method uses the appearance of noise in regression coefficients as a sign of over-fitting. The

noise and sharp peaks in regression coefficients were quantified (Jaggedness) and paired to

RMSE to estimate the optimal numbers of latent variables [24].

Model evaluation. Performance of models were evaluated using root mean squared error

of calibration (RMSEC) and predictions (RMSEP), coefficient of determination of calibration

(R2
c ) and prediction (R2

p), and ratio of performance to deviation (RPD). To assess the predictive
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ability of models (RPD), Santos et al. [25] and Li et al. [26] formula were used. According to

Karlinasari et al [27], models with RPD values higher than 1.5 are satisfactory and useful for

initial screenings and preliminary predictions, RPD values between 2.0 and 2.5 have very good

prediction and RPD values higher than 3 are efficient prediction. In wood samples an RPD of

1.5–2.5 is enough to predict wood chemical composition [28]. Finally, the best model perfor-

mance was selected based on R2
c and R2

p values close to 100%, RMSEC and RMSEP values close

to zero and a high RPD value [17].

Results and discussions

Analysis of chemical composition

The chemical composition of the apical and basal stem for both species (S1 Table) was deter-

mined by Van Soest and Robertson [21] method and it is summarized in Table 1. In both spe-

cies, the percentage of cellulose and holocellulose was significantly higher (p< 0.001) in the

basal stem than apical stem. In contrast, a significant decrease in hemicellulose was observed

in the basal stem with respect to apical stem in Capirona (p<0.05) and Bolaina (p<0.001).

Like carbohydrates, lignin content increased in Capirona basal stem while in Bolaina the lignin

content decreased in the apical stem. Therefore, the higher content of carbohydrates and lignin

in the base of trees may be related to denser wood as an adaptative response to alleviate any

bending stress related to wind and other forces [9, 29]. The mechanical benefit of denser wood

is the increasing strength in supporting tissues at the base of tree stalk where cellulose provides

strength and lignin, compression and shear resistance [30].

FTIR spectra

In the FTIR spectra of Capirona and Bolaina wood, two regions of analysis were distinguished

(3800–2800 cm-1 and 1800–850 cm-1), see Fig 1. The peak numbers and their assignment to

chemical compounds are presented in Table 2. All samples show peaks 1, 2 and 3, which were

assigned to O-H stretching, symmetric and asymmetric C-H stretching, respectively (Fig 1 and

Table 1. Descriptive statistics of the chemical composition of C. spruceanum and G. crinita.

Specie Calycophyllum spruceanum Guazuma crinita
Compound % Cel % Hem % Hol % L % Cel % Hem % Hol % L

Apical stem

Average 29.81��� 10.17� 39.98��� 8.14��� 20.44��� 19.31��� 39.75��� 12.25���

Minimum 26.24 8.08 35.84 7.05 16.48 11.56 31.54 7.82

Maximum 36.13 12.13 46.19 9.88 25.83 35.27 53.77 15.56

SD 2.47 0.92 2.47 0.64 2.03 5.92 5.48 1.89

Basal stem

Average 35.97��� 9.64� 45.61��� 9.65��� 42.44��� 14.25��� 56.69��� 11.22���

Minimum 30.91 5.49 38.99 8.14 38.83 12.42 52.04 7.26

Maximum 41.69 13.64 51.49 11.28 48.67 16.53 63.98 14.33

SD 2.94 1.39 3.16 0.67 2.04 0.86 2.37 1.35

Cel: Cellulose, Hem: Hemicellulose, Hol: Holocellulose and L: lignin.

Significance:

� p < .05,

�� p < .01 and

��� p < .001.

https://doi.org/10.1371/journal.pone.0256559.t001
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Table 2) and they are presented in all components of wood [31]. In the fingerprint (1800–850

cm-1), there were many peaks assigned to cellulose (peaks 11, 13 and 16), hemicellulose (peak

4), lignin (peaks 6 and 7), holocellulose (peaks 10, 12, 14 and 15) and common peaks to carbo-

hydrates and lignin (peaks 8 and 9).

Peak 4 corresponds to vibration bonds of C = O in hemicellulose and extractive compounds

such as esterified resin acids, waxes and fats [17, 33] and its absorbance was higher in the basal

stem than apical stem in both the species, which contradicts the chemical analyses (Table 1).

These differences could be explained because of the presence of extractive compounds which

can be masking hemicellulose vibration [37]. In relation to lignin, peaks 6 and 7 indicate the

vibration of the aromatic skeletons [17, 33] and there were more intense in the basal stem than

apical stem in both the species. However, peak 6 was not well defined in Capirona due to the

presence of a prominent peak 5, which is attributed to calcium oxalate and flavones [33].

While in Bolaina, peak 5 is poorly defined in apical stem, which could be a signal of a little

presence of extractives [34] and it is close to peak 6. Peaks 5, 6 and 7 are in the region from

1750 to 1510 cm-1, which was used by Funda et al. [18] to report chemical differences between

juvenile and mature wood in Scots pine because of vibrations in lignin and some carbohy-

drates. Similarly, Ozgenc et al. [38] were able to determine lignin content in alder and cedar

Fig 1. A representative average raw ATR-FTIR spectra from juvenile trees of Capirona and Bolaina.

https://doi.org/10.1371/journal.pone.0256559.g001
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based on skeleton of aromatics rings (1508–1510 cm-1 and 1603–1609 cm-1). Moreover, peaks

8, 9, 10 and 11 were assigned to stretching and bending bonds of carbohydrates and lignin

[16–18, 32, 34, 35]; the absorbance of these peaks in Capirona was higher at basal than apical

stem and it was in agreement with chemical analysis (Table 1). For Bolaina, the absorbance of

peaks 9, 10 and 11 (Fig 1B) was higher in the apical section versus basal stem but peak 8 was

not distinguished. The spectral region (1510–1265 cm-1) for peaks 8, 9, 10 and 11 was also

used in Pinus koraiensis to detect high lignin and carbohydrates concentrations in artificial

inclined stem [39]. In the carbohydrate region (1200 to 890 cm-1), peaks 12, 13, 14, 15 and 16

(Fig 1A and 1B) evidenced a higher concentration of carbohydrates in the basal stem than in

the apical stem in both the species. Furthermore, within the fingerprint region, Acquah et al.

[36] were able to report polysaccharides by the presence of peaks: 897 cm-1, 1030 cm-1 (C-H

deformation in cellulose and C-O stretch in polysaccharides), 1157 cm-1 (C-O-C vibrations)

and 1239 cm-1 (C-O stretch and O-H stretch in plane in polysaccharides) in forest logging

residue. Thus, the FTIR spectra evidenced the compositional difference in different forest

samples.

PLS modeling

PLS regression was applied to develop predictive models that correlate FTIR spectra with

chemical wood composition. First, cross validation was performed to select the best pre-treat-

ment for each compound in the full spectra and fingerprint region (S2 Table). The number of

latent variables (LV) were determined by Haaland & Thomas [23] method, however higher-

order latent variables were observed (S2 Table). Therefore, Gowen et al. [24, 40] method was

used to prevent overfitting. Then, external validation was performed using the best predictive

model obtained by cross validation (Table 3). RMSEC, RMSEP, R2
c , R

2
p and RPD were used to

evaluate the model performance.

Table 2. Assignment of peaks in FTIR spectra of C. spruceanum and G. crinita.

Peak Boliana Capirona Assignments References

Apical Basal Apical Basal

1 3266 3340 3281 3315 Lignin, cellulose and hemicellulose: OH intramolecular and intermolecular stretching. [32]

2 2923 2922 2923 2923 Lignin, cellulose and hemicellulose: symmetric methyl and methylene stretching. [32]

3 2853 2857 2854 2855 Lignin and hemicellulose: asymmetric methyl and methylene stretching. [32]

4 1718 1733 1730 1731 Hemicellulose: C = O stretching in unconjugated ketone, carbonyl, and aliphatic groups. Extractives: C = O

stretching in ester carbonyl.

[17, 33]

5 - 1622 1621 1623 Flavones and calcium oxalate: C = O stretching. [33]

6 1603 1598 - - Lignin and extractives: aromatic ring vibration. [17, 33]

7 1518 1508 1516 1511 Lignin and extractives: aromatic skeletal vibrations. [17, 33]

8 - - - 1447 Cellulose, lignin, and hemicellulose: O-H in-plane bending. [34]

9 - 1422 1417 1419 Lignin: C = O stretching and aromatic skeletal vibration. Carbohydrates: CH and OH bending. [16–18,

32]

10 1371 1372 1373 1371 Cellulose and hemicellulose: CH bending. [32, 35]

11 1320 1319 1318 1318 Cellulose: CH2 wagging. [32, 35]

12 1243 1240 1244 1239 Polysaccharides: C-O stretch and O-H in plane [36]

13 - 1155 1150 1152 Cellulose: C–O–C asymmetric stretching [32]

14 1104 - - 1099 Cellulose and hemicellulose: C–O–C stretching. Lignin: Aromatic C–H in-plane deformation. [32, 35]

15 1032 1032 1024 1021 Holocellulose and lignin: C–O stretching. [33]

16 893 897 896 897 Cellulose: C1–H deformation [33]

https://doi.org/10.1371/journal.pone.0256559.t002

PLOS ONE Wood chemichal determination in juvenile trees of Bolaina and Capirona by FTIR-ATR & PLS

PLOS ONE | https://doi.org/10.1371/journal.pone.0256559 October 27, 2021 6 / 12

https://doi.org/10.1371/journal.pone.0256559.t002
https://doi.org/10.1371/journal.pone.0256559


The lignin models of Capirona and Bolaina (Table 3) were highly accurate because of low

RMSEP values (0.48 and 0.81, respectively), with a good prediction power (RPD > 2.0) and a

good data fitting (R2
c of 90.2% and 82.6%). Our results are in agreement with Acquah et al.

[36], Zhou et al. [17], Zhou et al. [37], who reported values of R2� 90–80% and RMSEP�

0.47–0.80. Despite these authors reported models with lower RPD (1.4 and 1.72) values than

our models´ (see Table 3), the author models were considered to have a good predictive

power.

In Capirona, the predictive power of cellulose (Fig 2A), hemicellulose (Fig 2B) and holocel-

lulose (Fig 2C) models were satisfactory to quantify these compounds. The RPD values of

these three compounds were within 1.5 to 2.0 range (Table 3), they are suitable for initial

screenings and preliminary predictions [26, 27]. However, these models would be proper for

estimating wood properties according to Hein et al. [28]. Moreover, the R2
c values for cellulose

and holocellulose content were 85.1% and 83.0%with a RMSEP of 2.06 and 2.07, respectively.

Meanwhile, the R2
c value for hemicellulose was 77.3% with a RMSEP of 0.68. A good hemicellu-

lose predictive model with similar values to our model was reported by Funda et al. [18] in

juvenile wood of Scots pine. Furthermore, our cellulose model is consistent with Zhou et al.

[17], who reported R2 and RPD values of 85.62% and 1.72 in hardwoods so this model was

strong enough for screening and cellulose characterization. Finally, our holocellulose model

was better than the one reported by Acquah et al. [36] in forest logging residue. On the other

hand, Funda et al. [18], Zhou et al. [17] and Acquah et al. [36] reported more efficient lignin

models based on a high RPD and a low RMSEP than carbohydrate models. We found this

trend in Capirona models too. A possible explanation to this trend may be the presence of

unique chemical structures in lignin unlike carbohydrates [36].

In Bolaina, the RMSEP values of cellulose, hemicellulose and holocellulose (1.82, 2.12 and

3.16, respectively) were higher compared to that of the other authors. For instance, Funda

et al. [18], who reported RMSEP values from 0.69 to 0.71 in cellulose and 0.71 in hemicellulose,

while Zhou et al. [17] found RMSEP values from 0.8 to 1.9 in cellulose and hemicellulose.

Since R2 value depends on the distribution of the data and not only on the model performance

[41], it is possible to use it as a secondary measure of model performance [18]. Thus, the per-

formance models should achieve RMSEC and RMSEP values close to zero, a high RPD with R2
c

and R2
p values close to 100%. In Table 3, models showed a high predictive power (RPD > 2)

Table 3. Performance evaluation of PLS models to predict wood chemical composition.

Species Component PP LV R2
c RMSEC R2

p RMSEP RPDa RPDb

Capirona Cellulose 2ndDer 4 85.1 1.57 74.0 2.06 1.96 1.96

Hemicellulose 1stDer 5 77.3 0.52 61.1 0.68 1.60 1.60

Holocellulose 2ndDer 4 83.0 1.62 72.1 2.07 1.89 1.90

Lignin 2ndDer 4 90.2 0.31 75.4 0.48 2.02 2.06

Bolaina Cellulose MM-N 4 97.3 1.83 97.3 1.82 6.14 6.14

Hemicellulose 1stDer 5 85.1 1.98 81.3 2.12 2.31 2.32

Holocellulose V-N 6 89.3 3.09 88.8 3.16 2.99 2.99

Lignin 1stDer 6 82.6 0.72 77.7 0.81 2.12 2.12

PP: Pre-processing methods: (1st Der: First derivative, 2nd Der: Second derivative. MM-N: Min—Max normalization and V-N: Vector normalization).

LV: Latent variables according to Gowen et al. [21].
a RPD according to Santos et al. [25].
b RPD according to Li et al. [26].

https://doi.org/10.1371/journal.pone.0256559.t003
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with RMSEP slightly high, so R2 was considered to evaluated model performance. Thus hemi-

cellulose (Fig 3B) and holocellulose (Fig 3C) models had a high data correlation (R2
c of 85.1

and 89.3, respectively) and RPD> 2.0, so they were considered as very good prediction models

[26, 27]. Cellulose model (Fig 3A) showed exceptionally high values of R2
c ¼ 97:3 and

RPD = 6.14, so it was classified as an excellent predictive model [26, 27]. In contrast, the cellu-

lose, hemicellulose and holocellulose models reported by Acquah et al. [36] in forest logging

residue and Zhou et al. [17] in hardwoods were considered satisfactory.

On the other hand, in Bolaina lignin model (Fig 3D) had a higher accuracy (RMSEP = 0.81)

than carbohydrates models (RMSEP from 1.82 to 3.16), which agrees with Pinus sylvestris [18],

forest logging residue [36] and hardwoods [17] models. However, the lignin model presented

lower predictive power (RPD = 2.12) than the carbohydrates models (RPD from 2.32 to 6.14).

In NIR, Karlinasari et al. [27] and Jiang et al. [22] reported this trend in Acacia mangium and

Pinus spp, respectively.

For Capirona and Bolaina, the accuracy of the models (RMSEP) was higher in lignin than

the carbohydrate models (Table 2). According to Hein et al. [25], an RPD > 1.5 allows to

quantify the chemical composition of the wood. However, the RPD scale established by Karli-

nasari et al. [27] allows a better classification of the models. Finally for each model, the values

of R2 and RMSE were close between the set of calibration and validation, therefore models

have good predictive capacity according to Li et al. [26].

Fig 2. Prediction of cellulose, hemicellulose, hollocelulose and lignin content by multivariate models with FT-IR (PLS) in Capirona (C.

spruceanum). A: Cellulose, B: Hemicellulose, C: Holocellulose and D: Lignin. R2
c : coefficient of determination of calibration. RMSEP: root mean

squared error of predictions. RPD: ratio of performance to deviation. Solid line: regression line of calibration set. Dashed line: regression line of

validation set.

https://doi.org/10.1371/journal.pone.0256559.g002
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Conclusions

A rapid method for wood composition determination in an integrated production system

based on Capirona (international market) and Bolaina (national market) is required for

genetic improvement and hence improve a forest-based bioeconomy in Amazon. This study

confirmed significant differences in cellulose, hemicellulose, holocellulose and lignin content

between apical and basal stem in Capirona and Bolaina. The variability found was used to

build PLS models to estimate cellulose, hemicellulose, holocellulose and lignin content in juve-

nile wood from FTIR-ATR spectra. Thus, lignin models of both species achieved high accuracy

(low RMSEP) and were considered as very good prediction models (RPD > 2). In Bolaina,

models of hemicellulose and holocellulose showed a very good prediction power (RPD > 2.0),

meanwhile cellulose model was excellent (RPD > 3.0). In Capirona, cellulose, hemicellulose

and holocellulose models attained sufficient predictive power (RPD> 1.5) to estimate wood

composition. Thus FTIR-ATR spectroscopy combined with PLS models offers a technologic

tool that can be applied to early tree selection based on chemical wood composition.

Supporting information

S1 Table. Wood chemical composition.

(XLSX)

Fig 3. Prediction of cellulose, hemicellulose, hollocelulose and lignin content by multivariate models with FT-IR (PLS) in Bolaina (G. crinita). A:

Cellulose, B: Hemicellulose, C: Holocellulose and D: Lignin. R2
c : coefficient of determination of calibration. RMSEP: root mean squared error of

predictions. RPD: ratio of performance to deviation.
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