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ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) describes a spectrum of liver conditions from simple steatosis, steatohepatitis to end-stage
liver disease. The prevalence of NAFLD has been on the rise in many parts of the world, including Asia, and NAFLD is now the liver
disease associated with the highest mortality, consequent to the increased risk of cardiovascular diseases and hepatocellular carci-
noma. Whereas NAFLD is an independent risk factor for type 2 diabetes, increased hepatic and peripheral insulin resistance contrib-
ute to the pathogenesis of both NAFLD and diabetes, which are associated with enhanced cardiovascular risk. Studies in humans
and animal models have suggested obesity as the common link of these two diseases, likely mediated by adipose tissue inflamma-
tion and dysregulated adipokine production in obesity. In the present review, we discuss recent advances in our understanding of
the role of several novel adipokines (adiponectin, adipocyte fatty acid binding protein and fibroblast growth factor-21) in the patho-
physiology of NAFLD and diabetes, as well as their use as potential biomarkers and therapeutic targets for dysglycemia in NAFLD
patients. (J Diabetes Invest, doi: 10.1111/jdi.12093, 2013)
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) was first recognized
in 1980. Over the past few decades, it has rapidly become the
most common form of liver disease, concomitant with the
increasing prevalence of obesity worldwide1. NAFLD describes
a spectrum of liver conditions ranging from simple steatosis to
severe steatosis with marked inflammation, termed non-alco-
holic steatohepatitis (NASH), which can be complicated by
cirrhosis, end-stage liver failure and hepatocellular carcinoma2,3.
Population screening has estimated the prevalence of NAFLD
diagnosed on ultrasound (US-NAFLD) in the general popula-
tion in Asian countries to be approximately 15–20%4,5, akin to
that in Western countries6,7. Its prevalence has doubled in
urban Chinese cities in the past two decades8,9. People with
NAFLD are usually asymptomatic at the early stage. However,
NAFLD patients have a higher overall mortality than the
general population10,11. In a 21-year follow up of biopsy-proven
NAFLD, the main causes of death were cardiovascular disease
and malignancy12, as opposed to cirrhosis in those with alco-
holic liver disease. The pivotal links between NAFLD and car-
diovascular disease are metabolic disorders, including diabetes,
dyslipidemia and hypertension13,14.

A strong association exists between NAFLD and type 2 dia-
betes, with NAFLD found in up to 70% of patients with type 2
diabetes15. In addition, a significant proportion of patients with
NAFLD develop impaired glucose tolerance (IGT) or type 2
diabetes, dyslipidemia or hypertension a median of 6 years after
diagnosis of NAFLD16. In a 5-year retrospective review, partici-
pants with US-NAFLD had higher risks of impaired fasting
glucose, type 2 diabetes, insulin resistance and hypertriglyceri-
demia than NALFD-free controls17. Furthermore, the presence
of type 2 diabetes is associated with a more progressive course
and higher rate of progression to cirrhosis18. Thus, prediction
and early intervention of dysglycemia in NAFLD might have
additive benefits in reducing cardiovascular risk and decreasing
the rate of NAFLD progression.
Obesity is a major risk factor of both NAFLD and type 2

diabetes, and likely provides the common link through insulin
resistance (Figure 1). Specifically, visceral, liver and skeletal fat
accumulations each play distinct, but overlapping roles in the
development of insulin resistance. It is now recognised that
insulin resistance in obesity is largely consequential to adipose
tissue inflammation and adipokine dysregulation19.

RELATIONSHIP BETWEEN LIVER, ADIPOSE TISSUE AND
TOTAL INSULIN RESISTANCE
NAFLD and type 2 diabetes are associated with hepatic and
adipose tissue insulin resistance, and reduced whole-body insu-
lin sensitivity. The ability of insulin to suppress hepatic glucose
production was impaired to a similar extent in subjects with
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NAFLD and in those with type 2 diabetes. Glucose disposal
during clamp study, a measure of whole-body insulin sensitiv-
ity, was reduced by nearly 50% in NAFLD subjects, similar to
that in type 2 diabetes patients20.
The pathogenesis of NAFLD was originally described by the

‘two-hit hypothesis’, and subsequently, modified as the ‘multi-
hit hypothesis’, which describes the first hepatic insult as the
dysregulation of fatty acid metabolism, leading to steatosis21.
Insulin resistance plays a central role in the first insult, contrib-
uting to an imbalance between factors that promote hepatic fat
accumulation (free fatty acid flux to the liver and de novo
lipogenesis) and factors that prevent fatty acid build-up (fatty
acid export and oxidation). This renders hepatocytes suscepti-
ble to the secondary insults (‘multiple hits’) of adipokine-
induced liver injury, oxidative and endoplasmic reticulum (ER)
stresses, mitochondrial dysfunction, and hepatic apoptosis,

which subsequently promote the transition from simple steato-
sis to NASH22. More recently, lipid partitioning in liver cells, as
regulated by stearoyl-CoA desaturase-1 (SCD1), the enzyme
that converts saturated free fatty acids (SFA) to monounsatu-
rated free fatty acids (MUFA), and the ratio of SFA to MUFA,
has been implicated in the progression from simple steatosis to
NASH. A higher ratio has been suggested to confer a greater
risk of hepatic cell damage by the influx of exogenous free fatty
acids (FFA) and apoptosis, inflammation, and fibrosis23.
In addition to hepatic insulin resistance, NAFLD is associated

with a defect in insulin-mediated suppression of lipolysis, in
keeping with insulin resistance in adipose tissues24. These find-
ings suggest that insulin resistance might be an intrinsic defect
in NAFLD, similar to that in type 2 diabetes, and that blunted
insulin responsiveness at the level of the adipocytes might con-
tribute to hepatic steatosis through excess free fatty acid flux to
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Figure 1 | Obesity is a common link between type 2 diabetes (T2DM) and non-alcoholic fatty liver disease (NAFLD). Adipose tissue dysfunction is
characterized by inflammation and adipokine dysregulation, and subsequent ectopic fat deposition in the abdominal viscera and liver, and insulin
resistance. It significantly contributes to the development of NAFLD and diabetes mellitus.
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the liver25. Isotope-tracer studies in obese humans with NAFLD
on a low-fat diet showed that nearly 60% of hepatic triglyce-
rides comes from FFA derived from adipose tissues, 26% from
de novo lipogenesis and 15% from diet26. This would suggest
that, in the absence of a high-fat diet, the increased release of
fatty acids from adipose tissues is the predominant source of
excess hepatic fat accumulation.

ROLE OF ADIPOKINES IN THE PATHOGENESIS OF
NAFLD AND DIABETES
As obesity develops, changes in the size of adipocytes and fat
deposits result in modifications of paracrine function in the adi-
pose tissues leading to a chronic inflammatory state. In obese adi-
pose tissues, the release of tumor necrosis factor-alpha (TNF-a)
stimulates adipocytes to secrete monocyte chemoattractant pro-
tein-1 (MCP-1), leading to macrophage recruitment. Macro-
phage-related cytokine signaling promotes lipolysis through a
decrease in lipid droplet stabilizing proteins (such as perilipin, fat
specific protein 27). Lipolysis and the release of pro-inflammatory
adipokines from adipose tissues; for example, leptin, further pro-
mote macrophage activation. The presence of activated macro-
phages, mediated by adipokine dysregulation, perpetuates a
vicious cycle of macrophage recruitment, inflammatory cytokine
production, lipolysis and impaired adipocyte function. This state
of chronic inflammation stimulates nuclear factor-jB
(NF-jB) and Jun N-terminal kinase (JNK) pathways in adipo-
cytes27. We have shown that transgenic mice with selective inacti-
vation of JNK in adipose tissues (aP2-dn-JNKmice) are protected
against high fat diet (HFD)-induced obesity, insulin resistance
and glucose intolerance. The expression of several pro-inflamma-
tory cytokines, including TNF-a, interleukin-6 and MCP-1, are
decreased in the transgenic mice, compared to wild-type litter-
mates, whereas that of adiponectin, an anti-inflammatory adipo-
kine, is increased. The messenger ribonucleic acid (mRNA) levels
of hepatic gluconeogenic genes, phosphoenolpyruvate carboxy-
kinase (PEPCK) and glucose 6-phosphatase (G6Pase), are also
significantly decreased in aP2-dn-JNK mice, and the number of
lipid-engorged hepatocytes is reduced, showing that inactivation
of JNK attenuates HFD-induced hepatic steatosis and glucose
production28. These findings suggest that interactions between
inflammatory and metabolic pathways mediated by macrophages
and adipocytes are important in the development of obesity-
related insulin resistance, type 2 diabetes and NAFLD. In
particular, the demonstration of a protective role in NAFLD of
adiponectin, the most abundant adipokine in the circulation,
and its reduction in patients with NAFLD29 has generated
extensive research into the role of adipokines in the pathogene-
sis of NAFLD and its complications.

Adiponectin
Adiponectin is an anti-inflammatory, insulin-sensitizing hor-
mone secreted from adipocytes, and its circulating levels are
inversely proportional to body mass index. Its expression is con-
trolled by peroxisome proliferator-activated receptor-gamma

(PPAR-c), a transcription factor also predominantly expressed
in adipose tissue30. Activation of PPAR-c by its agonists, such as
thiazolidinediones, increases adiponectin and reduces TNF-a
expression31. Adiponectin circulates in the bloodstream as three
oligomeric complexes: trimer, hexamer and high molecular
weight (HMW) multimer, consisting of 18 or more monomers32.
The gene that codes for human adiponectin is located on chro-
mosome 3q27, a locus linked with the susceptibility to diabetes
and obesity33. Another gene that is closely linked with NAFLD,
the fetuin-A gene, also resides on chromosome 3q27; its expres-
sion is significantly elevated in mice with fatty liver and its
plasma concentrations are raised in subjects with high liver fat34.
High circulating fetuin-A levels are found in obesity35 and con-
fers increased risk of diabetes36. This lends further evidence of
the interconnections between obesity, diabetes and NAFLD.
The protective effect of adiponectin on hepatic steatosis and

liver injury, through its role in lipid homeostasis and anti-
inflammatory action, has been shown in many experimental
and clinical studies29,37–39. First, adiponectin expression from
adipose tissues is markedly reduced in ob/ob mice (a leptin-
deficient model with hyperinsulinemia, insulin resistance and
steatosis). Recombinant adiponectin infusion into these obese
mice alleviates steatosis, as shown by a significant reduction in
hepatic fat content and serum alanine transferase levels29

(Table 1). At a molecular level, the antisteatotic effect of
adiponectin is mediated through the activation of 5-adenosine
monophosphate-activated protein kinase (AMPK)40. AMPK
activation phosphorylates acetyl coenzyme A carboxylase
(ACC) and attenuates ACC activity, leading to enhanced fatty
acid oxidation. Furthermore, AMPK activation downregulates
the expression of sterol regulatory element-binding protein 1c
(SREBP 1c), a key transcription factor for lipogenic genes,
including ACC and fatty acid synthase (FAS), and glycerol-
3-phophate acyltransferase (GPAT). Adiponectin administration
has been shown to suppress the hepatic mRNA expression of
ACC and FAS in alcohol-induced fatty liver disease in mice29,
and the expression of SREBP 1c in cultured hepatocytes and in
the liver of +Lepr(db)/+Lepr(db) (db/db) mice41. In addition,
adiponectin also stimulates peroxisome proliferator-activated
receptor-alpha (PPAR-a), a transcription factor that controls
genes encoding fatty acid oxidation enzymes42. In humans,
serum adiponectin levels are negatively correlated with alanine
aminotransferase (ALT) levels in obese Chinese individuals29.
Serum total and HMW adiponectin levels have also been found
to be lower in obese subjects with NAFLD compared with
non-obese subjects without NAFLD, in association with
increased insulin resistance and elevated hepatic SREBP 1c
mRNA expression (real-time polymerase chain reaction)43.
These animal and human studies have shown that adiponectin-
mediated signalling leads to enhanced fatty acid oxidation and
reduced lipid synthesis, thus preventing hepatic steatosis.
Second, adiponectin exerts an anti-inflammatory effect, thus

protecting against secondary liver insults (in the ‘multi-hit
model’), largely by suppressing TNF-a function through
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inhibition of its expression and opposition to its actions29,37,44.
Adiponectin treatment suppresses the augmented production of
TNF-a in ob/obmice29. In humans, decreased serum adiponectin
levels and increased TNF-a and soluble TNF-a receptor 2
(TNFR2) levels correlate with the presence of NASH. Serum
adiponectin levels are also inversely correlated with necro-
inflammation in NASH38. However, the relationship between
adiponectin and fibrosis is more controversial, with some authors
reporting raised adiponectin levels found in cirrhosis45, whereas
others46 have shown a negative correlation between adiponectin
and advanced hepatic fibrosis. Supportive of the antifibrotic
effect of adiponectin, obese and diabetic mice with increased
fibrosis lack physiological upregulation in adiponectin levels47.
Mitochondrial dysfunction contributes to the increased sus-

ceptibility to secondary liver injuries induced by obesity. Adipo-
nectin has been shown to decrease hepatic mitochondrial
dysfunction through induction of uncoupling protein 2 (UCP2),
a mitochondrial inner membrane transporter. The protein and
mRNA levels of UCP2 are decreased in liver tissues of adipo-
nectin knockout mice and are upregulated by adiponectin
treatment44. Adiponectin or UCP2 replenishment restores mito-
chondrial function and depletes lipid accumulation by reducing
fatty acyl coenzyme A accumulation in livers of adiponectin
knockout mice48.
Hypoadiponectinemia is also implicated in the pathogenesis

of type 2 diabetes in obese subjects and in individuals with
impaired hepatic glucose production. The HMW oligomer of

adiponectin has been shown to be the major active form respon-
sible for its insulin-sensitizing effect in hepatocytes49. Similar to
its antisteatotic effect, its glucose-lowering effect is also partly
mediated through AMPK, which in turn inhibits hepatic glucose
production by decreasing the expression of key gluconeogenic
genes, such as phosphoenolpyruvate carboxykinase and
G6Pase49,50. We have shown that the magnitude of AMPK phos-
phorylation in liver tissue and the metabolic effects of adiponec-
tin in db/db mice correlate with the expression of HMW
adiponectin oligomers32. Similar to its involvement in NAFLD,
adiponectin deficiency is also implicated in mitochondrial dys-
function and glucose homeostasis in adipocytes51. It has been
shown in vitro that both mRNA expression and secreted levels
of adiponectin are decreased in adipocytes with mitochondrial
dysfunction induced by oligomycin A, and the reduced levels of
adiponectin and insulin sensitivity in mature adipocytes reflect a
decrease in mitochondrial respiratory function52.
As adiponectin plays such important causal roles in NAFLD

and type 2 diabetes, linked by obesity-related insulin resistance,
it has been recognised to be a potential biomarker for the
detection and prediction of NAFLD and type 2 diabetes, or
both. In NAFLD, a score combining serum adiponectin,
homeostasis model assessment-insulin resistance (HOMA-IR)
index (cut-off value ‡3.0) and serum type IV collagen 7S (cut-
off value ‡5.0 ng/mL) predicted approximately 90% of patients
with early-stage NASH, with a sensitivity of 94% and a specific-
ity of 74%53. In another study, subjects with NASH had lower

Table 1 | Adipokines in animal studies for non-alcoholic fatty liver disease and diabetes

Animal models/cell types Adipokine Effects of interventions Reference

Adiponectin Treatment
ob/ob mice Reduced expression in

adipose tissue
� Alleviates hepatic steatosis by reducing hepatic
fat content and ALT levels

� Reduces TNF-a production

29

db/db mice � Suppresses hepatic SREBP-1 expression 41

db/db mice � Alleviates hyperglycemia, hypertriglyceridemia,
insulin resistance

� Alleviates hepatic steatosis

32

A-FABP
Obese mice lacking
A-FABP

� A-FABP deficiency protects against hepatic steatosis, insulin
resistance, hyperinsulinemia and hyperglycemia; and reduces
liver stearoyl-CoA desaturase-1, a rate-limiting enzyme that
promotes hepatic fat accumulation

64,65

Diet-induced obese
mice with NASH

Elevated hepatic expression
in Kupffer cells

� A-FABP inhibition alleviates hepatic steatohepatitis 67

ob/ob mice � A-FABP inhibition alleviates diabetes 75

FGF21 Treatment
Diet-induced obese mice � Alleviates hepatic steatosis 83

Diet-induced obese mice � Reduces triglyceride levels
� Reverses fatty liver disease via the inhibition of SREBP-1

84

ob/ob mice
db/db mice

� Reduces blood glucose and triglyceride levels 81

A-FABP, adipocyte-fatty acid binding protein; ALT, alanine transaminase; FGF21, fibroblast growth factor-21; NAFLD, non-alcoholic fatty liver disease;
NASH, non-alcoholic steatohepatitis; SREBP-1, sterol regulatory element-binding protein; TNF-a, tumor necrosis factor-alpha.

416 Journal of Diabetes Investigation Volume 4 Issue 5 September 2013 ª 2013 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd

Hui et al.



adiponectin levels compared with healthy controls, and a
formula incorporating adiponectin, leptin and ghrelin yielded
an area under receiver operating characteristic of 0.789
(P = 0.002), sensitivity of 82% and specificity of 76% for
NASH54. As for type 2 diabetes, a large prospective, case–
control study has shown that mean adiponectin concentrations
were significantly lower in individuals with incidental type 2
diabetes than in controls55. Low adiponectin levels at baseline
was associated with an increased risk of diabetes in Cauca-
sians55,56. Low adiponectin, together with high TNF-a at base-
line, was also independently predictive of diabetes, and the
combined use of serum adiponectin and TNFR2 levels were
comparable to 2-h post-load glucose for diabetes prediction in
Chinese subjects57 (Table 2). In a recent study to characterize
prediagnosis trajectories of adiponectin in individuals who
developed type 2 diabetes, female subjects and those with early-
onset diabetes (age at diagnosis <52 years) had a steeper decline
in adiponectin levels than non-diabetic controls58.

In patients with both type 2 diabetes and NAFLD, low
adiponectin levels were independently associated with NASH in
a cross-sectional study on type 2 diabetes patients with histo-
logically-diagnosed NAFLD. Low adiponectin, together with
transforming growth factor (TGF)-b1, were associated with
advanced fibrosis, the more severe stage of NAFLD in subjects
with type 2 diabetes. It has been postulated that type 2 diabetes
patients with NAFLD might develop steatohepatitis and pro-
gressive fibrosis because of the lack of upregulation of adipo-
nectin, which inhibits connective tissue growth factor (CTGF),
a cell-adhesion factor for hepatic stellate cells and a deciding
factor for the development of fibrosis59. CTGF has been
described as a profibrotic factor that mediates some TGF-b1
responses, including apoptosis and fibrosis59. As type 2 diabetes
patients have a more progressive course of NAFLD60, these
results suggest that hypoadiponectinemia, present in type 2
diabetes, might play a key role in the progression of NAFLD
in type 2 diabetes patients.

Table 2 | Serum/hepatic adipokine levels in human subjects with non-alcoholic fatty lover disease and/or diabetes

Clinical conditions Adipokine Associated changes Reference

Adiponectin
Obesity Reduced Negative correlation with ALT 29

Obesity and NAFLD Reduced (HMW and total) Negative correlation with insulin resistance 43

NASH Reduced
Reduced

Negative correlation with necro-inflammation 38

54

Early-stage NASH Reduced 53

Advanced hepatic fibrosis Reduced 46

Type 2 diabetes Reduced (ratio of HMW
to total adiponectin)

32

Type 2 diabetes Reduced Low baseline adiponectin and high
TNF-a are predictive of diabetes

55,56

57

Type 2 diabetes and NASH Reduced Low adiponectin and transforming growth
factor-b1 associated with advanced
fibrosis in subjects with type 2 diabetes

59

A-FABP
NAFLD Elevated hepatic expression In liver biopsies of NAFLD subjects 69

NAFLD Elevated Positive correlation with TNF-a,
HOMA-IR and metabolic syndrome

70

NAFLD Elevated Positive correlation with advanced
grades of necro-inflammation and fibrosis

72

NAFLD and type 2 diabetes Elevated 71

Type 2 diabetes Elevated Positive correlation with fasting
glucose and 2-h glucose and predictor of T2DM

78

FGF21
NAFLD Elevated FGF21 mRNA expression In human liver tissues of NAFLD subjects

Positive correlation with the degree of steatosis

85

IGT/type 2 diabetes Elevated Negative correlation with whole body insulin sensitivity
Positive correlation with hepatic insulin resistance

88

Type 2 diabetes Elevated Independent predictor of type 2 diabetes 89

Insulin resistance Elevated Associated with diabetes and insulin resistance 90

A-FABP, adipocyte-fatty acid binding protein; ALT, alanine transaminase; FGF21, fibroblast growth factor-21; HMW, high molecular weight; HOMA-IR,
homeostasis model assessment of insulin resistance; IGT, impaired glucose tolerance; IR, insulin resistance; LDL-C, low-density lipoprotein cholesterol;
NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; TNF-a, tumor necrosis factor-alpha; TG, triglycerides.
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Adipocyte Fatty Acid Binding Protein
Adipocyte fatty acid binding protein (A-FABP) is a cytosolic
lipid-binding chaperone mainly expressed in mature adipocytes
and activated macrophages. It was initially thought to be a
solely intracellular protein, but our group has recently identified
the circulating form of A-FABP in the human bloodstream61. It
reversibly binds with a high affinity to hydrophobic ligands,
such as saturated and unsaturated long-chain fatty acids, and
functions as a fatty acid chaperone, which facilitates fatty acid
signaling by targeting and transporting fatty acid metabolites to
the lipid signal transduction pathway62. Its expression is highly
regulated during differentiation of adipocytes, and transcription
of its mRNA is controlled by fatty acids, insulin and PPAR-c
agonists62. Cross-sectional and longitudinal studies have
reported positive associations between A-FABP levels and
parameters of adiposity, insulin resistance and the metabolic
syndrome61,63.
In relation to NAFLD, mice lacking A-FABP were found to

be strongly protected against hepatic steatosis64 and had
reduced liver SCD-1 activity, a rate-limiting enzyme important
for the conversion of saturated to monounsaturated fatty acid
that contributes to hepatic fat accumulation65. Hepatic expres-
sion of A-FABP in Kupffer cells has been shown to be elevated
in chemically- and diet-induced obese mice with NASH, likely
forming a feed-forward loop with JNK and c-Jun66 (Table 1) to
instigate an inflammatory response in Kupffer cells67, the hepa-
tic macrophages that are responsible for recruiting a cluster of
pro-inflammatory cytokines to mediate transition from steatosis
to steatohepatitis68. In keeping with this, elevated A-FABP
expression has been observed in subjects with NAFLD69

(Table 2). Cross-sectional studies have shown an association of
elevated A-FABP levels with ultrasound-diagnosed NAFLD in
both healthy70 and type 2 diabetes subjects71. Furthermore,
serum A-FABP levels can distinguish NASH from steatosis,
and elevated A-FABP levels are independently associated with
advanced grades of necro-inflammation and fibrosis in liver
biopsies72. These results strongly support the role of A-FABP
in the pathogenesis of obesity-related fatty liver disease.
As for its role in diabetes, mice lacking A-FABP are pro-

tected from development of insulin resistance, hyperinsulin-
emia, and hyperglycemia in the context of both dietary and
genetic obesity64,73. Apolipoprotein E-/- mice lacking both adi-
pocyte and macrophage fatty acid binding protein (FABP) have
better insulin and glucose tolerance, and survival74. An orally
active A-FABP inhibitor has been shown to be effective in alle-
viating diabetes in animal models, and obesity-induced adipose
tissue JNK1 activity is attenuated in mice treated with A-FABP
inhibitor75.
In humans, significant reductions in A-FABP concentration,

together with a decrease in TNFR2 and high sensitivity
C-reactive protein, and an increase in adiponectin levels, were
observed in obese individuals after bariatric surgery and inten-
sive weight loss76. A-FABP contributes to an improvement in
HOMA-IR index after weight loss, independent of pro-inflam-

matory/anti-inflammatory cytokine profile, thereby supporting
its role in insulin-sensitivity pathways in the morbidly
obese76.
In a large population study, individuals with a genetic variant

at the FABP gene locus, coinciding with the binding site for
CCAAT/enhancer binding protein (C/EBP), had lower triglyc-
eride levels and showed a reduced risk of obesity-induced
type 2 diabetes. This particular mutation was found to alter
C/EBP binding and reduce the transcriptional activity of the
human FABP gene promoter, as well as the adipose tissue
A-FABP expression of individuals carrying the variant77. The
role of A-FABP in predicting diabetes has also been shown in
a 10-year prospective study, whereby plasma A-FABP level cor-
related positively with fasting glucose and 2-h glucose and pre-
dicted the development of type 2 diabetes independent of the
traditional risk factors that included obesity, insulin resistance,
or glycemic indices78.
Like adiponectin, A-FABP also has a dual role in the patho-

genesis of NAFLD and type 2 diabetes, and would represent a
useful biomarker for the prediction of NAFLD and type 2
diabetes. As animal studies have yielded promising results of
A-FABP blockade in alleviating steatosis and impaired glucose
tolerance67,75, therapeutic inhibition of A-FABP can potentially
target the triad of obesity, diabetes and fatty liver disease.

Fibroblast Growth Factor-21
Fibroblast growth factor 21 (FGF21), a polypeptide with 210
amino acid residues originally cloned from the mouse liver, is a
metabolic hormone that regulates glucose and lipid metabolism.
Obesity is associated with increased FGF21 expression in adi-
pose tissues79,80. In obese rodents, adipocytes have been shown
to be another important site of FGF21 production80. Thus,
FGF21 can also be considered as an adipokine.
FGF21 activates cell signaling by binding to a heteromeric

cell-surface receptor tyrosine kinase complex composed of
b-Klotho and a fibroblast growth factor receptor, namely
FGFR1c. Both b-Klotho and FGFR1c are abundantly expressed
in white adipose tissue (WAT), where FGF21-regulated genes
are involved in metabolic processes that include lipogenesis,
lipolysis and fatty acid oxidation. Systemic administration and
transgenic overexpression of FGF21 induce weight loss in obese
mouse models through increases in energy expenditure without
changing food intake81.
Adipose FGF21 acts as an autocrine factor in the fed state by

regulating the activity of PPAR-c in adipose tissues. We have
shown that both FGF21 mRNA expression and its protein
release in vitro are markedly increased during conversion of
human pre-adipocytes into mature adipocytes, showing a differ-
entiation dependent expression of FGF2180. Chronic treatment
of the PPAR-c agonist, rosiglitazone, markedly enhances FGF21
production in both 3T3-L1 murine adipocytes and human
adipocytes80. In obese mice, the degree of FGF21 expression in
several types of adipose tissue has been shown to be markedly
raised, to levels comparable to that of its expression in the liver80.

418 Journal of Diabetes Investigation Volume 4 Issue 5 September 2013 ª 2013 Asian Association for the Study of Diabetes and Wiley Publishing Asia Pty Ltd

Hui et al.



In humans, serum FGF21 levels are also significantly elevated
in obese subjects, thus providing evidence that adipose tissue is
another important source of circulating FGF2180. In vivo, how-
ever, treatment with rosiglitazone leads to a reduction in circu-
lating FGF21 levels in type 2 diabetes patients, likely as a result
of the amelioration of diabetes-related metabolic dysfunction,
such as insulin resistance and raised FFA levels.
In mice, FGF21 plays a physiological role in suppressing the

rate of lipolysis, functioning as a metabolic regulator of lipid
metabolism in concert with growth hormone82. Its role in allevi-
ating hepatic steatosis has been shown by the effect of systemic
administration of FGF21 in diet-induced obese mice (Table 1).
Furthermore, adenovirus-mediated knockdown of hepatic
FGF21 leads to the development of fatty liver and dyslipidemia
as a result of the altered expression of several key genes involved
in hepatic lipid metabolism83. Chronic treatment with recombi-
nant FGF21 also reduces serum and hepatic triglyceride levels,
and reverses fatty liver disease in diet-induced obese mice
through the inhibition of SREBP-1, the key transcription factor
for lipogenesis84. In human liver tissues, FGF21 mRNA expres-
sion increases with the degree of steatosis85. These findings might
suggest a compensatory increase in hepatic FGF21 expression in
response to FGF21 resistance, and that FGF21 resistance might
have contributed to the pathogenesis of NAFLD. Alternatively, as
in the case of type 2 diabetes, the increase in FGF21 levels might
be secondary to the metabolic perturbations associated with insu-
lin resistance. A recent study suggested that adipose tissue
inflammation in obesity, involving the JNK1 pathway, can lead
to the suppression of b-Klotho expression by TNF-a and hence
impaired FGF21 action in adipocytes86. This might also explain
the mechanism that leads to FGF21 resistance in NAFLD.
The role of FGF21 in glucose metabolism was first suggested

by the finding of a high throughput screening that FGF21
was one of the agents capable of increasing glucose uptake in
3T3-L1 adipocytes81. The addition of recombinant FGF21 to
adipocytes was found to induce insulin-independent glucose
uptake by enhancing the expression of glucose transporter 1
(GLUT1). Subsequently, treatment with recombinant FGF21
was found to reduce blood glucose and triglycerides to near
normal levels in both ob/ob mice and db/db diabetic mice81

and chronic treatment with FGF21 in diabetic rhesus monkeys
also ameliorated triglyceride and glucose controls87.
Despite beneficial effects of FGF21 on glucose and lipid

homeostasis in animal models, elevated circulating FGF21 levels
are present in obese diabetic db/db mice and obese/overweight
humans80. This elevation in FGF21 levels were also found in
humans with IGT and type 2 diabetes, and correlated directly
with hepatic insulin resistance and inversely with whole-body
insulin sensitivity88 (Table 2). A high FGF21 level in non-dia-
betic subjects has been shown to predict diabetes development
during long-term follow up in the Hong Kong Cardiovascular
Risk Factor Prevalence Study89, suggesting that FGF21 resis-
tance also occurs early in the course of dysglycemia and predis-
poses to diabetes development. The elevated serum FGF21

levels might be consequential to other metabolic disturbances,
such as hyperinsulinemia or increased circulating FFA levels, in
subjects with insulin resistance90.
In summary, these findings show that FGF21, together with

adiponectin and A-FABP, might serve as biomarkers for both
NAFLD and dysglycemia.

THERAPEUTIC IMPLICATIONS
Metformin
Various antidiabetic agents have been shown to confer benefi-
cial effects on NAFLD. Metformin has been shown to reduce
insulin resistance and aminotransferase levels associated with
NAFLD91. Like adiponectin, metformin exerts its insulin-sensi-
tizing and antisteatotic effects, at least in part, through the
AMPK-mediated pathway (Table 3). In adipose tissues, it has
recently been shown that metformin improves insulin resistance
by enhancing glucose transporter 4 (GLUT4) translocation
through AMPK-mediated Cbl/c-Cbl-associated protein (CAP)
signaling, thereby inhibiting differentiation of pre-adipocytes to
adipocytes. Knockdown of AMPK and JNK blocks metformin-
induced expression of CAP, implying that metformin stimulates
the AMPK-JNK-CAP axis pathway92. Metformin also activates
AMPK and reduces ACC protein levels in human adipose tis-
sue93. In the liver, metformin acts through AMPK to stimulate
fatty acid oxidation and decrease hepatic glucose production.
Furthermore, metformin has been shown to induce hepatic
FGF21 expression through AMPK activation. A strong dose-
dependent increase in FGF21 expression was observed in both
rat and human hepatocytes treated with metformin, an effect
that was blocked by the addition of an AMPK-inhibitor94. Fur-
ther studies are required to investigate if induction of hepatic
FGF21 by metformin plays a significant role in mediating the
metabolic benefits of metformin.

Thalizolidinediones
Pioglitazone, a PPAR-c agonist, has been recommended to treat
steatohepatitis in patients with biopsy-proven NASH95. Pioglitaz-
one treatment in patients with NASH and dysglycemia (IGT or
type 2 diabetes) was associated with improved aminotransferase
levels, steatosis, inflammation and hepatocyte ballooning96. It
exerts its therapeutic actions partly through adiponectin, with a
2.3-fold increase in plasma levels significantly associated with
improved hepatic insulin sensitivity and histological improve-
ment in hepatic steatosis, necro-inflammation and fibrosis
in vitro97. Pioglitazone has also been shown to induce FGF21
expression in mouse and human adipocytes98, and animal stud-
ies have shown its role as an autocrine factor regulating the
activity of PPAR-c in adipose tissues99. Whether FGF21 is
involved in the increase in adiponectin expression by PPAR-c
and hence the protection against NASH remains speculative.

Glucagon-Like Peptide-1 Agonists and Enhancers
Glucagon-like peptide-1 (GLP-1) suppresses hepatic lipogenesis
through activation of the AMPK pathway in hepatocytes. The
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inhibitory effects of GLP-1 on hepatic fat accumulation and
diet-induced hepatic pro-inflammatory response suggest a ther-
apeutic role of GLP-1 agonists in NAFLD100.
Liraglutide, a long-acting GLP-1 agonist, increases FGF-21,

FGFR mRNA and protein expression, and improved insulin
sensitivity, in a mouse model of insulin resistance induced by a
combination of adiponectin and apolipoprotein E deficiency,
and high fat101. In addition, preliminary evidence suggests that
dipeptidyl peptidase IV (DPP-4) inhibitors, which enhances
endogenous GLP-1 levels by inhibiting its rapid degradation by
DPP-4, ameliorate liver enzymes and hepatocyte ballooning in
NASH patients with type 2 diabetes102. In a pilot study, signifi-
cant reduction in plasma glucose, hemoglobin A1c (HbA1c)
and liver enzyme levels were observed after 4 months of
treatment with sitagliptin in NAFLD patients with type 2
diabetes103. More studies are required to determine the role of
DDP-4 inhibitors on adipokines, which may or may not be
similar to that of GLP-1 agonists.

Future Therapeutic Targets
Agents that enhance adiponectin production might represent
potential targets for the treatment or prevention of NAFLD
and diabetes. Such agents might be derived from natural
products, as exampled by the identification of two naturally-
occurring compounds (astragaloside II and isoastragaloside I)
from the widely used medicinal herb, Radix Astragali, which
can selectively increase adiponectin secretion in primary
adipocytes. The two compounds further enhance adiponectin
production in addition to the effect of rosiglitazone. These
changes are associated with an alleviation of hyperglycemia,
glucose intolerance and insulin resistance, and might also

provide beneficial effects for NAFLD104. Recently, A-FABP
blockade has also shown promising results in animal models
in alleviating obesity-related NAFLD62,67. Therefore, therapeu-
tic targets based on selective A-FABP inhibition are also a
promising area for further investigation. Whether FGF21,
which is being actively researched in preclinical studies for the
treatment of diabetes, can ameliorate NAFLD in humans
remains to be investigated.

ROLE OF ADIPOKINES IN THE SCREENING FOR
DYSGLYCEMIA IN NAFLD
Importance of Screening
NAFLD renders a person 1.6-times more likely to develop diabe-
tes105. Obesity also increases the risk of diabetes in people with
NAFLD, as the incidence in an urban Chinese population was
shown to be highest in obese subjects with NAFLD (23.2%),
when compared with the non-obese group with NAFLD (11.1%)
and those without NAFLD (4.3%)16. In addition, diabetes mell-
itus, obesity and old age were significant predictors of severe liver
fibrosis60. Mortality amongst community-diagnosed NAFLD
patients was higher than the general population, and was associ-
ated with impaired fasting glucose, old age and cirrhosis10.
Screening for dysglycemia in NAFLD should include an oral glu-
cose tolerance test (OGTT) to diagnose prediabetes (impaired
fasting glucose [IFG] and IGT), as individuals with prediabetes
are already at risk of developing diabetes-related complications106.
Furthermore, NAFLD patients with prediabetes had worse hepa-
tic insulin resistance than NAFLD patients with normal glucose
tolerance and those without NAFLD107. Indeed, NAFLD patients
with prediabetes had a similar degree of muscle and liver insulin
resistance as NAFLD patients with type 2 diabetes107.

Table 3 | Mechanisms of action of current antidiabetic agents on non-alcoholic fatty liver disease

Class of antidiabetic
agent

Example Primary
mechanism

Effects on liver or adipose
tissue hormone expression

Actions in NAFLD Reference

Biguanides Metformin Activates AMPK Induces FGF21 expression
in hepatocytes

Improves insulin resistance
Reduces aminotransferase levels
Reduces hepatic glucose production
Stimulates fatty acid oxidation in liver

91,92,94

Thiazolidinediones Pioglitazone Activates nuclear
transcription
factor PPAR-c

Increases circulating
adiponectin level

Induces FGF21 expression
in adipocytes

Reduces aminotransferase levels
Reduces hepatic steatosis, inflammation
and fibrosis

Improves hepatic insulin sensitivity

96–98

DPP-4 Inhibitors Sitagliptin,
vildaglitin,
linagliptin,
saxagliptin

Inhibits DPP-4 activity,
increasing postprandial
GLP-1 concentrations

Improves liver enzyme levels and
hepatocyte ballooning

Reduces plasma glucose and liver
enzyme levels

102,103

GLP-1 Receptor
Agonists

Exenatide,
liraglutide

Activates AMPK in
hepatocytes

Increases hepatic FGF21
expression and
plasma FGF21 level

Reduces hepatic lipogenesis
Reduces diet-induced hepatic
pro-inflammatory response

Improves insulin sensitivity

100,101

AMPK, adenosine monophosphate-activated protein kinase; CAP, Cbl/c-Cbl-associated protein; DPP-4, dipeptidyl peptidase-4; FGF-21, fibroblast
growth factor-21; GLP-1, Glucagon-like peptide-1; GLUT-4, glucose transporter 4; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic
steatohepatitis; PPAR-c, peroxisome proliferator-activated receptor-gamma.
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Oral Glucose Tolerance Test for Diagnosis of Dysglycemia in
NAFLD
To detect prediabetes and type 2 diabetes, 75-g OGTT, rather
than fasting glucose alone, has been recommended in NAFLD
patients, as fasting glucose (‡7.0 mmol/L) has been found to
considerably underestimate the diabetes prevalence in Hong
Kong Chinese108, and IGT with normal fasting plasma glucose
is common (47%) among Hong Kong Chinese with biopsy-
proven NAFLD109. However, OGTT is notorious for being
cumbersome to carry out, and has poor reproducibility with
large intra-individual variation in glucose responses110. The
alternative use of HbA1c is also limited by its lower sensitivity
in identifying prediabetes and type 2 diabetes than OGTT111.
The measurement of adipokines could potentially serve to pro-
vide biomarkers that can enhance the detection of dysglycemia
in NAFLD without the use of OGTT.

Role of Adipokines in Detecting Dysglycemia in NAFLD
We have discussed the potential diagnostic and prognostic roles
of adipokines in detecting diabetes, as well as their effects in
currently available antidiabetic agents in the treatment of NA-
FLD. In essence, low adiponectin, together with high TNF-a at
baseline, is independently predictive of diabetes57, with a perfor-
mance comparable to that of 2-h plasma glucose post OGTT.
High A-FABP and FGF21 levels are also a strong predictor of
diabetes78,89. In the context of NAFLD, low adiponectin levels
were independently associated with NASH in type 2 diabetes
patients with NAFLD59. Further studies will be required to
evaluate the diagnostic roles of adipokines specifically in
patients with NAFLD.

CONCLUSION
Adipose tissue dysfunction is characterized by inflammation and
adipokine dysregulation, and subsequent ectopic fat deposition
in the abdominal viscera and liver, and insulin resistance. It sig-
nificantly contributes to the development of obesity-related con-
ditions, including NAFLD and diabetes mellitus. Adipokines are
important mediators of both lipid and glucose homeostasis.
Adiponectin has antisteatotic, anti-inflammatory and insulin-
sensitizing properties by promoting free fatty acid oxidation,
reducing fatty acid influx to liver and de novo lipogenesis, as well
as suppressing the action of pro-inflammatory cytokines and
gluconeogenesis. A-FABP facilitates fatty acid signaling, which
promotes hepatic fat accumulation and inhibition of A-FABP in
mice, has been shown to alleviate NAFLD and diabetes. Recom-
binant FGF21 administration has been shown to reverse fatty
liver disease and improve glucose control in animal models.
These adipokines have been implicated in currently-available
antidiabetic agents with beneficial effects on NAFLD. Adipokine-
based therapeutic agents for NAFLD and diabetes would represent
a promising area for further investigation.
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