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Parvalbumin (PV), an EF-hand protein family member, is a delayed calcium buffer that
exchanges magnesium for calcium to facilitate fast skeletal muscle relaxation. Genetic
approaches that express parvalbumin in the heart also enhance relaxation and show
promise of being therapeutic against various cardiac diseases where relaxation is com-
promised. Unfortunately, skeletal muscle PVs have very slow rates of Ca2+ dissociation
and are prone to becoming saturated with Ca2+, eventually losing their buffering capability
within the constantly beating heart. In order for PV to have a more therapeutic potential in
the heart, a PV with faster rates of calcium dissociation and high Mg2+ affinity is needed.
We demonstrate that at 35˚C, rat β-PV has an ∼30-fold faster rate of Ca2+ dissociation
compared to rat skeletal muscle α-PV, and still possesses a physiologically relevant Ca2+
affinity (∼100 nM). However, rat β-PV will not be a delayed Ca2+ buffer since its Mg2+
affinity is too low (∼1 mM). We have engineered two mutations into rat β-PV, S55D and
E62D, when observed alone increase Mg2+ affinity up to fivefold, but when combined
increase Mg2+ affinity ∼13-fold, well within a physiologically relevant affinity. Furthermore,
the Mg2+ dissociation rate (172/s) from the engineered S55D, E62D PV is slow enough
for delayed Ca2+ buffering. Additionally, the engineered PV retains a high Ca2+ affinity
(132 nM) and fast rate of Ca2+ dissociation (64/s).These PV design strategies hold promise
for the development of new therapies to remediate relaxation abnormalities in different
heart diseases and heart failure.
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INTRODUCTION
Diastolic dysfunction, the inability of the heart to properly relax, is
a hallmark of many heart diseases and heart failure (Periasamy and
Janssen, 2008). During this condition, it is generally thought that
the cardiac myocyte loses the ability to efficiently and effectively
manage intracellular Ca2+, prolonging relaxation (Bers, 2006; van
der Velden, 2011). Attempts to restore the Ca2+ balance show
promise of alleviating the symptoms of this debilitating cardiac
condition (Wang et al., 2009; Gwathmey et al., 2011; McCauley
and Wehrens, 2011; Rohde et al., 2011).

One novel approach to counter the Ca2+ imbalance has been
borrowed from a specialized mechanism in fast twitch skeletal
muscle that aids in relaxation. This mechanism utilizes a protein
called parvalbumin (PV) to achieve faster relaxation in combina-
tion with the sarcoplasmic reticulum Ca2+ ATPase (Hou et al.,
1993). PV is a small, cytosolic Ca2+ buffering protein found in
high concentrations within fast-relaxing muscle ranging in species
from fish to humans (Heizmann et al., 1982; Wilwert et al., 2006).
Skeletal muscle PV binds both Ca2+ and Mg2+ competitively, typ-
ically with a Ca2+ affinity three to four orders of magnitude greater
than Mg2+ (KdCa2+ ∼ 1 to 10 nM; KdMg2+ ∼ 20 to 50 μM; Pauls

et al., 1993; Eberhard and Erne, 1994). In a resting muscle, the
free concentration of Ca2+ is very low (∼100 nM), while the free
Mg2+ concentration is very high (∼1 mM; Williams, 1993). Thus,
in a relaxed muscle, PV is bound with Mg2+ and cannot bind

Ca2+ until Mg2+ dissociates (Hou et al., 1991). The Mg2+ dis-
sociation rate from PV is quite slow (less than 10/s) making PV
a delayed Ca2+ buffer, allowing troponin C to bind Ca2+ and
initiate contraction before PV exchanges Mg2+ for Ca2+ to facili-
tate relaxation (Hou et al., 1992). The inferred physiological Ca2+
and Mg2+ exchange rates are nearly identical to those measured
biochemically (Hou et al., 1993; Jiang et al., 1996; Lee et al., 2000).

Naturally, PV is not typically expressed in the heart (Sza-
tkowski et al., 2001). Due to its delayed Ca2+ buffer capability
and ATP-independent mechanism, PV has a potential to be used
therapeutically in the heart (Raake et al., 2011). In fact, in vitro
and in vivo gene transfer of PV into the cardiac myocyte has been
shown to increase the rate and extent of relaxation in normal
and diseased states (Wang et al., 2009). However, with increasing
frequency of contraction, PV loses its Ca2+ buffering potential
(therefore losing its enhanced relaxing properties) due to its slow
rate of Ca2+ dissociation (less than 3/s; Hou et al., 1992; Day
et al., 2008). In order to recharge PV’s relaxing capability, the mus-
cle must rest to give time for PV to re-exchange Ca2+ for Mg2+.
Unlike skeletal muscle, cardiac muscle does not have the liberty to
rest for prolonged periods of time.

One potential way to overcome this inherent problem is to use
a PV that has a faster rate of Ca2+ dissociation with a high affinity
for Mg2+. There are two isoforms of PV found in nature,α-PV and
β-PV (Arif, 2009). Mammals utilize α-PV, while fish utilize β-PV
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in their skeletal muscle. The PVs from both mammalian and fish
skeletal muscle have relatively similar cation binding properties,
especially with regard to possessing slow rates of Ca2+ dissociation
(White, 1988; Eberhard and Erne, 1994; Lee et al., 2000; Erick-
son and Moerland, 2006). On the other hand, mammalian β-PV,
which is found in the brain, ear, placenta, and macrophages [not
normally found in muscle (Belkacemi et al., 2002; Yin et al., 2006;
Csillik et al., 2010)] has drastically lower affinity for both Ca2+
and Mg2+ compared to mammalian α-PV (Hapak et al., 1989).
The rates of Ca2+ and Mg2+ exchange from mammalian β-PV are
currently unknown and will be addressed in this manuscript. In
any regard, mammalian β-PV still possesses a high enough Ca2+
affinity (∼100 nM) to buffer Ca2+ in the heart. However, due to
its very low Mg2+ affinity (greater than 1 mM), much of the PV
will not be bound by Mg2+. In this case, mammalian β-PV will not
actually be a delayed Ca2+ buffer and will compromise force pro-
duction in the heart. Thus, we set out to engineer a higher Mg2+
affinity β-PV (while maintaining its Ca2+ affinity) that should
function properly in the heart.

A great deal of work has been put into understanding the mole-
cular mechanisms that control Ca2+ and Mg2+ binding to PV. For
instance, Henzl et al. (1996) have previously shown that replacing
one of the Ca2+ chelating residues in rat β-PV, Ser 55 with Asp,
greatly increased Mg2+ affinity at room temperature using the flow
dialysis method. In this manuscript, we have utilized this modifi-
cation and a novel mutation, Glu 62 Asp, to engineer a mammalian
β-PV that has appropriate affinities for both Ca2+ and Mg2+, as
well as fast enough exchange kinetics, to potentially be a beneficial
Ca2+ buffer in the constantly beating heart. This work represents
the first step in designing a PV for the heart.

MATERIALS AND METHODS
MATERIALS
DEAE Sepharose™Fast Flow was purchased from GE Healthcare
(Piscataway, NJ, USA). Quin-2 was purchased from Molecular
Probes (Eugene, OR, USA). MOPS, Ethidium Bromide, and EGTA
were purchased from Sigma Chemical Company (St. Louis, MO,
USA). All other chemicals were of analytical grade.

PROTEIN OVER-EXPRESSION, PURIFICATION, AND MUTAGENESIS
All DNA manipulations were performed using standard molec-
ular biology techniques (Sambrook and Rusell, 1989). Plasmids
containing rat α- and β-PV were generous gifts from Dr. Michael
Henzl (University of Missouri). The two rat PV coding sequences
were individually sub-cloned into the over-expression vector Pet3b
(kindly provided by Dr. Brandon Biesiadecki, The Ohio State
University) by PCR to produce Pet3b/α-PV and Pet3b/β-PV.

Conditions for purification of the two proteins were optimized
based on an existing protocol with the following modifications
(Hapak et al., 1989). For α-PV, the Pet3b/α-PV plasmid was trans-
formed into BL21(DE3) bacteria (Novagen). A single colony was
grown to inoculate 1 l LB/Ampicillin media and 1 mM IPTG
was added after the OD600 of the culture was greater than 1.0.
After 4 h, the cells were harvested by centrifugation. The cell
pellet was resuspended in 25 ml of resuspension buffer (20 mM
MOPS, 240 mM KCl, 2 mM EDTA, 1 mM DTT, pH 7.4) contain-
ing 1 mM PMSF and the cells were broken by sonication. The

cell lysate was clarified by centrifugation. Mg2+ and Ca2+ were
then added to the lysate to a final concentration of 10 and 1 mM,
respectively. Ammonium sulfate (AMS) fractionation to 100%
was performed on the cell lysate. The supernatant was dialyzed
against three, 4 l of buffer A (1 mM MOPS, 1 mM EDTA, pH 7.4).
After dialysis, the supernatant was loaded onto a DEAE column
equilibrated with buffer A and then washed with buffer A for at
least 30 min at 1.5 ml/min. The protein was eluted with a lin-
ear Ca2+ gradient from 0 to 50 mM Ca2+ prepared in buffer A
using a Bio-Rad Econo Gradient Pump running at 0.75 ml/min
for a total 260 min. Fractions of the flow through were collected.
OD280 of each fraction was measured and SDS-PAGE was run
for the fractions that had OD280 greater than 0.3. In order to
ensure nucleic acid contamination was separate from the pro-
tein fractions, the stained gel was soaked in TAE buffer (40 mM
Tris–Acetate, 1 mM EDTA) and re-stained with Ethidium Bromide
(∼0.25 μg/ml). After 1 h staining, the gel was washed with the TAE
buffer and pictures of the gel were taken under UV light. Protein
samples from fractions containing the correct molecular weight
band, with negligible protein or nucleic acid contamination, were
pooled. The pooled protein fractions were dialyzed against three,
4 l experimental buffer (10 mM MOPS, 150 mM KCl, 1 mM DTT,
pH 7.0). Protein stock concentration was calculated by OD280

using an extinction coefficient predicted by the web based pro-
gram, Protein Calculator v3.3, according to its protein sequence
(http://www.scripps.edu/∼cdputnam/protcalc.html). Typically,80–
120 mg of PV per liter was purified.

For β-PV, a similar procedure was performed with the following
changes. The supernatant after 100% AMS treatment was dialyzed
against buffer B (20 mM MOPS, 2 mM DTT, pH 7.4). After dialysis,
the supernatant was loaded onto a DEAE column equilibrated with
buffer B. The β-PV protein was eluted with a linear salt gradient
from 0 to 0.6 M NaCl prepared in buffer B.

All site-directed mutagenesis was performed using Stratagene’s
Quick-Change Site-Directed Mutagenesis Kit (La Jolla, CA, USA).
β-PV has one solvent-exposed Cys residue at position 18. To avoid
possible oxidation and dimerization of β-PV during purification
and storage, a C18S mutation was introduced. All the F102W β-PV
constructs contained C18S and is not included in the nomencla-
ture throughout the manuscript. As has been previously used to
facilitate the steady-state and kinetic studies of Ca2+ and Mg2+
binding, Phe 102 was replaced by Trp (F102W) in both α-PV and
β-PV (Hutnik et al., 1990; Pauls et al., 1993). In order to increase
the Mg2+ affinity of β-PV, the single mutations S55D, E62D, and
double mutations (S55D, E62D) were made. All mutations were
confirmed by DNA sequence analysis and were expressed and puri-
fied the same way as described above. The numbering scheme for
the rat PVs utilized in this manuscript does not include the initial
Met residue.

DETERMINATION OF Ca2+ AND Mg2+ AFFINITIES
All steady-state fluorescence measurements were performed using
a Perkin-Elmer LS55B Spectrofluorimeter at 35˚C. This tempera-
ture was utilized for direct comparison to previous studies and is
very close to that of mammalian body temperature (Eberhard and
Erne, 1994). Ca2+ and Mg2+ titrations were performed by adding
microliter amounts of CaCl2 or MgCl2 to 2 ml of the proteins
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(1 μM) in 200 mM MOPS, 150 mM KCl, 4 mM EGTA, 1 mM DTT,
pH 7.0 with constant stirring. The [Ca2+]free and [Mg2+]free at
35˚C were calculated using the computer program EGCA02 devel-
oped by Robertson and Potter (1984). Trp fluorescence was excited
at 295 nm and measured at 330 nm. The Ca2+ and Mg2+ affini-
ties are reported as dissociation constants [K d(Ca)] and [K d(Mg)],
respectively. Each [K d(Ca)] or [K d(Mg)] represents a mean of at
least three titrations fit with a logistic sigmoid function mathe-
matically equivalent to the Hill equation, as previously described
(Tikunova et al., 2002).

DETERMINATION OF Ca2+ AND Mg2+ DISSOCIATION KINETICS
Ca2+ and Mg2+ dissociation rates were measured using an Applied
Photophysics Ltd. (Leatherhead, UK) model SX.18 MV stopped-
flow instrument at 35˚C. Trp fluorescence was excited using a
150-W xenon arc source excited at 295 nm with emission moni-
tored through a narrow band-pass filter centered at 334 nm (Oriel,
Stratford, CT, USA). Direct Ca2+ dissociation rates were also mea-
sured using the fluorescent Ca2+ chelator Quin-2 (Tikunova et al.,
2002; Davis et al., 2004). Quin-2 was excited at 330 nm with its
emission monitored through a 510-nm broad band-pass inter-
ference filter (Oriel, Stratford, CT, USA). The buffer used for the
stopped-flow experiments was 10 mM MOPS, 150 mM KCl, 1 mM
DTT, at pH 7.0. To measure the kinetics of Ca2+ dissociation from
PV, 10 μM Ca2+ was equilibrated with 5 μM protein and rapidly
mixed with buffer containing 30 mM EDTA. To measure the kinet-
ics of Mg2+ dissociation from PV, 500 μM Mg2+ and 5 mM EGTA
(to remove contaminating Ca2+) were equilibrated with 5 μM
protein and rapidly mixed with buffer contain 30 mM EDTA. For
the Quin-2 studies, there was enough contaminating Ca2+ in the
buffer to observe the Ca2+ dissociation rates when 6 μM protein
was rapidly mixed with the buffer containing 150 μM Quin-2.

DATA ANALYSIS AND STATISTICS
Statistical significance was determined by ANOVA followed by a
Dunnett’s post hoc t -test, using the statistical analysis software
Minitab (State College, PA, USA). Two means were considered to
be significantly different when the P value was <0.05. The data is
shown as a mean value ± SEM.

RESULTS
PV is an unusually stable protein, especially in the presence of
Ca2+ and/or Mg2+ (Filimonov et al., 1978). In order to simplify
the purification protocol for PV, we speculated that unlike other
proteins, it would not denature and precipitate in 100% saturating
AMS when in the presence of Ca2+ and Mg2+. Consistent with
this idea, 100% AMS saturation precipitated nearly all the bacte-
rial proteins, leaving PV and nucleic acids in the supernatant as
judged by Coomassie Brilliant Blue and Ethidium Bromide stain-
ing as can be seen in Figures 1A,B (lane 1, data shown for E62D
F102W β-PV). The contaminating nucleic acids (lanes 8 through
15) were then easily removed from the PV (lanes 2 through 7) by a
single DEAE chromatography step (Figures 1A,B). Similar results
were obtained with all the PVs used in this study (data not shown).
Thus, we were able to quickly and efficiently purify an abundance
of the wild-type and mutant PVs with very high purity for the
following studies.

FIGURE 1 | Purification of PV. (A) SDS-PAGE analysis of the DEAE column
purification profile for the E62D, F102W β-PV. The gel was stained with
Coomassie Brilliant Blue. Lane 1: a positive control sample from rat F102W
β-PV, which was characterized before the nucleic acid contamination issue
was resolved. Lanes 2–15 correspond to elution fractions from 21 to 35
after the DEAE column (refer to Materials and Method). (B) the same
SDS-PAGE from (A), but was re-stained with Ethidium Bromide and viewed
with UV light (refer to Materials and Methods).

There is ample evidence that PV increases the relaxation rate
of skeletal muscle (Hou et al., 1991, 1993). Gene transfer of both
skeletal muscle α-PV and β-PV has been shown to do the same
in cardiac myocytes (Rodenbaugh et al., 2007). However, the
skeletal muscle PVs are not designed to work in a muscle that
constantly contracts and relaxes and will eventually saturate with
Ca2+ (Hou et al., 1993; Szatkowski et al., 2001). Similar to previ-
ous studies (Eberhard and Erne, 1994), Figures 2A,B demonstrate
that rat skeletal muscle F102W α-PV binds Ca2+ with a K d(Ca)

of 1.9 ± 0.4 nM and Mg2+ with a K d(Mg) of 26 ± 2 μM at 35˚C
(Table 1). Also similar to previous studies (Hapak et al., 1989),
Figures 2A,B show that F102W β-PV binds Ca2+

∼49-fold weaker
and Mg2+

∼35-fold weaker than F102W α-PV (Table 1). Although
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FIGURE 2 | Ca2+ and Mg2+ binding to the F102W α-PV and F102W β-PV.

(A) The Ca2+ dependent increase in Trp fluorescence is shown as a function
of −Log[Ca2+] (pCa) for F102W α-PV (�) and F102W β-PV (•). Increasing
concentrations of Ca2+ were added to 1 μM protein in 2 ml of 200 mM
MOPS, 150 mM KCl, 4 mM EGTA, pH 7.0 at 35˚C. Trp fluorescence was
monitored at 330 nm with excitation at 295 nm. Each data point represents
the mean ± SE of at least three titrations. (B) The Mg2+ dependent increase
in Trp fluorescence is shown as a function of −Log[Mg2+] (pMg) for F102W
α-PV (�) and F102W β-PV (•). The experimental conditions were the same
as described for (A).

the Ca2+ and Mg2+ affinities of F102W β-PV are within the phys-
iological range for these cations, the Mg2+ affinity of F102W β-PV
is too weak to be a useful delayed Ca2+ buffer in the heart.

In addition to their extremely high Ca2+ affinity, another rea-
son why the skeletal muscle PVs saturate with Ca2+ upon repeated
or prolonged contraction is their slow rates of Ca2+ dissociation
(Hou et al., 1992; Day et al., 2008). Consistent with previous studies
(Lee et al., 2000), Figure 3A shows that the rate of Ca2+ dis-
sociation from F102W α-PV is 1.68 ± 0.01/s at 35˚C. Consistent
with its weaker Ca2+ affinity, Figure 3A shows that F102W β-
PV has an ∼32-fold faster rate of Ca2+ dissociation compared to
F102W α-PV. The Ca2+ dissociation rates reported by Trp were

Table 1 | Summary of the Ca2+ and Mg2+ binding properties of the

modified PVs.

Mutated

proteins

K d(Ca)

(nM)

K off(Ca)

(/s)

K d(Mg)

(μM)

K off(Mg)

(/s)

F102W α-PV 1.9 ± 0.4 1.68 ± 0.01 26 ± 2 3.70 ± 0.07

F102W β-PV 93 ± 4* 53.1 ± 0.5* 914 ± 43* 125 ± 3*

S55D, F102W β-PV 54 ± 1*,# 36.0 ± 0.6*,# 188 ± 2*,# 267 ± 5*,#

E62D, F102W β-PV 78 ± 1*,# 59 ± 2*,# 349 ± 4*,# 100 ± 4*,#

S55D, E62D,

F102W β-PV

132 ± 6*,# 64 ± 2*,# 69 ± 1*,# 172 ± 3*,#

Values marked with * are significantly different from the F102 α-PV values,

whereas values marked with # are significantly different from the F102 β-PV values

(P < 0.05).

FIGURE 3 | Rates of Ca2+ and Mg2+ dissociation from F102W α-P and

F102W β-PV. (A) The time course of Trp fluorescence is shown as EDTA
rapidly chelates Ca2+ causing dissociation of Ca2+ from F102W α-PV and
F102W β-PV. Each protein (5 μM) in 10 mM MOPS, 150 mM KCl, 10 μM
Ca2+, pH 7.0 at 35˚C was rapidly mixed with equal volume of 30 mM EDTA
in 10 mM MOPS, 150 mM KCl, pH 7.0. (B) The time course of Trp
fluorescence is shown as EDTA rapidly chelates Mg2+ causing dissociation
of Mg2+ from F102W α-PV and F102W β-PV. Each protein (5 μM) in 10 mM
MOPS, 150 mM KCl, 5 mM EGTA, 500 μM Mg2+, pH 7.0 at 35˚C was rapidly
mixed with equal volume of 30 mM EDTA in 10 mM MOPS, 150 mM KCl,
pH 7.0. Trp fluorescence was monitored through a narrow band-pass filter
centered at 334 nm with an excitation wavelength of 295 nm. Each trace is
an average of at least five traces fit with a single exponential equation. All
kinetic traces were triggered at time zero.
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nearly identical to those measured with Quin-2 (data not shown),
suggesting that the change in F102W fluorescence follows cation
binding. Neither the F102W nor C18S mutations affected the rates
of Ca2+ dissociation from the PVs as measured by Quin-2 (data
not shown).

One reason why skeletal muscle PV does not interfere with
the initial, nearly diffusion controlled, binding of Ca2+ to TnC
is its delayed Ca2+ binding due to its slow rate of Mg2+ disso-
ciation (Hou et al., 1992). Similar to these findings, Figure 3B
shows that Mg2+ dissociates from F102W α-PV at 3.70 ± 0.07/s
(Table 1). Consistent with its weaker Mg2+ affinity, Figure 3B
shows that F102W β-PV has an ∼34-fold faster rate of Mg2+ dis-
sociation compared to F102W α-PV (Table 1). Thus, if F102W
β-PV is bound by Mg2+, it will still have a relatively slow rate of
Ca2+ association compared to the nearly diffusion controlled rate
of Ca2+ binding to TnC. However, due to its low Mg2+ affinity,
much of F102W β-PV would not be bound by Mg2+ and thus
would actually not be a delayed Ca2+ buffer.

Previously, Henzl et al. (1996) demonstrated that the S55D
mutation in rat β-PV modestly increased the Ca2+ affinity, but
drastically increased the Mg2+ affinity of the protein. This type
of EF-hand chelating residue modification is thought to make the
cation binding pocket smaller and bring a negatively charged lig-
and closer to the bound cation (Davis et al., 2002). Consistent

with the previous findings and theory, Figure 4A shows that the
S55D mutation in F102W β-PV increased the Ca2+ affinity ∼1.7-
fold (Table 1). Figure 4B demonstrates that the S55D mutation
in F102W β-PV also slowed the rate of Ca2+ dissociation ∼1.5-
fold (Table 1). Similarly, the S55D mutation increased the Mg2+
affinity of F102W β-PV ∼fivefold (Figure 4C; Table 1), but also
increased the rate of Mg2+ dissociation ∼twofold (Figure 4D;
Table 1). Thus, the S55D mutation begins to bring the Mg2+ affin-
ity of rat β-PV within a physiological range to make it a delayed
Ca2+ buffer.

The EF-hand −Z chelating residue is primarily Glu, but is Asp
in the sarcoplasmic calcium-binding protein from Nereis diversi-
color (Vijay-Kumar and Cook, 1992). This particular EF-hand has
a smaller cation binding pocket more preferable for Mg2+ bind-
ing. Consistent with this idea substitution of the −Z chelating
ligand from Glu to Asp in carp β-PV increased Mg2+ affinity ∼10-
fold, but also decreased the Ca2+ affinity ∼100-fold (Cates et al.,
1999). We speculated that if we mutated the −Z Glu at position
62 with Asp we might increase the Mg2+ affinity of rat β-PV with-
out influencing Ca2+ binding since the rat β-PV already has a
weaker Ca2+ affinity. Consistent with this idea, the E62D muta-
tion in F102W β-PV actually modestly increased the Ca2+ affinity
∼1.2-fold (Figure 5A; Table 1) and slightly increased the Ca2+
dissociation rate ∼1.1-fold (Figure 5B; Table 1). Significantly,

FIGURE 4 | Ca2+ and Mg2+ binding and dissociation from S55D, F102W

β-PV. (A) The Ca2+ dependent increase in Trp fluorescence is shown as a
function of −Log[Ca2+] (pCa) for S55D, F102W β-PV. (B) The time course of Trp
fluorescence is shown as EDTA rapidly chelates Ca2+ causing dissociation of
Ca2+ from S55D, F102W β-PV. (C) The Mg2+ dependent increase in Trp

fluorescence is shown as a function of −Log[Mg2+] (pMg) for S55D, F102W
β-PV. (D) The time course of Trp fluorescence is shown as EDTA rapidly
chelates Mg2+ causing dissociation of Mg2+ from S55D, F102W β-PV. All the
measurements were performed as previously mentioned in the legends of
Figures 2 and 3.
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FIGURE 5 | Ca2+ and Mg2+ binding and dissociation from E62D, F102W

β-PV. (A) The Ca2+ dependent increase in Trp fluorescence is shown as a
function of −Log[Ca2+] (pCa) for E62D, F102W β-PV. (B) The time course of Trp
fluorescence is shown as EDTA rapidly chelates Ca2+ causing dissociation of
Ca2+ from E62D, F102W β-PV. (C) The Mg2+ dependent increase in Trp

fluorescence is shown as a function of −Log[Mg2+] (pMg) for E62D, F102W
β-PV. (D) The time course of Trp fluorescence is shown as EDTA rapidly
chelates Mg2+ causing dissociation of Mg2+ from E62D, F102W β-PV. All the
measurements were performed as previously mentioned in the legends of
Figures 2 and 3.

the E62D mutation increased the Mg2+ affinity of F102W β-
PV ∼threefold (Figure 5C; Table 1), and decreased the rate of
Mg2+ dissociation ∼1.3-fold (Figure 5D; Table 1). Thus, the E62D
mutation increases the Mg2+ affinity of β-PV (without drastically
altering the Ca2+ binding properties) and maintains a relatively
slow rate of Mg2+ dissociation.

Since the S55D and E62D mutations are thought to increase
Mg2+ affinity through different mechanisms (and have little
impact on Ca2+ binding), we speculated that the combination
of these two mutations might be additive on Mg2+ affinity. Con-
sistent with this idea, Figures 6A,B show that the double mutation
S55D, E62D had a minor effect on the Ca2+ affinity or dissociation
rate compared to F102W β-PV (∼1.4-fold, Table 1). Furthermore,
the double mutation increased the Mg2+ affinity ∼13-fold with a
minor effect on the rate of Mg2+ dissociation (∼1.4-fold increase)
as compared to F102W β-PV (Figures 6C,D; Table 1). Thus, the
double mutation actually had a multiplicative effect of the two
single mutations on the Mg2+ binding properties of F102W β-PV.
Thus, the S55D, E62D, F102W β-PV now has Ca2+ and Mg2+ sen-
sitivities and kinetics that should make it an ideal Ca2+ buffering
protein for the heart.

DISCUSSION
It is clear that PV functions in skeletal muscle as a delayed Ca2+
buffer to temporarily aid relaxation (Hou et al., 1991). Metzger

and co-workers have been the pioneers in studying the potential
therapeutic value of using native PVs to help relax cardiac muscle
(Rodenbaugh et al., 2007). They have clearly shown the proof of
principle that PV can increase the rate and extent of relaxation in
healthy and diseased cardiac myocytes in vitro and in vivo, as well
as in small and large animal models (Wang et al., 2009). However,
the PVs used to date (skeletal muscle rat α-PV and carp β-PV) have
similarly slow rates of Ca2+ dissociation and are prone to Ca2+ sat-
uration with repeated contractions, especially at high frequencies
of contraction (Szatkowski et al., 2001). These studies strongly
suggested that a different PV with modified Mg2+ and/or Ca2+
affinities would be needed to work in the heart. To achieve this
goal, we could either explore additional existing PVs with more
appropriate cation binding properties or re-engineer an existing
well-studied PV.

There are four intrinsic factors of PV that must be considered
in order for PV to work in the heart, these include the: Mg2+
affinity, Mg2+ dissociation rate, Ca2+ affinity, and Ca2+ dissoci-
ation rate. It is not entirely clear what properties an ideal PV for
the heart should possess. Potentially, one could theoretically deter-
mine an ideal PV for the heart if there were a reliable mathematical
model for cardiac muscle contraction and relaxation (Trayanova
and Rice, 2011). In any regard, it should be a delayed Ca2+ buffer,
in that it binds Mg2+ with an affinity at least three times lower
than its physiological concentration, to ensure there is little to no
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FIGURE 6 | Ca2+ and Mg2+ binding and dissociation from S55D, E62D,

F102W β-PV. (A) The Ca2+ dependent increase in Trp fluorescence is shown
as a function of −Log[Ca2+] (pCa) for S55D, E62D, F102W β-PV. (B) The time
course of Trp fluorescence is shown as EDTA rapidly chelates Ca2+ causing
dissociation of Ca2+ from S55D, E62D, F102W β-PV. (C) The Mg2+ dependent

increase in Trp fluorescence is shown as a function of −Log[Mg2+] (pMg) for
S55D, E62D, F102W β-PV. (D) The time course of Trp fluorescence is shown
as EDTA rapidly chelates Mg2+ causing dissociation of Mg2+ from S55D,
E62D, F102W β-PV. All the measurements were performed as previously
mentioned in the legends of Figures 2 and 3.

unbound PV available to rapidly chelate Ca2+. The Mg2+ dis-
sociation rate must also be substantially slower than the rate of
Ca2+ binding to TnC, so that the PV is a delayed Ca2+ buffer and
will not interfere with force production. The Ca2+ affinity should
be high enough so that it is able to out-compete Mg2+ binding
during the relaxation phase of the muscle, but not so high that
Mg2+ cannot out-compete Ca2+ binding during the resting peri-
ods between beats. Finally, the Ca2+ dissociation rate must be fast
enough to allow the PV to continuously buffer Ca2+ effectively on
a beat-to-beat basis, without becoming saturated with Ca2+. To
the best of our knowledge, there is no naturally occurring PV that
meets these requirements, but this does not mean one does not
exist.

There are hundreds of unique PV sequences in the protein data-
bases that are found in species that live in very diverse climates and
environments. Unfortunately, there is no algorithm that can pre-
dict the Ca2+ or Mg2+ binding properties of an EF-hand protein
based on its protein sequence. Additionally, there are extremely
diverse skeletal muscles in these various species that utilize PV to
help aid relaxation, some of which can contract and relax over
100 Hz, such as the toadfish swim bladder (yet, for only brief
periods of time; Tikunov and Rome, 2009). It is clear from the
steady-state sensitivities of temperate and cold-adapted fish, that
their PV isoforms are also adapted to function similarly only at

their native temperature (Erickson and Moerland, 2006). One of
these PVs might have properties that will work in the heart. How-
ever, only a small subset of PVs have been characterized for their
steady-state Ca2+ and Mg2+ binding properties, and only a hand-
ful of these have had their Ca2+ and Mg2+ kinetics measured. So
far, all of the characterized PVs have very slow Ca2+ dissociation
rates (Ogawa and Tanokura, 1986; Permyakov et al., 1987; White,
1988; Hou et al., 1992; Lee et al., 2000). Therefore, it may take a
long time and great effort to find an appropriate natural PV that
would work in the heart.

Another way to obtain a PV that might function appropri-
ately in the heart is to re-engineer an existing PV. We have a great
deal of experience designing mutations in other EF-hand Ca2+
binding proteins, including calmodulin, cardiac TnC and skele-
tal TnC, that alter both the steady-state and kinetics of Ca2+ and
Mg2+ binding (Tikunova et al., 2001, 2002; Davis et al., 2002,
2004; Tikunova and Davis, 2004). In this manuscript we chose to
re-engineer rat β-PV. The reasons for this choice are that rat β-
PV has: (1) an intrinsically lower Ca2+ affinity than the skeletal
muscle PVs (Hapak et al., 1989), but still within the physiologi-
cal range of the heart; (2) a more rapid rate of Ca2+ dissociation
than the skeletal muscle PVs (shown in this manuscript); (3) a
relatively slow rate of Mg2+ dissociation (shown in this manu-
script) so that it will be a delayed Ca2+ buffer; and (4) a great

www.frontiersin.org October 2011 | Volume 2 | Article 77 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Zhang et al. Engineering parvalbumin for the heart

deal of work has previously been performed on understanding
its Ca2+ and Mg2+ sensitivities (Hapak et al., 1989; Henzl et al.,
1996). As we mentioned above, the down side to using rat β-PV
directly in the heart is its extremely low Mg2+ affinity (Hapak
et al., 1989). However, we have shown in this manuscript that this
problem can be overcome by rationally designed mutagenesis of
rat β-PV.

Although this work represents the first step in designing a PV
for the heart, the only way to know for certain that we have
designed an appropriate PV for the heart will be to use gene
transfer techniques to express this engineered PV in the heart.
Studies are currently being designed to approach this goal. For

these studies to be successful, not only the cation binding prop-
erties, but also the concentration of the PV must be considered
(Day et al., 2008). Additional approaches are also underway in our
lab to further refine the engineered rat β-PV (further slowing the
Mg2+ dissociation rate), and design a synthetic PV based on TnC.
These engineered PVs hold promise for the development of new
therapies to remediate relaxation abnormalities in different heart
diseases and heart failure.
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