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Abstract

Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are

essential to explain the spatial and temporal heterogeneities in the transmission of malaria.

Vector distribution is driven by environmental factors. Based on variables derived from sat-

ellite imagery and meteorological observations, this study aimed to dynamically model and

map the densities of Anopheles darlingi in the municipality of Saint-Georges de l’Oyapock

(French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted

between September 2012 and October 2014. Landscape and meteorological data were

collected and processed to extract a panel of variables that were potentially related to An.

darlingi ecology. Based on these data, a robust methodology was formed to estimate a sta-

tistical predictive model of the spatial-temporal variations in the densities of An. darlingi in

Saint-Georges de l’Oyapock. The final cross-validated model integrated two landscape var-

iables—dense forest surface and built surface—together with four meteorological variables

related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapo-

lation of the model allowed the generation of predictive weekly maps of An. darlingi densi-

ties at a resolution of 10-m. Our results supported the use of satellite imagery and

meteorological data to predict malaria vector densities. Such fine-scale modeling approach

might be a useful tool for health authorities to plan control strategies and social communica-

tion in a cost-effective, targeted, and timely manner.
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Introduction

Nearly half of the world’s population, i.e., 3.2 billion people, is exposed to the risk of malaria
[1]. Malaria is caused by Plasmodium parasites transmitted to humans through the bite of
infectedAnopheles mosquitoes. At every level of endemicity, the spatial and temporal distribu-
tions of malaria transmission are heterogeneous [2]. Local variation in abundance and expo-
sure to the vectors is the key to explaining this heterogeneity [3, 4]; the more individuals that
are bitten, the more likely are they to become infected and enhance transmission by infecting
newmosquitoes. Accurate information on where and whenmalaria vectors proliferate is essen-
tial for malaria surveillance and elimination since it allows targeted interventions that remark-
ably increase the efficiencyof control measures [5].

Malaria vector distribution is strongly influenced by environmental factors that determine
the availability and productivity of Anopheles habitats. Environmental factors can be accu-
rately detected and spatially analyzed using remote sensing techniques to characterize
Anopheles ecological preferences, model population densities, and produce hazard maps [6–
9]. The visual nature of maps makes them helpful tools to identify locations where interven-
tions can be targeted [10]. Demand for maps of worldwide malaria-vulnerable areas, e.g., to
steer World Health Organization (WHO) international actions, has led to an increasing
number of studies aiming to circumscribe the geographical distribution of vectors [11–16].
Global maps from these studies constitute intelligent support, depicting the schematic large-
scale distribution of the species. However, the spatial resolution of current maps is too coarse
to capture the local spatial and temporal dynamics of Anopheles, which are very heteroge-
neous, even at fine scales [17–19]. The high heterogeneity of the Anopheles distribution, com-
bined with major knowledge gaps in anopheline bio-ecology and experience from previous
control efforts, suggest that ecological studies and control policies should be tailored to indi-
vidual areas [20].

French Guiana is an overseas French territory of 230,000 inhabitants located in northern
South America. Despite a continual decrease in the annual cases over the past decade (1.8 cases
per 1,000 inhabitants in 2015), malaria remains a public health issue [21, 22]. Plasmodium
vivax is the predominant malaria parasite species and was responsible for 80% of the diagnosed
cases in 2015, with the remainder mainly due to P. falciparum [21–24]. Most malaria cases are
reported in villages located along the main rivers flowing through the territory and in illegal
gold mining areas, which are propitious places for malaria transmission [23–25]. As in a large
part of the Americas, the main malaria vector in French Guiana has historically been consid-
ered to beAn. darlingi [26–32], from its natural infectivity, anthropophilic behavior, high den-
sity during malaria transmission periods, and wide distribution [33–37]. AlthoughAn. darlingi
has been the target of numerous studies, many aspects of its ecology and biology are still
unknown. This species is highly adaptable, behaviorally variable, and has been observed in het-
erogeneous breeding sites in a wide range of ecosystems, including forest, savannah, swamps,
and human-disturbed environments [12, 26, 34, 36, 38–42].

This study was conducted in Saint-Georges de l’Oyapock, a persistent malaria-endemic
municipality of French Guiana where An. darlingi have been found infected by P. vivax [43].
Anopheles darlingi densities were longitudinally monitored during the malaria transmission
period (i.e., the September–November dry season) in 2012, 2013, and 2014 at eight different
sites. In parallel, appropriate satellite imagery and meteorological data were selected and pro-
cessed in order to extract a panel of variables potentially related to An. darlingi ecology. Based
on these data, this study aimed to dynamically model and map densities of An. darlingi in the
municipality of Saint-Georges de l’Oyapock at weekly intervals during the malaria transmis-
sion period.Models and density maps of An. darlingi contribute toward controlling malaria
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transmission by bridging the knowledge gaps in An. darlingi bio-ecology and providing tools
for health authorities to effectively apply vector controls.

Materials and Methods

Geography of the study area

Saint-Georges de l’Oyapock (3.89° N, 51.8°W) is a municipality of French Guiana located in
the Amazon forest at the eastern border with Brazil along the Oyapock River. The 3,855 inhabi-
tants (data from the French Institute of Statistics and Economic Studies, 2012) are mainly con-
centrated in the city center and more sporadically in the peripheral Amerindian villages.
Contrasts between neighborhoods can be important because the population stems from a great
diversity of ethnic groups. Therefore, local habits such as agricultural practices or housing
types can vary widely from one area to another. In the “traditional” Amerindian places,
wooden houses are mostly built on stilts, and fishing or slash-and-burn agriculture is the main
livelihood activities of the populations. In the “modern” places, populations have adopted a
western lifestyle. Houses are built with solid materials (concrete, bricks, etc.) and are sur-
rounded by planted and tended gardens. Landscape of the study area is characterized by four
main elements—the forest, savanna, urban, and river. The eastern side of the city is bordered
by the Oyapock River, and the western side is open to the savanna. The northern and southern
boundaries of the town are delimited by dense primary forest. The climate is equatorial: hot,
wet, and rainy. The average temperatures range between 26.05°C in February and 27.85°C in
October. The mean annual cumulative rainfall is 3,345 mm, with four alternating seasons: a
long, rainy season from April to June; a long, dry season from July to December; a short, rainy
season from January to February; and a short, dry season in March.

Mosquito collection

Mosquitoes were collected during the dry seasons in 2012 (September 3–November 25; 12
weeks), 2013 (September 2–November 24; 12 weeks), and 2014 (September 1–October 26; 8
weeks) from eight different sites that varied by year (Fig 1). Sites were selected from field exper-
tise and followed a longitudinal transect that maximized heterogeneity of the landscape and
lifestyle characteristics of the population (Table 1). Landscape heterogeneities were decisive ele-
ments for sampling site selection. Photo interpretation and field expertisewere used to select
sampling sites such that the environmental richness of the study area was covered as best as
possible. Since the lifestyle of the populations impacts the local environment (housing type or
livelihood practices described in “Geography of the study area” section), this criterion was also
considered. The eight sampling sites were finally decided by considering the best possible envi-
ronmental criteria and field constraints (field hostility, access to the site, low risk of trapping
material theft, etc.). Importantly, the choice of sampling sites was not oriented by the identifi-
cation of places where we were confident to find numerous An. darlingi. Trapping sessions
were conducted on two non-consecutive nights per week, between 6:00 pm and 8:00 am, by
usingMosquito Magnet1 traps (Woodstream Corporation, Lititz, PA) baited with octenol
(MMoct). Such traps have previously been proven useful to monitor the spatial and temporal
abundance of malaria vectors in French Guiana [38, 44]. Mosquitoes were stored at -20°C until
counting and morphological identification [31, 45, 46]. To achieve a weekly cartographic out-
put and to smooth variation between collection nights, the two bi-weekly observationswere
averaged to approximate a daily number of specimens and thenmultiplied by seven to approxi-
mate a weekly number of specimens. In all, 165 weekly approximated An. darlingi density rec-
ords across the eight study sites was finally available for analyses, which was slightly less than
our expectedmaximum of 184, owing to the mechanical failure of traps. Since our activities
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were not conducted in a protected area (not a national park or a regional nature reserve), no
specific permission was required, and field studies did not involve endangered or protected
species.

Landscape characterization

A SPOT-5 image acquired on October 14, 2012, with four color channels (red, green, near-
infra-red, and middle infrared) at 10-m spatial resolution was selected to characterize the land-
scape of the study area. One image was sufficient to cover the eight trapping sites. However, the

Fig 1. Study area and sampling sites. Location of collection sites with information about their sampling

period, Saint-Georges de l’Oyapock, French Guiana. Aerial photograph acquired in 2006 (BD Ortho® product

from IGN, the French National Institute of Geographic and Forest Information).

doi:10.1371/journal.pone.0164685.g001
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presence of clouds required the posterior use of a second SPOT-5 image (July 22, 2013) in order
to fill the missing data (5% of the total study area) and obtain a spatially complete product. A
land cover map of the study area was produced based on field observations and a supervised
training approach with maximum likelihood classification. The classification included five land
cover types identified as “built, roads, and bare soils”; “low vegetation”; “forest”; “very dense for-
est”; and “water.” A 7 × 7 pixel mode filter (i.e., each pixel value being replaced by its most com-
mon neighbor in a 7 × 7 cell moving window) was applied to the classification to reduce noise.
BD-Topo1 2012 (IGN, the French National Institute of Geographic and Forest Information)
was used to separate the “built” surfaces and “roads and bare soil” surfaces, resulting in a six-
class land cover map (Fig 2). Land cover map quality was assessed by identifying the actual land
cover of the training pixels by using photo-interpretation and local field expertise and applying
a 5-fold cross validation procedure. The resulting mean Kappa coefficientwas 0.84. A simplified
binary classification, with two classes “forest” and “non-forest,” was also produced to provide
complementary information for subsequent analyses. Biases from incomplete detection of water
bodies, owing to forest canopy and thick vegetation covering the surface of water points were
avoided by excluding the “water” land cover class from further statistical analyses. The remain-
ing classes refer to perennial environmental facies. Therefore, changes in land cover during the
study periodwere considered negligible, supporting the use of two satellite images acquired dur-
ing different months to classify the study area. The Oyapock River and its main tributaries were
excluded from the analysis since they are not a suitable habitat for An. darlingi breeding sites.
Indeed, the estuarine situation of Saint-Georges de l’Oyapock implied a daily tidal influence and
recurrent leaching of the riverbanks.

Given the lack of knowledge on the specific bio-ecologyand behavior of An. darlingi in Saint-
Georges de l’Oyapock, an exploratory approach was adopted by extracting a wide range of vari-
ables to characterize the landscape. These variables were extracted in a 200-m radius buffer
around each trap by using FRAGSTATS software [47]. The radius represented a compromise
between a relevant landscape characterization according to the satellite image spatial resolution,
the overlap between neighboring buffers (to avoid information redundancy and artificial spatial
auto-correlation), and theMMoct constructor attraction radius (up to 50 m). In total, 22 land-
scape variables were computed for each sampling site (Table 2). Four variables (PAFRAC, SPLIT,
TE, and PRD) were computed for each of the two classifications (i.e., the final and simplified for-
est/non-forest binary classifications) by considering all classes together. Two variables (AREA
and EDGE)were computed for each of the land cover classes (i.e., “built,” “roads and bare soils,”
“low vegetation,” “forest,” “very dense forest,” “binary forest,” and “binary non-forest”).

Table 1. Characteristics of sampling sites.

Site Landscape Lifestyle

Blondin River–Forest Traditional

Martin River–Forest–Savannah Traditional

Onozo River–Forest–Urban Traditional

Esperance Urban–Forest Traditional

Bernet Urban–Forest Modern

Maripa Savannah–Urban–Forest Modern

Adimo Savannah–Urban Modern

Savane Savannah–Urban Traditional

Landscapes (photo interpretation and field expertise) and population lifestyles (field expertise) across the

eight sites.

doi:10.1371/journal.pone.0164685.t001
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Meteorological variables

Daily meteorological records, including rainfall, temperature, relative humidity, solar radia-
tion, and evapotranspiration (ETP) for the years 2012–2014 were obtained from the Meteo-
France weather station located in the city center of Saint-Georges de l’Oyapock. ETP was
approximated using the Penman–Monteith equation [48]. For each meteorological parame-
ter, a panel of variables (Table 3) was extracted using two different time interval schemes: a
cumulative 7-day time interval scheme (i.e., past weather from days 0 to 6, days 0 to 13, days
0 to 20, etc.) and a non-cumulative 7-day time interval scheme (i.e., past weather from days 0
to 6, days 7 to 13, days 14 to 20, etc.). Extraction of meteorological variables ended at the
ninth week (day 63) before the beginning of the trapping session to remain within the dry
season. A total of 2,214 meteorological variables were extracted for each of the 32 weeks
studied.

Fig 2. Land cover map of the study area, Saint-Georges de l’Oyapock, French Guiana.

doi:10.1371/journal.pone.0164685.g002
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Statistical model

The spatial and temporal dynamics of An. darlingi densities in response to landscape and
meteorology in Saint-Georges de l’Oyapock were assessed using a cumulative link mixed
model (CLMM) [49]. The CLMMwas estimated using maximum likelihood by using Laplace
approximation with an ordinal response. Weekly An. darlingi densities were allocated to three
classes following the tercile method: “Low densities” (first tercile), “Medium densities” (sec-
ond tercile), and “High densities” (third tercile). The sampling scheme used potentially
resulted in grouping structures as each trap and week providing several observations (repli-
cates). In other words, An. darlingi densities observed in the same trap or in the same week
were more likely to be similar than observations from different traps or weeks. CLMM allows
multiple random effects to account for grouping variables and handling replications [50]. The
ordinal response of An. darlingi density was analyzed using CLMMwith logit link, two
crossed random effects (trap position and catching week) and C = 3 categories (“Low,”
“Medium,” and “High” densities):

logitðgcjkÞ ¼ ac � ðxjk0bþ uj þ ukÞ c ¼ 1; 2

where k = 1, 2, . . ., nk is the week index and j = 1, 2, . . ., nj is the trap, whereas γcjk is the cumu-
lative probability up to cth category for observation in trap j at week k. The covariate vector
xjkincludes the observation characteristic related to the regression coefficient (β), whereas the
terms uj and uk are the random effects representing unobserved factors at the trap and week
levels, respectively. The parameter αc is the threshold (cutpoint). The probability of the

Table 2. Landscape variables.

Landscape variables Unit Description

Perimeter–Area Fractal

Dimension (PAFRAC)

None PAFRAC reflects the shape complexity across a range of

spatial scales (patch sizes). It equals two divided by the

slope of the regression line between the logarithm of

patch area (m2) and the logarithm of patch perimeter (m).

Splitting Index (SPLIT) None SPLIT is the number of patches with a constant patch

size when the landscape is subdivided into S (value of the

splitting index) patches. It equals total landscape area

(m2) divided by the sum of the patch area (m2), summed

across all patches.

Patch Richness Density

(PRD)

Number per 100

hectares

PRD equals the number of different patch types within the

landscape divided by the total landscape area (m2).

Total Edge (TE) Meters TE equals the sum of the lengths (m) of all edge

segments in the landscape.

Total Class Area (*)

(AREA)

Hectares AREA equals the sum of the areas (m2) of all patches of

the corresponding patch type, divided by 10,000 (to

convert to hectares).

Edge Density (*) (EDGE) Meters per

hectares

EDGE equals the sum of the lengths (m) of all edge

segments involving the corresponding patch type, divided

by the total landscape area (m2), and multiplied by 10,000

(to convert to hectares).

Variables were extracted using FRAGSTATS in a 200-m radius buffer around each trap. Landscape metrics

marked with an asterisk were computed separately for each individual land cover class. Remaining metrics

were computed with all land cover classes together.

doi:10.1371/journal.pone.0164685.t002
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category (πc) is obtained by the difference as follows:

pcjk ¼ gcjk � gc� 1;jk ¼ logit� 1ðac � ðxjk0bþ uj þ ukÞÞ � logit � 1ðac� 1 � ðxjk0bþ uj þ ukÞÞ

Model selection

Three models were constructed. The spatial and temporal dynamics of An. darlingi densities
were better and more easily evaluated by separately investigating the relative effects of the land-
scape and meteorological variables in the first and secondmodels, respectively. Targeted land-
scape and meteorological variables were then merged into a third dynamic spatial-temporal
model. Univariate CLMMs of An. darlingi densities were fitted using the 22 landscape and
2,214 meteorological features as explanatory variables. From the univariate analysis, landscape
variables with p-values below 0.20 were retained for multivariate analyses. Because of the
numerous meteorological variables, a different strategy was used: only variables listed in both
the hundred lowest p-values and hundred highest log-likelihoodswere retained for multivari-
ate analyses. For collinear explanatory variables, we selected those that maximized the log-like-
lihood and were the most easily interpretable from a bio-ecological point of view. All possible
multivariate combinations with the remaining variables were tested separately for landscape
and meteorological features. Selection of the best spatial and temporal An. darlingi density
models was based on statistical indicators, including minimization of the Akaike information
criterion (AIC) [51], minimization of the random effects variance (RE), and maximization of
the area under the curve (AUC) computed from a receiver operating characteristic (ROC) anal-
ysis [52]. Once defined separately, the landscape (spatial) and meteorological (temporal) vari-
ables were used together to fit a single spatial-temporal model.Weekly maps of An. darlingi
densities in Saint-Georges de l’Oyapock were produced by calculating the probabilities of each
pixel in the study area belonging to “Low,” “Medium,” or “High” classes according to the

Table 3. Meteorological variables.

Raw data (unit) Variables Description

Rainfall (mm) [Rain] MaxNbConsecutiveDays_i-

j_>PCTLp

Maximum number of consecutive days that are above the pth

percentile, between days i and j before the trapping

Temperature (˚C) (minimal [TN], mean

[TM], and maximal [TX])

MaxNbConsecutiveDays_i-

j_<PCTLp

Maximum number of consecutive days that are below the pth

percentile, between days i and j before the trapping

NbDays_i-j_>PCTLp Number of days that are above the pth percentile, between days i

and j before the trapping

Relative Humidity (%) (min. [HN], mean

[HM], and max. [HX])

NbDays_i-j_<PCTLp Number of days that are below the pth percentile, between days i

and j before the trapping

Solar radiation (W/m) [SR] Max_i-j Maximal value between days i and j before the trapping

Min_i-j Minimal value between days i and j before the trapping

Evapotranspiration (mm) [ETP] Mean_i-j Mean value between days i and j before the trapping

Rain (mm) [Rain] MaxNbConsecutiveDaysNoRain_i-j Maximal number of consecutive days without rain between days i

and j before the trapping

TotRain_i-j Cumulative rainfall between days i and j before the trapping

Temperature (˚C) (minimal [TN], mean

[TM], and maximal [TX])

RangeTemp_i-j Difference between the maximal and minimal temperature values

between days i and j before the trapping

Variables were extracted for two time interval schemes (i.e., cumulative 7-day and non-cumulative 7-day schemes). The 25th and 75th percentiles were used

to extract temperature, relative humidity, solar radiation, and evapotranspiration. The 1st, 4th, 25th, 75th, 96th, and 99th percentiles were used to extract

rainfall.

doi:10.1371/journal.pone.0164685.t003
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landscape and meteorological conditions for each of the 32 weeks of the study. For a given
pixel, the class with the highest probability was assigned.

Model validation

Model validity was assessed using a 10-fold cross-validation [53], which measures the stability
of a model. The dataset was randomly partitioned into 10 parts, and the model was refitted 10
times with the partitions temporarily removed in rotation. Quality was evaluated by computing
a cross-validated AUC (CVAUC), which was calculated as the average of the 10 AUC of the
refitted models.

Results

Anopheles darlingi collections

Observeddensities of An. darlingi in Saint-Georges de l’Oyapock showed high spatial and tem-
poral heterogeneity (Table 4). The highest weekly mean densities were found in the peripheral
Amerindian villages of Blondin and, to a lesser extent, in Martin, with 260.5 and 57.7 speci-
mens, respectively. In the traps of Savane, Onozo, Adimo, Esperance,Maripa, and Bernet, near
the city center, the weekly mean densities were lower, below 15 specimens. Temporal dynamics
were characterized by maximal weekly densities observed in September (43.7) or October
(69.0), depending on the study site. Minimal weekly densities were recorded at the end of the
dry season in November (1.7). The spatial-temporal variation in An. darlingi densities is shown
in detail in S1 Fig. The distribution of densities was characterized by a high number of null
observations (Table 4). For example, the upper limit of the first tercile was 0 for the five traps
in Adimo, Esperance,Maripa, Onozo, and Savane. Therefore, furthermodeling procedures
used observations classified into three densities following the tercile method: “Low densities”
([0.0]), “Medium densities” ([0.0–12.2]), and “High densities” ([12.2–1,386.0]).

Univariate analyses

Univariate predictive CLMMs of An. darlingi densities were fitted using each of the 22 land-
scape and 2,214 meteorological features as explanatory variables. Seven noncollinear landscape
variables showed p-values lower than 0.20, and seven noncollinearmeteorological variables
were listed in both the hundred lowest p-values and the hundred highest log-likelihoodvalues
(Table 5). Following the model selection procedures, these variables were retained for

Table 4. Anopheles darlingi weekly density distribution.

Site Mean Median 1st Tercile 2nd Tercile 3rd Tercile

Sep. Oct. Nov. Total

Adimo 3.8 5.0 3.1 4.1 1.2 [0.0] [0.0–3.5] [3.5–21.0]

Bernet 23.7 12.5 2.0 12.2 3.5 [0.0–1.5] [1.5–14.0] [14.0–45.5]

Blondin 250.9 399.0 2.7 260.5 101.5 [0.0–37.7] [37.7–159.2] [159.2–1,386.0]

Esperance 6.8 11.7 0.0 7.7 0.0 [0.0] [0.00–3.8] [3.8–70.0]

Maripa 13.6 10.4 1.0 9.2 3.5 [0.0] [0.0–7.0] [7.0–56.0]

Martin 35.3 104.7 3.0 57.7 8.8 [0.0–2.0] [2.0–39.1] [39.1–378.0]

Onozo 8.2 0.9 0.0 3.0 0.0 [0.0] [0.0–1.5] [1.5–24.5]

Savane 1.8 1.8 0.0 1.2 0.0 [0.0] [0.0] [0.0–7.0]

Total 43.7 69.0 1.7 42.6 3.5 [0.0] [0.0–12.2] [12.2–1,386.0]

Sep, Oct, Nov: sampling months.

doi:10.1371/journal.pone.0164685.t004
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multivariate analyses. For the landscape features, forest-related variables were positively associ-
ated, whereas all the other variables were negatively associated with An. darlingi densities. The
selectedmeteorological variables included four related to temperature (T) and one each related
to evapotranspiration (ETP), humidity (H), and rainfall (Rain).With the exception of
“TN_MaxNbConsecutiveDays_56–0_<22.5” all the other variables were negatively associated
with An. darlingi densities.

Multivariate analyses

All possible multivariate combinations, separately for the landscape and meteorological vari-
ables listed in Table 5, were tested. Statistical performances of the significant predictive multi-
variate landscape- and meteorology-basedmodels are listed in Table 6. It resulted in two
landscape-basedmodels and 14 meteorology-based models (only the five best models, i.e., with
the highest explanatory value, are reported).

Selection of the final multivariate landscape- and meteorology-based CLMMs is detailed in
S1 Text. For landscape, the LAND_2model was selected. In this model, an increase in the built
surface and dense forest surface in a 200-m radius around a trap was associated with a decrease
and increase in An. darlingi densities, respectively. For meteorology, the METEO_1model was
selected showing the following: the maximal value of ETP during the 28 days preceding the col-
lection (“ETP_max_28–0”) was negatively associated with An. darlingi densities; the maximum
number of consecutive days without rainfall during the 49 days preceding the collection
(“MaxNbConsecutiveDaysNoRain_49–0”) was negatively associated with An. darlingi densities;
the maximum number of consecutive days with a minimal temperature below 22.5°C (25th per-
centile) during the 56 days preceding the collection (“TN_MaxNbConsecutiveDays_56–
0_<22.5”) was positively associated with An. darlingi densities; and the maximum number of
consecutive days with a maximal temperature above 33.2°C (75th percentile) during the ninth
week preceding the collection (“TX_MaxNbConsecutiveDays_63–57_>33.2”)was negatively
associated with An. darlingi densities.

Table 5. Landscape and meteorological variables selected for multivariate CLMMs of An. darlingi densities during the malaria transmission

period (i.e., September–November dry season) in Saint-Georges de l’Oyapock, French Guiana.

Landscape variables

Variable Coefficient Sign Log-likelihood p-value

[L1] AREA_BareSoil - -164.36 < 0.01

[L2] AREA_DenseForest + -165.24 < 0.01

[L3] AREA_Built - -164.73 < 0.01

[L4] PerimeterAreaFractalDimension - -164.82 < 0.01

[L5] AREA_BinaryForest + -167.29 0.01

[L6] EDGE_LowVegetation - -166.48 0.03

[L7] TotalEdge - -169.59 0.06

Meteorological variables

Variable Coefficient Sign Log-likelihood p-value

[M1] ETP_max_28–0 - -158.61 < 0.01

[M2] HN_MaxNbConsecutiveDays_63–57_<49 - -159.41 < 0.01

[M3] MaxNbConsecutiveDaysNoRain_49–0 - -159.02 < 0.01

[M4] TM_moy_42–36 - -163.42 < 0.01

[M5] TN_MaxNbConsecutiveDays_56–0_<22.5 + -163.45 < 0.01

[M6] TX_moy_56–50 - -162.22 < 0.01

[M7] TX_MaxNbConsecutiveDays_63–57_>33.2 - -156.80 < 0.01

doi:10.1371/journal.pone.0164685.t005
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Spatial-temporal model

The targeted landscape and meteorological variables were used together to fit a single final spa-
tial-temporal predictive model (Table 7). The AIC of the model was 287.05, and the AUC of
the “Low,” “Medium,” and “High” An. darlingi density classes were 0.78, 0.64, and 0.80,
respectively.

Mapping An. darlingi densities

Extrapolation of the landscape-basedmodel produced a static map of An. darlingi densities
during the dry season (September–November) for the entire municipality of Saint-Georges de
l’Oyapock (Fig 3), depicting the background influence of the landscape on An. darlingi densi-
ties, irrespective of intra-seasonal variation. In agreement with the model parameters, the
densely forested surroundings of Saint-Georges de l’Oyapock were predicted as a high An. dar-
lingi density area. This area encompassed the Amerindian villages of Blondin and Martin and
included locations closer to the city center, such as the northern parts of the Onozo and Savane
neighborhoods and a major part of the Bernet neighborhood,which is a military camp. The
savannah plain in the northeast part of the city, mainly characterized by low vegetation (Fig 2),
as well as the aerodrome neighborhooddominated by herbaceous vegetation, was predicted as
mediumAn. darlingi density area. The most urbanized areas, i.e., city center neighborhoods,
were predicted as low An. darlingi density areas.

Extrapolation of the spatial-temporal model (Table 7), based on both the land cover map of
the study area and meteorological observations, allowed to dynamically map An. darlingi den-
sities at weekly time intervals (S1 Movie). For the three sampling periods of 2012, 2013, and
2014, maps showed that the model predicted a global dynamic characterized by high An. dar-
lingi densities in September across almost the entire study area, except most of the urbanized
neighborhoods.Densities of An. darlingi then progressively decreased until the end of the dry

Table 6. Statistical performances of the best predictive multivariate landscape- and meteorology-based cumulative link mixed models of An. dar-

lingi densities during the malaria transmission period (i.e., the September–November dry season) in Saint-Georges de l’Oyapock, French

Guiana.

Landscape-based models

Model Variables AIC AUC RE

Low Medium High

LAND_1 [L3] + [L4] 332.14 0.63 0.50 0.63 2.97

LAND_2 [L2] + [L3] 337.46 0.63 0.49 0.65 3.18

Meteorology-based models

Model Variables AIC AUC RE

Low Medium High

METEO_1 [M1] + [M3] + [M5] + [M7] 297.11 0.68 0.54 0.71 1.91

METEO_2 [M1] + [M2] + [M3] + [M5] 298.72 0.68 0.56 0.71 1.90

METEO_3 [M1] + [M3] + [M5] 301.18 0.67 0.56 0.71 1.91

METEO_4 [M1] + [M5] + [M7] 304.55 0.71 0.55 0.70 1.25

METEO_5 [M1] + [M2] + [M5] 305.34 0.72 0.56 0.71 1.28

Landscape variable indices: “[L2]” for “AREA_DenseForest,” “[L3]” for “AREA_Built,” and “[L4]” for “PerimeterAreaFractalDimension.” Meteorological

variables indices: “[M1]” for “ETP_max_28–0,” “[M2] for “HN_MaxNbConsecutiveDays_63–57_<49,” “[M3]” for “MaxNbConsecutiveDaysNoRain_49–0,”

“[M5] for “TN_MaxNbConsecutiveDays_56–0_<22.5,” and “[M7]” for “TX_MaxNbConsecutiveDays_63–57_>33.2.” AIC: Akaike information criterion. AUC:

area under the curve from the receiver operating characteristic (ROC) analysis for the Low, Medium, and High An. darlingi density classes. RE: Random

effects total variance.

doi:10.1371/journal.pone.0164685.t006
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season and maintained a spatial gradient from the city center neighborhoods (lowest densities)
to the densely forested areas (highest densities).

Model validation

AUC values were previously computed using the entire data set to guidemodel selection. The
quality of the model was assessed by calculating a CVAUC from a 10-fold cross validation. The
CVAUC means (standard deviations) were 0.78 (< 0.01), 0.64 (0.01), and 0.79 (0.02) for the
“Low,” “Medium,” and “High” An. darlingi density classes, respectively. These values were very
close to those computed using the entire data set (0.78, 0.64, and 0.80) and had low standard
deviations. These results confirmed the stability of the model and its predictive value for the
“Low” and “High” An. darlingi density classes.

Discussion

AlthoughAn. darlingi is one of the most important malaria vectors in the Americas, in many
areas, the influence of ecological factors on local population dynamics is not clearly under-
stood. To our knowledge, this is the first study to implement a dynamic model of An. darlingi
densities in French Guiana to assist the development of vector control strategies. An original
and powerfulmodelingmethod was proposed based on a CLMM that exploits the ordered
nature of observations and offers a flexible regression framework. The model selection proce-
dures were guided by objective statistical criteria while retaining the central role of entomologi-
cal expertise. The final model was based on two landscape variables (dense forest surface and
built surface) and four meteorological variables (absence of rainfall, maximal ETP, and mini-
mal and maximal temperatures). The accuracy of predicting the spatial-temporal densities of
An. darlingi was evaluated by using a CVAUC, which was 0.74 in average for the three density

Table 7. Parameters of the predictive spatial-temporal cumulative link mixed model of An. darlingi densities during the malaria transmission

period (i.e., the September–November dry season) in Saint-Georges de l’Oyapock, French Guiana.

Coefficients Standard errors P-value

Thresholds

Low | Medium -22.69 5.34

Medium | High -20.73 5.29

Slopes

AREA_BUILT

By one hectare increase -3.67 1.41 < 0.01

AREA_DENSFOREST

By one hectare increase 0.91 0.30 < 0.01

ETP_max_28–0

By one millimeter increase -3.65 0.93 < 0.01

MaxNbConsecutiveDaysNoRain_49–0

By one day increase -0.43 0.16 < 0.01

TN_MaxNbConsecutiveDays_56–0_<22.5

By one day increase 0.10 0.03 < 0.01

TX_MaxNbConsecutiveDays_63–57_>33.2

By one day increase -0.22 0.09 0.01

Random effects

Trap 0.14

Week < 0.01

doi:10.1371/journal.pone.0164685.t007
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classes. The average performance was reduced by the “Medium” density class, which had an
AUC of 0.64; therefore, the predictions for intermediate density areas remain uncertain.More
importantly, the best AUC value (0.80) was observed for the “High” density class. In other
words, the model was the most accurate for the areas needing the highest malaria vector
control.

Dense forest surface was an efficient predictor of highAn. darlingi densities. However, the
classification of the unpopulated dense forest surrounding Saint-Georges de l’Oyapock as a
highAn. darlingi density area should be discussed since this species is known for its anthropo-
philic behavior [36, 37, 54, 55]. Several specific characteristics of the study, combined with the
ecological preferences of An. darlingi, might explain this model prediction. First, the hostility
of the environment, i.e., the equatorial primary forest, prevented the placing of traps far from
the edges of the dense forest; hence, all the sampling sites were effectively located close to

Fig 3. Landscape-based model map of predicted An. darlingi densities during the malaria

transmission period (i.e., the September–November dry season) in Saint-Georges de l’Oyapock,

French Guiana.

doi:10.1371/journal.pone.0164685.g003
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human settlements. Thus, model predictions depicted that villages encompassing large patches
of dense forest at their borders are highly exposed to malaria vectors. Second, the extrapolation
of the model to the entire study area was not random. Indeed, the study was focused on a cir-
cumscribed area so that any pixel of the predictive map was not further than 2 km from human
settlements, i.e., from An. darlingi bloodmeal sources. Although little is known about the flight
range of An. darlingi, densely forested places in the study area could very less likely be the hot-
spots for An. darlingi. Forest ecosystems with human settlements at their borders are reported
to provide optimal breeding, resting, and feeding sites that favor a high density and survival of
human malaria vectors [9, 56].

Built surfaces were negatively associated with An. darlingi densities. Densely built-up areas
favor runoff and are not likely to offer natural water bodies suitable for An. darlingi breeding
or resting [26]. In addition, the increasing density of human settlement from the periphery of
the municipality to the city center constitutes a behavioral barrier for mosquitoes. Females do
not need to fly far into the city area to secure a bloodmeal. Similar observations and hypothe-
ses have beenmade for An. gambiae in Africa with the number of specimens being inversely
proportional to the level of urbanization in the area [57, 58].

A main limitation of this study is the absence of landscape variables directly related to the
water bodies that are essential for breedingmosquitoes. This is an inherent flaw in the Amazo-
nian region, which prevents the effective use of optical satellite imagery to exhaustively detect
water bodies under the thick forest cover. The dense forest surface variable used to modelAn.
darlingi densities might be considered as proxy for the presence of water. Indeed, the majority
of the hydrographic network could likely be hidden by the canopy. Thus, although this research
supports the use of optical satellite imagery to predictAn. darlingi densities, it is limited in
comparison with similar studies conducted in open landscapes, such as in Sahelian Africa [57]
or Europe [59]. Further studies that evaluate the potential of radar imagery to detect water bod-
ies under the canopy might help rectify this limitation.

Another limitation implied by the use of optic satellite imagery in the equatorial area was
the scarcity of cloud-free image. Thus, the landscape of the study area was characterized based
on a single time point land cover map. From the very regular presence of the authors in Saint-
Georges de l’Oyapock for field collections, environmental changes during the entire study
periodwere considered negligible.Despite this, fine-scale landscape modificationsmight have
occurred between September 2012 and November 2014. Further, the landscape changes within
a season (September–November) were not objectively evaluated. These two issues might result
in incorrect predictions of localAn. darlingi densities. However, since the land cover classes
targeted in the present study refer to coarse environmental facies, the potential impacts of envi-
ronmental modifications on the results were considered as minor.

The maximal value of ETP during the 28 days preceding the collection periodwas negatively
associated with An. darlingi densities. Mosquitoes exposed to high ETP are potentially sub-
jected to desiccation. Further, ETP might be considered a proxy for the loss of breeding sites.
The maximum number of consecutive days without rainfall during the 49 days preceding the
collection periodwas also negatively associated with An. darlingi densities. Long, dry spells
during the proliferation season of An. darlingi (i.e., the dry season)most likely caused the
reduction of aquatic breeding sites and interrupted population dynamics, leading to low densi-
ties in the following weeks. The maximum number of consecutive days with a minimal temper-
ature below 22.5°C and a maximal temperature above 33.2°C were positively and negatively
associated with An. darlingi densities, respectively. With regard to ETP, very high temperatures
might cause mosquito desiccation and accelerate the loss of aquatic breeding sites. In contrast,
lower temperatures appeared to benefit mosquito breeding. In the study area, minimal temper-
atures never fell below 20°C and were always suitable for An. darlingi. In addition, during the
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dry season, the lowest daily temperatures were most often recorded on rainy days. Therefore,
the relationship between the maximum number of consecutive days with a minimal tempera-
ture below 22.5°C and An. darlingi densities might indicate the impact of rainy episodes during
the dry season on mosquito density. Meteorological variables selected in the final model were
related to the weather conditions observed several weeks before the sampling sessions (from
four to nine weeks), which might exceed the lifespan of An. darlingi females. Therefore, the
impact of meteorological factors on An. darlingi should be interpreted over several generations,
i.e., adverse weather conditions during a given generation might impact subsequent ones.

By using entomological data sampled both in the dry and wet seasons, Adde et al. (unpub-
lished data) observed a negative correlation betweenmonthly rainfall and An. darlingi densi-
ties. Further, other studies [60, 61] have suggested that this negative relationship highlights the
local seasonal framework conducive to highAn. darlingi densities: the driest months of Sep-
tember–November. However, when focusing on the dry season and downsizing to a weekly
scale, the relationship appears to be reversed: rainy events during the dry season are beneficial
for the proliferation of An. darlingi. One hypothesis is that, during the wet season (April–
June), the breeding sites are floodedand are regularly flushed, resulting in a drastic reduction
in mosquito densities [36]. Dry conditions during the offseason (July–August) and at the onset
of the dry season (September–midOctober)might decrease the level of water bodies suitable
for breeding, and flushing events become rarer, resulting in high densities of mosquitoes. Dry-
ing of the water bodies continues through the following weeks, and thus the availability of suit-
able breeding places becomes limited again toward the end of the dry season (end-October–
November), resulting in a substantial reduction in An. darlingi densities.

Significant technical, human, and financial resources were required to achieve the consider-
able entomological collection in this study. The collection periodwas restricted to extend spa-
tial sampling, which was not possible to continue throughout the year. This study focused on
the middle of the dry season (September–November), which is the major period of malaria
transmission and the season whenAn. darlingi is abundant. Unfortunately, this collection
period did not allow the measurement of the increase in mosquito densities after the wet sea-
son: it begins in September when the densities are almost maximal. Given the hypothetical dif-
ferentiated impact of rainfall on An. darlingi densities across seasons outlined above, the four
different models (Dry season; Offseason 1; Wet season; Offseason 2) would be necessary to
capture the dynamics over the entire year.

Mapping vector-borne disease determinants and entomological hazards is highlighted by
theWHO as a central feature for efficient and integrated vector control management [62].
Hazard maps should be considered as predictive support that provide relevant information
about where and when vector control interventions could be focused. This information is
essential for the success of malaria elimination programs [63–67]. This study was conducted at
a local level to provide operational results consistent with the intended scale of spatial interven-
tion. Inevitably, this limits the generality and reproducibility of the results in other contexts.
However, considering the high heterogeneity of malaria vector dynamics, focusing on local
specificities is necessary to devise sustainable and effective control tools, which are not possible
to implement from synoptic or large-scale approaches.

Conclusions

The analysis of the relationships between landscape parameters derived from SPOT-5 satellite
imagery, meteorological observations, and An. darlingi densities allowed developing a robust
and operational methodology to dynamically map malaria vector density in Saint-Georges de
l’Oyapock, an area of French Guiana where residual malaria transmission still exists. Such a
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fine-scalemodeling approach fills the knowledge gap in localAn. darlingi bio-ecology and pro-
vides a tool for health authorities to establish effective vector control. Production of near real-
timeAn. darlingi density maps can be implemented by automating satellite and meteorological
data processing to aid public health authorities in planning control strategies and preparing
social communication in a cost-effective, targeted, and timely manner.
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de santé primaires. Paris: ORSTROM. 1989. pp. 181–185.

59. Tran A, Poncon N, Toty C, Linard C, Guis H, Ferre JB, et al. Using remote sensing to map larval and

adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern

France. Int J Health Geogr. 2008; 7:9. doi: 10.1186/1476-072X-7-9 PMID: 18302749

60. Forattini OP. Exophilic behavior of Anopheles darlingi Root in a southern region of Brazil. Rev Saude

Publica. 1987; 21:291–304. doi: 10.1590/S0034-89101987000400002 PMID: 3445112

61. Hudson JE. Anopheles darlingi Root (Diptera: Culicidae) in the Suriname rain forest. Bull Entomol Res.

1984; 74:129–142. http://dx.doi.org/10.1017/S0007485300010002.

Anopheles darlingi Densities Dynamical Mapping

PLOS ONE | DOI:10.1371/journal.pone.0164685 October 17, 2016 19 / 20

http://www.ncbi.nlm.nih.gov/pubmed/9715956
http://dx.doi.org/10.1186/1476-072X-6-7
http://www.ncbi.nlm.nih.gov/pubmed/17343728
http://dx.doi.org/10.1093/jmedent/43.2.382
http://dx.doi.org/10.1093/jmedent/43.2.382
http://www.ncbi.nlm.nih.gov/pubmed/16619625
http://dx.doi.org/10.1590/S0074-02762012000300021
http://www.ncbi.nlm.nih.gov/pubmed/22510842
http://dx.doi.org/10.1186/1475-2875-13-384
http://dx.doi.org/10.1186/1475-2875-13-384
http://www.ncbi.nlm.nih.gov/pubmed/25260354
http://www.umass.edu/landeco/research/fragstats/fragstats.html
https://cran.r-project.org/web/packages/ordinal/ordinal.pdf
http://dx.doi.org/10.1111/j.1751-5823.2001.tb00463.x
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://www.ncbi.nlm.nih.gov/pubmed/112681
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1603/0022-2585(2006)43[947:BHOASD]2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/17017232
http://www.ncbi.nlm.nih.gov/pubmed/2619371
http://dx.doi.org/10.1186/1756-3305-7-265
http://www.ncbi.nlm.nih.gov/pubmed/24912923
http://dx.doi.org/10.1371/journal.pone.0050674
http://www.ncbi.nlm.nih.gov/pubmed/23226351
http://dx.doi.org/10.1186/1476-072X-7-9
http://www.ncbi.nlm.nih.gov/pubmed/18302749
http://dx.doi.org/10.1590/S0034-89101987000400002
http://www.ncbi.nlm.nih.gov/pubmed/3445112
http://dx.doi.org/10.1017/S0007485300010002


62. WHO. Handbook for integrated vector management. Geneva: World Health Organization. 2012.

Available: http://apps.who.int/iris/bitstream/10665/44768/1/9789241502801_eng.pdf.

63. Takken W, Knols BG. Malaria vector control: current and future strategies. Trends Parasitol. 2009;

25:101–104. doi: 10.1016/j.pt.2008.12.002 PMID: 19168392

64. Karunamoorthi K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol

Infect. 2011; 17:1608–1616. doi: 10.1111/j.1469-0691.2011.03664.x PMID: 21996100

65. Enayati A, Hemingway J. Malaria management: past, present, and future. Annu Rev Entomol. 2010;

55:569–591. doi: 10.1146/annurev-ento-112408-085423 PMID: 19754246

66. Hemingway J. The role of vector control in stopping the transmission of malaria: threats and opportuni-

ties. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130431. doi: 10.1098/rstb.2013.0431 PMID:

24821917

67. Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ. Malaria vector control at a crossroads: pub-

lic health entomology and the drive to elimination. Trans R Soc Trop Med Hyg. 2014; 108:550–554.

doi: 10.1093/trstmh/tru101 PMID: 25009173

Anopheles darlingi Densities Dynamical Mapping

PLOS ONE | DOI:10.1371/journal.pone.0164685 October 17, 2016 20 / 20

http://apps.who.int/iris/bitstream/10665/44768/1/9789241502801_eng.pdf
http://dx.doi.org/10.1016/j.pt.2008.12.002
http://www.ncbi.nlm.nih.gov/pubmed/19168392
http://dx.doi.org/10.1111/j.1469-0691.2011.03664.x
http://www.ncbi.nlm.nih.gov/pubmed/21996100
http://dx.doi.org/10.1146/annurev-ento-112408-085423
http://www.ncbi.nlm.nih.gov/pubmed/19754246
http://dx.doi.org/10.1098/rstb.2013.0431
http://www.ncbi.nlm.nih.gov/pubmed/24821917
http://dx.doi.org/10.1093/trstmh/tru101
http://www.ncbi.nlm.nih.gov/pubmed/25009173

