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Abstract
The aim of this paper is twofold. First, black hole algorithm (BHA) is proposed as a new training algorithm for feedforward 
neural networks (FNNs), since most traditional and metaheuristic algorithms for training FNNs suffer from the problem of 
slow coverage and getting stuck at local optima. BHA provides a reliable alternative to address these drawbacks. Second, 
complementary learning components and Levy flight random walk are introduced into BHA to result in a novel optimiza-
tion algorithm (BHACRW) for the purpose of improving the FNNs’ accuracy by finding optimal weights and biases. Four 
benchmark functions are first used to evaluate BHACRW’s performance in numerical optimization problems. Later, the 
classification performance of the suggested models, using BHA and BHACRW for training FNN, is evaluated against seven 
various benchmark datasets: iris, wine, blood, liver disorders, seeds, Statlog (Heart), balance scale. Experimental result dem-
onstrates that the BHACRW performs better in terms of mean square error (MSE) and accuracy of training FNN, compared 
to standard BHA and eight well-known metaheuristic algorithms: whale optimization algorithm (WOA), biogeography-based 
optimizer (BBO), gravitational search algorithm (GSA), genetic algorithm (GA), cuckoo search (CS), multiverse optimizer 
(MVO), symbiotic organisms search (SOS), and particle swarm optimization (PSO). Moreover, we examined the classification 
performance of the suggested approach on the angiotensin-converting enzyme 2 (ACE2) gene expression as a coronavirus 
receptor, which has been overexpressed in human rhinovirus-infected nasal tissue. Results demonstrate that BHACRW-FNN 
achieves the highest accuracy on the dataset compared to other classifiers.

Keywords  Multilayer perceptron (MLP) · Black hole optimization algorithm (BHA) · Neural Network (FNN) training · 
Levy flight

1  Introduction

Artificial neural network (ANN) is a nonparametric com-
putational model based on the biological process of the 
human nervous system. The ANN is capable of modeling 
complex nonlinear processes with high accuracy and han-
dling a large amount of data [1]. Subsequently, ANN, as a 

powerful tool, has been commonly used in various applica-
tion domains such as classification [2], function approxi-
mation [3], pattern recognition [4], signal processing [5], 
computer vision [6], and so on [7, 8].

The ANN is mainly divided into three groups: feed-
forward neural network (FNN), recurrent neural network 
(RNN), and Convolutional neural network. The most com-
mon types of the FNN are single layer perceptron (SLP), 
multilayer perceptron (MLP), and radial basis function 
(RBF), while the Hopfield network and Kohonen self-organ-
izing maps (SOM) are two examples of the RNN. Among 
different types of ANN, the FNN especially MLP is the most 
popular neural network in practical applications because of 
its learning and generalization capacity, nonlinearly, and 
robustness to noise [9–11]. The MLP is composed of three 
or more layers of different size nodes, including one input 
layer, one output layer, and one or more hidden layers [12].
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Recently, the learning techniques have received consider-
able attention in machine learning such as [13, 14]. The per-
formance of the ANN can be greatly improved based on the 
learning algorithm that is used for network training [9]. The 
training process aims to identify the best weights and biases 
values that minimize the cost function, known as the mean 
squared error (MSE) cost function. The supervised learning 
techniques of ANN are classified as gradient-based methods 
and metaheuristic-based approaches [15]. The backpropaga-
tion (BP) algorithm and its improved versions are the most 
widely applied gradient-based learning methods in the lit-
erature [16]. These learning methods, however, suffer from 
several shortcomings including slow convergence, the ten-
dency of trapping into local optima, and heavy reliance on 
the initial solution. In this regard, metaheuristic algorithms 
(MHAs) have been proposed as reliable alternatives to the 
gradient-based FNNs training methods [11]. The population-
based MHAs demonstrate better performance in avoiding 
local minima than gradient-based methods [2, 9]. Evolu-
tionary and swarm-based algorithms, the most widely used 
population-based MHAs, generate a random number of solu-
tions and update them until the best solution is obtained or 
convergence is reached. Such randomness provides a mecha-
nism to move out of the local search for a global search [9].

It is worth mentioning that the population-based MHAs 
in a neural network can be used not only in weights and 
biases optimization but also in learning rule determination 
and neural network structure design [9, 10]. However, simul-
taneous optimization of network structure, weights, biases, 
and learning rules can drastically increase the number of 
parameters, which results in large-scale optimization prob-
lems [9, 15]. In this study, the MLP with a single hidden 
layer is optimized by concentrating on discovering the opti-
mal set of weight and bias values.

Various MHAs have been used to solve a wide variety 
of complex problems such as text clustering [17–23], image 
enhancement [24], gene selection [25], task scheduling prob-
lems [26], and training neural networks. The genetic algo-
rithm (GA) is one of the earliest and best-known optimiza-
tion algorithms. It has been widely used in FNNs connection 
weight training [27], designing its architecture [28], and 
simultaneously optimizing FNNs architecture and weights 
[29]. A hybrid of GA and BP algorithm was presented in [30] 
for optimization of the neural network connection weights, 
while the power of GA as feature selection and component 
optimization of FNN was examined for breast cancer diagno-
sis in [31]. Two other types of evolutionary algorithm called 
differential evaluation (DE) [32, 33], and biogeography-based 
optimization (BBO) [34], have been used for training mul-
tilayer FNNs as well. A hybrid of DE with Levenberg–Mar-
quardt (LM) PB method for optimizing FNN’s weights and 
biases was introduced in [35]. Swarm intelligence algorithms 
are another well-known population-based MHA, which are 

inspired by the species’ social behavior in nature. Instead of 
reproduction operators in evolutionary algorithms, swarm-
based algorithms employ some mathematical models for 
updating the randomly generated solutions. In the literature 
for training MLP neural network and its various applications, 
several optimization algorithms have been studied. Some of 
them are artificial bee colony (ABC) [36], gray wolf opti-
mizer (GWO) [37, 38], grasshopper optimization algorithm 
(GOA) [15, 39], Krill-Herd algorithm (KHA) [40], multi-
verse optimizer algorithm (MOA) [2, 41], whale optimization 
algorithm (WOA) [9], social spider optimization algorithm 
(SSO) [42], lightning search algorithm (LSA) [11], cuckoo 
search (CS) [43, 44], bat algorithm [45], artificial ant colony 
optimization (ACO) [46], invasive weed optimization [47], 
particle swarm optimization (PSO) [48], symbiotic organisms 
search (SOS) algorithm [10], hybrid of ABC and dragonfly 
algorithm (DA) [49], moth–flame optimization (MFO) [50, 
51], salp swarm algorithm (SSA) [52], ant lion optimizer 
(ALO) [53], and group search optimizer (GSO) [54].

Despite the rapid development of the new MHAs, their 
success, and widespread application, the research is still 
open for new designs and improvements to existing ones 
due to duality between exploitation and exploration capabili-
ties of optimization algorithms. There are few comparative 
studies in the mathematical analysis of these algorithms in 
terms of coverage and efficiency [55], and a global outcome 
is not yet available. Moreover, according to the no free lunch 
theorem, no optimization method is able to beat every other 
MHA to solve all problems [9, 15]. Besides, the problem of 
trapping into local optima and slow convergence remains 
partly unsolved in training FNN [12].

Motivated by these reasons, the black hole algorithm 
(BHA) and a novel enhanced version of BHA (BHACRW) 
are introduced to train FNN as new alternatives to existing 
MHAs and conventional approaches, aim to increase FNN’s 
accuracy. The excellent performance of the BHA in escaping 
local optima, high-speed convergence, its’ parameter-less-
ness, and simplicity, encouraged us to use the BHA for MLP 
training. The BHA, proposed by Hatamlou in 2012 [56], is 
an efficient MHA, inspired by the real black hole behavior 
in space. Although the original BHA demonstrates superior 
results in various optimization problems, in certain datasets 
it lacks exploration capabilities. To address the explora-
tion dilemma, Levy flight random walk [57] and opposi-
tion-based (complementary) learning [58] components are 
introduced in the original BHA’s framework result in a new 
optimization algorithm, called “BHACRW”. The BHA and 
its modified versions [59–61] have shown promising results 
in solving various optimization and engineering problem, 
such as pattern recognition [62], function optimization [63], 
electric power systems [64], management system [65], and 
more [61, 66, 67]. However, to the best of our knowledge, 
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training feedforward neural networks using BHA and its 
improved versions is still untouched.

It is also worth noting that a hybrid of Levy flight and 
BHA, called LBH [61], has been considered in the literature 
for empowering the BHA’s global search capability to solve 
function and clustering problems. In LBH, levy flight is used 
in the updating of all-stars’ positions without any constraints, 
while in the BHACRW, complementary learning operator and 
levy flight are utilized sequentially for updating the position 
of half-worst solutions, if the BHA get stuck in local optima.

The main contributions of this research are: (1) BHA is 
proposed as a new stochastic training algorithm for FNNs. 
(2) For the first time, the high exploration and exploitative 
capability of the BHA are evaluated in determining the best 
values for the weight and bias parameters of FNN. (3) To 
boost the accuracy of FNNs, complementary learning com-
ponents and Levy flight random walk are integrated into 
BHA to establish the new BHACRW algorithm. (3) The 
suggested algorithm’s performance is examined against four 
benchmark global optimization functions and compared 
with nine MHAs, including Levy firefly algorithm (LFFA) 
[68], gravitational search algorithm (GSA) [69], cat swarm 
algorithm (CSA) [70], Big Bang-Big Crunch (BB-BC) [71], 
ABC, PSO, GWO, BHA, and LBH. On the other hand, the 
classification performance of FNN using the BHACRW 
optimizer is evaluated against original BHA and eight well-
known MHAs trainer, including GA, PSO, CS, BBO, WOA, 
MVO, SOS, and GSA, using mean square error (MSE) and 
classification accuracy metrics. The obtained results indi-
cate that the suggested BHACRW-FNN approach produces 
better and, at the least, competitive results in comparison to 
those MHAs. (4) As a case study, BHACRW-FNN is applied 
to classify angiotensin-converting enzyme 2 (ACE2) gene 
expression for patients with asthma to identify subgroups at 
risk for COVID-19. The proposed classifier achieves 80% 

prediction accuracy on the dataset, which is the best perfor-
mance compared to other conventional classifiers.

The remainder of the paper is arranged as follows: The 
FNN is introduced in Sect. 2. Section 3 explains the details 
of the suggested BHACRW method and its components 
including BHA, Levy flight random walk, and comple-
mentary learning approach. The FNN optimization model 
is explained in Sect. 4. In Sect. 5, the assessment experi-
ments, parameter settings, and discussion have been pro-
vided. Lastly, Sect. 6 summarizes the paper’s key findings 
and points out potential directions for future work.

2 � Feedforward Neural Network

A feedforward neural network (FNN) model is the simplest 
form of an ANN composed of three classes of layers: input, 
output, and hidden layers. Layers consist of a certain num-
ber of neurons (or nodes). Using weighted interconnections 
or links, each layer’s nodes have a full connection with all 
nodes in the adjacent layer [12].

A popular class of the FNN model which is mostly used 
for data classification is the multilayer perceptron (MLP) [9, 
10, 48]. Figure 1 shows a single hidden layer MLP network, 
where x =

(
x1, x2,… , xn

)T represents an input vector that 
holds n neuron values in the input layer. s =

(
s1, s2,… , sh

)T 
indicates h neurons output vector in the hidden layer, while 
o =

(
o1, o2,… , om

)T shows m neurons output vector in the out-
put layer. hb and ob represent hidden neurons biases, and output 
neurons biases, respectively. When a neural network structure 
is designed, the number of nodes and hidden layers should be 
specified. A larger number of nodes and hidden layers lead to 
greater network complexity [9, 15]. A fixed three-layer MLP 
was employed in this study, where a single layer was allocated 
for the network’s input, hidden, and output sections.

Fig. 1   MLP structure with a 
single hidden layer
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2.1 � Coding Schema

In the neural network, the choice of the neurons number inside 
of each layer depends on the problem. The number of the fea-
tures and class labels of the dataset is equal to neurons number 
within the input layer and output layers, respectively [40, 72]. 
Moreover, neurons number inside the hidden layer is estimated 
with the Kolmogorov theorem [9, 10], defined as:

Assume n , h , and m indicate neurons number within the 
input, hidden and output layers, while hb and ob show the 
biases number inside the hidden and output layer, respectively. 
To utilize the suggested methods to find the optimal weight 
and bias values for MLP, each solution’s dimension is com-
puted as follows:

A populat ion with N  solut ion is  ini t ia l -
ized P =

(
P1,P2,… ,PN

)
 , in which each solution 

Pi = {nw, hb, hw, ob} (i = 1, 2,… ,N) provides a set of weight 
and bias values for MLP. In a population-based optimiza-
tion algorithm, the MLP’s weight and bias values inside of 
search agents can be represented as a vector, matrix, or binary 
encoding schema. The matrix encoding approach was used in 
the suggested BHA-MLP and BHACRW-MLP to represent 
each candidate solution, which is the most suitable encoding 
schema for the neural network training process [48]. The fol-
lowing equations describe the matrix encoding strategy of the 
aforementioned Fig. 1:

where W1 and W ′

2
 represent weight matrix and the transpose 

of the weight matrix of the neurons between input-hidden 
layers and hidden-output layers, and hb and ob denote bias 
matrices of neurons in hidden and output layers, respectively.

2.2 � Fitness Value

Two steps are used to calculate the MLP performance value. 
In the first step, the weighted summation of each hidden 
neuron is computed using Eq. (5) as follows:

(1)H = 2 ∗ Input + 1

(2)D = (n ∗ h) + (h ∗ m) + hb + ob

(3)solution(;;i) =
[
W1, hb,W

�

2
, ob

]

(4)

W1 =

⎡
⎢⎢⎣

w1,1 ⋯ w
n,1

⋮ ⋱ ⋮

w1,h ⋯ w
n,h

⎤
⎥⎥⎦
, hb =

⎡
⎢⎢⎣

hb1

⋮

hb
h

⎤
⎥⎥⎦
,

W
�

2
=

⎡⎢⎢⎣

w1,1 ⋯ w
h,1

⋮ ⋱ ⋮

w1,m ⋯ w
h,m

⎤⎥⎥⎦
, ob =

⎡⎢⎢⎣

ob1

⋮

ob
h

⎤⎥⎥⎦

where wij describes the connection weight between the input 
layer’s ith node, called xi , and the hidden layer’s jth node. 
The bias of the hidden layer’s jth node is expressed by hbj.

An activation function is employed in the second stage 
to generate the hidden neuron’s output. The weighted sum 
of each hidden neuron (Eq. 5) is passed on to the sigmoid 
function, which is illustrated in the equation as follows:

On MLP layers various types of activation functions 
can be applied. However, the sigmoid function is the most 
widely used activation function in previous studies [2, 5], 
in which optimization algorithms are utilized for training 
the FNN. For the sake of comparison, the same activation 
function has been chosen in the MLP. After determining the 
outputs of the hidden layer nodes, the outputs of the neurons 
in the output layer are computed as follows:

where wjk presents the connection weight between the hid-
den layer’s jth neuron and kth neuron of the output layer. obk 
shows the bias of the output layer’s kth neuron. The weight 
and bias matrices are passed to the MLP, and the fitness 
value of each solution in the suggested solution is computed 
using the mean squared error (MSE). The MSE is consid-
ered as the fitness function of proposed algorithms, which 
is expressed in Eq. (9)

where n defines the number of training samples, o denotes 
predicted values of the neural network, and c symbolize the 
actual class labels. In addition to the MSE criterion, the clas-
sification accuracy is used to assess the classification per-
formance of MLP on unseen data, which is determined as:

where Z̃ and z denote the number of samples which the clas-
sifier correctly identifies, and total sample size in the test 
dataset, respectively.

(5)sj =

n∑
i=1

wijxi + hbj j = 1, 2,… , h

(6)f
(
sj
)
=

1

1 + e−sj

(7)ok =

h∑
j=1

wjk.f
(
sj
)
+ obk k = 1, 2,… ,m

(8)ok = f
(
ok
)
=

1

1 + e−ok

(9)MSE =
1

n

n∑
i=1

(c − o)2

(10)Accuracy =
Z̃

Z
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3 � Proposed Methodology

The proposed BHACRW schema is explored in more detail 
in this section. It comprises three important parts which are 
BHA, the complementary-based learning components (C), 
and the Levy flight random walk (RW) learning method. The 
BHA’s random initialization is used at the first stage of the 
proposed method to generate candidate solutions for training 
NN. If the fitness values of the best global solution remain 
unchanged in three sequential iterations, new candidate solu-
tions will be generated from the half-worst population using 
the complementary module. If complementary-based solu-
tions have better fitness value than previous solutions, the 
old solutions will be replaced with new opposite solutions. 
Then, BHA will continue with the new population. However, 
if the new complementary-based solution has a worse fitness 
value than the origin, the Levy flight random walk module 
is preformed to reinitialize the solution without any fitness 

comparison, and BHA continues to find optimal solutions by 
using the newly generated solutions. Algorithm 1 shows the 
suggested BHACRW pseudo-code, and Fig. 2 illustrates the 
main difference between the basic BHA and the improved 
BHA.

3.1 � Black Hole Algorithm

The BHA [56] belongs to the family of the physical-based 
optimization algorithms suggested by Hatamlou [56], which 
simulates the phenomenon of the black hole inside space. A 
mass-filled point in the space indicates a black hole (BH). 
All the mass around the BH falls into its center, known as 
the singularity. There is a strong gravitational force around 
the BHs singularity, called an event horizon that prevents 
anything from escaping [73].

Algorithm 1 Pseudocode of BHACRW​
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Fig. 2   The flowchart of the a basic black hole algorithm and b improved black hole algorithm
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In the BH algorithm, an individual solution is called 
a star. The BHA begins with a random generating of the 
stars (population) in the search space. Then, it looks at 
all these stars to find the best individual solution, which 
is defined as a black hole (BH). Since the best location 
belongs to the BH in the search space, all stars begin mov-
ing toward the BH and update their positions, which are 
carried out through the following equation:

where

•	 xold
i

 and xnew
i

 represent the i th star position (candidate 
solution) for iterations t  and t + 1 , respectively

•	 rand describes a random value between 0 and 1.
•	 xBH represents the black hole’s position (best solution) 

in search space.

The black hole starts drawing the stars into itself. How-
ever, if a star is in a better position than the BH as it moves 
toward the black hole, the xBH changes its current position 
and moves to the star’s position, and the algorithm contin-
ues [74]. Moreover, the black hole immediately swallows 
the stars that cross the event horizon during the process 
of their movement, and thus it allows the creation of new 
stars at random in the search space. The event horizon 
radius (R) is calculated using Eq. (12):

where

•	 fBH is the black hole fitness value
•	 fi is the i th star’s fitness value
•	 popsize is the total star population

The star disappears from the space solution when its 
distance from the black hole is smaller than the event 
horizon radius [56]. It is important to note that a fitness 
function determines the goodness of each star based on 
position. Optimization algorithms are essentially iterative 
procedures, in which some updating formulas are used to 
improve candidate solutions in each iteration. To learn 
the optimization algorithm, the iterative updating process 
must be integrated with a fitness function. The BHA’s 
learning process is conducted via Eqs. (11) and (12) in an 
iterative manner, in which candidate solutions (stars) move 
toward the optimal solution (BH). Each solution stands for 
a candidate for FNN’s parameters. Figure 2a illustrates the 
flowchart of BHA.

(11)xnew
i

= xold
i

+ rand ∗
(
xBH − xold

i

)

(12)R =
fBH∑popsize

i=1
fi

Because of the simple structure, flexibility, high local 
optima avoidance, and the BHA’s parameter-less nature, 
various optimization and engineering problems have been 
successfully solved utilizing the BHA. This inspired us to 
employ the BHA for training FNNs due to the difficulties 
of the learning process. However, the BHA fails to show 
its excellent performance in some datasets, so an improved 
version of BHA has been suggested to enhance its global 
search capability using the opposition-based learning com-
ponents and Levy flight random walking.

3.2 � The Complementary‑Based Learning 
Components

The suggested algorithm utilizes the complementary learning 
components when the best global solution remains unchanged 
in three sequential iterations, as it is believed that better per-
formance could be obtained using opposite positions [58]. 
To continue with a better population, the half-worst stars are 
selected, and the opposite location of each of them is com-
puted. Then, the fitness value of the current location of the 
star is compared with its new opposite location. If the star’s 
opposite location has a higher fitness value, the star’s original 
position will be updated with its complementary position. The 
complementary positon of stars is computed using the follow-
ing equation:

where 
[
xmin, xmax

]
 presents the initial interval of the star 

position.

3.3 � The Levy Flight Random Walk

If the abovementioned complementary stage fails to produce 
better solutions, the random walk is utilized to generate new 
solutions. The random walk is a stochastic process describ-
ing a path with a series of random steps, in which the steps 
are described by the step-size following certain probability 
distribution. Levy flight is a type of random walk, where its 
step-size is based on Levy distribution. Levy flight enhances 
the efficiency of the BHA by improving BHA’s global search 
capability and avoiding local optima [61]. The stars’ new posi-
tion using Levy flight random walk can be calculated by:

� is an array of normally distributed random numbers, and 
s indicates the steps of Levy flight which is calculated as 
follows:

(13)x
opposite(new)

i
= xmax + xmin − xold

i

(14)xnew
i

= xold
i

+ �.s
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where u and � are drawn from a normal distribution with 
zero mean and standard deviations �2

u
 and �2

�
 . Here, �� = 1 

and �u follow Levy distribution, given by:

Finally, the proposed algorithm generates the best candi-
date solution for the weight and bias of FNN. The following 
section describes the mechanisms for training FNNs using 
the BHA and BHACRW algorithms, called BHA-FNN and 
BHACRW-FNN.

(15)

s = 0.01 ∗

(
�

|�| 1

�

)
∗
(
x
old

i
− xBH

)

� = 2∕3; u ∼ N
(
0;�2

u

)
;� ∼ N

(
0;�2

�

)

(16)�u =

⎧
⎪⎨⎪⎩

gamma(1 + �) ∗ sin
�

�∗�

2

�

gamma
��

1+�

2

�
∗ � ∗ 2

�−1

2

�
⎫
⎪⎬⎪⎭

1

�

4 � Training MLP with the BHACRW​

The suggested black hole-based algorithm for training a sin-
gle layer MLP is described in this section. To decrease the 
MLP’s overall error and subsequently increase its accuracy, 
the BHA and BHACRW are used to train MLP by determin-
ing the best weights and biases values. In other words, we 
can learn the neural network, by learning its weights and 
biases. The equation numbers (5–8) demonstrate the FNN 
model, which correlates the inputs to the outputs. Candidate 
solutions contain a set of weight and bias values, which are 
initialized randomly at the first stage. The MSE is considered 
as the cost function expressed by Eq. (9), in which Eq. (5–8) 
are employed to calculate the neural network output. The 
minimization of the cost function in an iterative manner 
is referred to as neural network learning. The candidate 
weights and biases of MLP are updated at each iteration 
which leads to cost minimization.

The suggested BHACRW-MLP approach can be 
described in detail in the following steps:

Step. 1	 A population of N  solutions (stars) is randomly 
generated, while each solution encodes a set of MLP’s 
weights and biases values.

Fig. 3   The framework of the BHACRW-MLP approach
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Step. 2	 The goodness of each solution is assessed using 
MSE criteria. The MSE of MLP is calculated for each 
star on a given training dataset. The star with the mini-
mum MSE is chosen as the best solution ( xBH).

Step. 3	 Each star’s location and the best global are updated 
iteratively, and the event horizon is calculated to produce 
new solutions

Step. 4	 A counter is set to count the number of iterations in 
which the best fitness value of the global solution stays 
unchanged.

Step. 5	 If the counter reaches a predefined number of no 
improvement (here 3 times), the opposite positions for 
half number of the stars with the worst fitness values are 
calculated to establish a better population. Their fitness 
values are computed and compared with the stars’ previ-
ous positions. For each star, if the opposite position of 
the star has better fitness value, it will be inserted into 
the population and jump to step 7, else go to step 6.

Step. 6	 For the stars whom their complementary positions 
are not better than their original positions, the Levy 

Table 1   Benchmark test functions

Fun Name Test D Range Opt

f1 Sum square
f1(x) =

N∑
i=1

x
4

i

30 [− 10, 10] 0

f2 Quartic
f2(x) =

N∑
i=1

ix
4

i
+ random(0, 1)

30 [− 1.28, 1.28] 0

f3 Ackley
f3(x) = −20e−0.02

�
D−1

D∑
i=1

x
2

1
− e

D
−1

D∑
i=1

cos(2�xi)
+ 20 + e

30 [− 32, 32] 0

f4 Alpine No.1
f4(x) =

D∑
i=1

���xi sin
�
x
i

�
+ 0.1x

i

���
30 [− 10, 10] 0

Table 2   Experimental results for test functions

Algorithms Fun1 Fun2

Best Mean Std Best Mean Std

Artificial Bee Colony (ABC) 2.79e−16 2.72e−16 8.51e−12 0.11531 0.19593 0.05549
Particle Swarm Optimization (PSO) 2.13485 4.98451 3.94512 1.3389 6.96060 0.64770
Levy Firefly Algorithm (LFFA) 0.00774 0.21006 0.34752 0.00409 0.02542 0.02312
Gray Wolf Optimizer (GWO) 0.00000 0.00000 0.00000 0.00284 0.00379 0.00134
Gravitational Search Algorithm (GSA) 0.00156 0.02943 0.08790 0.06348 0.08815 0.04413
Cat Swarm Algorithm (CSA) 4.97e–04 0.00105 4.41e–04 0.01741 0.02845 0.00148
Big Bang-Big (BB-BC) 4.1458 5.9475 2.1354 3.45892 5.48953 0.83211
Black Hole Algorithm (BHA) 3.34e–04 0.00348 3.12e–03 0.02348 0.03154 0.00284
Levy Flight Black Hole Algorithm (LBH) 0.00000 0.00000 0.00000 0.00014 0.00091 0.00053
BHACRW​ 2.60e–17 6.29e–16 1.46e–15 7.29e–05 0.00052 0.00019

Algorithms Fun3 Fun4

Best Mean Std Best Mean Std

Artificial Bee Colony (ABC) 0.02058 0.15442 0.00000 0.00042 0.28568 0.62473
Particle Swarm Optimization (PSO) 1.98770 2.94390 0.03719 0.00425 2.67570 12.3490
Levy Firefly Algorithm (LFFA) 0.06340 1.99940 0.00013 0.00024 0.00029 0.00037
Gray Wolf Optimizer (GWO) 0.06920 0.03660 5.49e–10 0.00116 0.10797 0.25769
Gravitational Search Algorithm (GSA) 0.00002 0.00027 0.55632 0.00493 0.02171 0.00928
Cat Swarm Algorithm (CSA) 1.22930 3.18530 0.02419 0.00005 0.00248 0.00048
Big Bang-Big (BB-BC) 1.5829 3.8331 1.0422 0.00064 1.06309 1.79308
Black Hole Algorithm (BHA) 0.02058 0.06922 0.01944 0.00481 0.08741 0.03847
Levy Flight Black Hole Algorithm (LBH) 0.00582 0.03833 0.01042 0.00004 0.00024 0.00031
BHACRW​ 5.43e–05 0.00012 5.09e–05 3.21e–05 5.79e–05 3.17e–05
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flight random walk is utilized to specify their new posi-
tions.

Step. 7	 After constructing a new population, the algorithm 
goes to step 2, and the process is repeated until reaching 
the maximum number of iteration.

Step. 8	 In the end, the solution with the lowest MSE is 
selected. The weights and biases in the best solution are 
assigned to MLP and its performance is assessed on the 
test data.

Figure 3 shows the general steps of the BHACRW-MLP 
procedure.

5 � Results and Discussions

To examine the effectiveness of the suggested BHACRW 
approach, experiments are conducted in three parts. In the 
first part, the BHACRW is applied to numerical optimiza-
tion problems, and its performance is compared with the 
result of other MHAs. The second part evaluates BHA and 
BHACRW performance in training MLP neural networks 
and a comparison of results with other well-known algo-
rithms is provided. This part is also divided further into 
three subsections: experimental setup, experimental results 

of seven benchmark datasets, and statistical analysis. In the 
third part, the application of the proposed BHACRW-MLP 
is investigated on a real coronavirus related gene expres-
sion dataset and its performance evaluated against several 
conventional classification methods.

5.1 � Evaluation on Numerical Function Optimization

Four standard test functions were used to assess the effi-
ciency of BHACRW. Table 1 lists these benchmark func-
tions with their ranges and dimensions. To properly apply 
BHACRW in function minimization, first, we removed the 
condition for testing the fixed number of iteration, second, 
we used regular random walk (step = 1) and used Eq. (17) 
instead of Eqs. (14) and (15).

where randn returns a random number drawn from the stand-
ard normal distribution.

All experiments were conducted on 10 separate runs, 
with 250 iterations per run. The population was set at 25. 
Under the same conditions as our experiments, the param-
eters setting and experimental results for other evolutionary 

(17)s = 0.01 ∗ step ∗ randn

Table 3   Description of datasets Dataset #Attributes #Class #Training 
sample

#Testing 
sample

MLP structure

(Input- Hidden- output)
Iris 4 3 100 50 4-9-3
Wine 13 3 118 60 13-27-3
Blood 4 2 494 254 4-9-2
Liver disorders 6 2 228 117 6-13-2
Seeds 7 3 140 70 7-15-3
Statlog (Heart) 13 2 179 91 13-27-2
Balance scale 4 3 413 212 4-9-3

Table 4   Experimental results 
for the iris dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP 0.0197 0.0261 0.0229 0.0032 – – 91.3333
GA-MLP 0.119 0.6510 0.3660 0.1700 98.0392 7.8431 56.0784
CS-MLP 0.0101 0.0784 0.0532 0.0193 98.0392 52.9412 85.0000
PSO-MLP 0.0471 0.1760 0.1090 0.0355 98.0392 52.9412 91.4706
BBO-MLP 0.0170 0.4650 0.0691 0.1110 98.0392 29.4100 82.9400
MVO-MLP 0.0245 0.0275 0.0258 0.0008 98.0392 98.0392 98.0392
GSA-MLP 0.0441 0.2310 0.0683 0.0407 98.0392 33.3300 93.7255
SOS-MLP 5.1e–08 0.0267 0.0142 0.0088 98.0392 64.7059 92.0588
BHA-MLP 0.0176 0.0213 0.0191 0.0013 98.0392 98.0392 98.0392
BHACRW-MLP 0.0173 0.0201 0.0190 0.0007 98.0392 98.0392 98.0392
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algorithms, including ABC, PSO, LFFA, GWO, GSA, CSA, 
BB-BC, BHA, and LBH, were derived from Ref. [61]. The 
experimental results are tabulated in Table 2. Statistically 
speaking, for the best value and the average of 10 runs on 
4 test functions, BHACRW is the best on 3 functions, LBH 
and GWO algorithms are the best on 1 function. Therefore, 
BHACRW in most function minimization outperforms all 
the evolutionary algorithms.

5.2 � Evaluation in Training MLP Neural Network

From the University of California at Irvine (UCI) Machine 
Learning Repository seven standard classification datasets 
were employed to evaluate the efficiency of the two BHA-
based trainers. The main characteristics of these datasets 
have been shown in Table 3, in which the size of the features, 
classes, and samples of the training and testing data have 
been reported. As can be observed, the chosen datasets con-
tain different sizes of features and samples. It was conducted 
to monitor the performance of training algorithms under 
various conditions, which makes the process more difficult.

5.2.1 � Experimental Setup

To maintain the class distribution as much as possible, all 
datasets were divided into two subsets using stratified sam-
pling, where 66% was allocated to the training set and the 
remaining 34% was assigned to the testing set. Besides, all 
datasets were standardized at the interval [− 1.1] using the 
min–max normalization to reduce the impact of attributes 
with different scales [2, 10]. The min–max normalization 
can be obtained by the following formula:

where v′ represents the standardized value of v within the 
[min, max] range.

All experiments were carried out on 10 separate runs, 
with 500 iterations in each run [10]. The BHA and its 
enhanced version have not any parameters for adjustment, 
except the population size which is considered 200. Experi-
mental results for other evolutionary algorithms, including 
GA-MLP [27], PSO-MLP [48], CS-MLP [44], BBO-MLP 

(18)v� = 2 ∗
v −min

max −min
− 1

Fig. 4   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for the iris dataset

Table 5   Experimental result for 
wine dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP 0.0400 0.0600 0.0500 – 95.45 – 88.94
GA-MLP 0.5600 0.8950 0.7030 0.0859 49.18 18.03 32.62
CS-MLP 0.0256 0.162 0.0959 0.0348 91.80 78.68 83.36
PSO-MLP 0.00974 0.0803 0.0339 0.0155 100 88.52 96.06
BBO-MLP 5.62e–12 0.342 0.0517 0.1250 100 59.01 90.49
MVO-MLP 1.34e–06 2.91e–05 5.41e–06 6.23e–06 98.36 96.72 97.95
GSA-MLP 0.000587 0.0190 0.0032 0.0039 100 91.80 96.14
SOS-MLP 66.35e–11 0.0085 0.0004 0.0019 98.36 91.80 95.49
BHA-MLP 0.0031 0.0034 0.0038 0.0003 100 98.33 99.16
BHACRW-MLP 0.0033 0.0037 0.0040 0.0004 100 98.33 99.16
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[75], GSA-MLP [48], MVO-MLP [2], SOS-MLP [10], and 
WOA-MLP [9], were derived from Ref. [9, 10] under the 
same conditions as our experiments. The neurons number in 

the hidden layer was computed by Eq. 1 [2, 9, 10, 75]. The 
structure of MLP for each dataset has been shown in Table 3.

Fig. 5   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for the wine dataset

Table 6   Experimental result for 
blood dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP 0.153 0.154 0.153 – 79.61 – 78.67
GA-MLP 0.330 0.417 0.378 0.0285 76.86 67.05 72.78
CS-MLP 0.311 0.321 0.317 0.0029 78.82 74.50 76.96
PSO-MLP 0.307 0.314 0.310 0.0024 80.39 77.64 79.21
BBO-MLP 0.300 0.392 0.318 0.0284 81.17 72.54 77.52
MVO-MLP 0.304 0.307 0.305 0.0007 81.17 80.00 80.74
GSA-MLP 0.310 0.333 0.323 0.0066 78.03 33.33 74.17
SOS-MLP 0.295 0.305 0.301 0.0024 82.74 77.64 79.80
BHA-MLP 0.1528 0.1541 0.1537 0.0002 82.28 77.66 79.52
BHACRW-MLP 0.1528 0.1532 0.1530 0.0001 82.28 81.88 81.38

Fig. 6   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for the blood dataset
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5.2.2 � Experimental Result

5.2.2.1  Experiment 1: Iris Dataset  Iris dataset has 4 features 
and 3 classes, so we used an FNN with a 4-9-3 structure to 
find the best optimal values for weights and biases param-
eters of MLP. Table  4 displays the experimental results 
for the proposed BHA-MLP, BHACRW-MLP, and other 
MHAs-based trainers on the iris dataset. The performance 
values of the MSE assessment criteria were reported in the 
table, which contains the best, worst, average, and standard 
deviation, and were symbolized as Best, Worst, Average, 
and STD in the table accordingly.

Based on the results obtained, it can be seen that in most 
measurements the results of the BHACRW, BHA, MVO, 
and SOS are quite better than those of other algorithms. 
In Fig.  4, the average convergence trends of BHA and 
BHACRW and a box plot of all MSE algorithms are shown 
in detail. When analyzing the convergence curves (Fig. 4a), 
it is obvious that the BHA and BHACRW can quickly reach 
the minimum MSE. The comparison between the conver-
gence curves clearly shows that at the 250th iteration the 

proposed algorithms can find the best values for parameters 
of MLP. Table 4 and Fig. 4a also show that, in neural net-
work training, the performance of the proposed BHACRW 
is marginally better than simple BHA, especially in terms of 
best-case MSE, STD, and the worst-case MSE.

By investigating the plot box, the proposed trainers are 
shown to have the smallest MSE averages after SOS and 
one of the most compact boxes, which shows the suggested 
method’s stability.

5.2.2.2  Experiment 2: Wine Dataset  The wine dataset has 
13 features and 3 categories, so we used a 13-27-3 FNN 
model to find the best weight and bias values for MLP. 
Table 5 shows the results of MHAs-based MLP networks in 
the wine dataset. The results show that proposed algorithms 
could achieve the highest classification accuracy ratio of 
99.16 percent. Besides, in terms of MSE measurement, they 
can achieve competitive results. Whereas the SOS and GSA 
algorithms show better results in terms of MSE compared 
to BHA, both of them have a high MSE variability (std) and 
therefore show poor stability. In this dataset, MVO shows 

Fig. 7   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for the Liver Disorder dataset

Table 7   Experimental result for 
liver disorders dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP 0.200 0.210 0.205 – 73.73 – 69.58
GA-MLP 0.527 0.673 0.595 0.043 55.08 27.11 43.05
CS-MLP 0.414 0.457 0.437 0.0112 67.79 47.45 56.14
PSO-MLP 0.396 0.431 0.411 0.0106 72.033 59.322 66.483
BBO-MLP 0.316 0.587 0.382 0.0547 72.88 45.76 65.12
MVO-MLP 0.333 0.355 0.341 0.00617 76.27 72.03 74.19
GSA-MLP 0.417 0.471 0.444 0.0132 64.40 6.77 48.30
SOS-MLP 0.326 0.386 0.349 0.0165 75.42 66.101 71.05
BHA-MLP 0.1834 0.1866 0.1845 0.0014 70.08 67.52 68.72
BHACRW-MLP 0.1788 0.1833 0.1808 0.0017 73.73 67.52 69.58
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superior performance compared to other nature-inspired 
algorithms.

The plot box shown in Fig. 5 indicates the competitive 
error and acceptable stability of the BHA. For the wine data-
set, the results of simple BHA is better than BHACRW. The 
comparison of the average convergence curves reveals that 

the two curves are very close, which means that the algo-
rithm can achieve an optimum MSE value at most times.

5.2.2.3  Experiment 3: Blood Dataset Result  The blood 
dataset includes four features and two categories, so we 
employed the 4-9-3 FNN model to find the best weight and 

Table 8   Experimental result for 
seeds dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP 0.0900 0.2300 0.1600 – 93.06 – 89.86
GA-MLP 0.2050 0.7140 0.4710 0.1200 67.60 28.16 51.12
CS-MLP 0.0719 0.1220 0.0980 0.0134 91.54 77.46 82.25
PSO-MLP 0.0449 0.1020 0.0817 0.0153 92.95 78.87 87.46
BBO-MLP 0.0020 0.3320 0.0523 0.0963 94.36 61.97 87.32
MVO-MLP 0.0144 0.0330 0.0221 0.0063 95.77 90.14 93.45
GSA-MLP 0.0597 0.0887 0.0765 0.0088 94.36 85.91 90.35
SOS-MLP 0.0009 0.0226 0.0111 0.0053 95.77 87.32 91.33
BHA-MLP 0.0196 0.0237 0.0211 0.0016 95.77 81.69 91.54
BHACRW-MLP 0.0145 0.0231 0.0203 0.0036 95.77 91.54 94.36

Fig. 8   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for seeds dataset

Table 9   Experimental result for 
the Statlog (Heart) dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP – – – – – – –
GA-MLP 0.452 0.697 0.553 0.072 70.65 39.13 50.54
CS-MLP 0.231 0.309 0.261 0.018 83.69 68.47 77.44
PSO-MLP 0.172 0.220 0.193 0.013 86.95 77.17 82.88
BBO-MLP 0.080 0.165 0.127 0.023 80.43 66.30 75.54
MVO-MLP 0.050 0.081 0.064 0.009 88.04 77.17 82.60
GSA-MLP 0.135 0.192 0.162 0.014 86.95 33.69 79.18
SOS-MLP 0.0898 0.126 0.109 0.010 85.86 77.17 82.22
BHA-MLP 0.0669 0.081 0.0720 0.0036 87.64 81.31 83.73
BHACRW-MLP 0.0647 0.071 0.0679 0.0027 87.64 83.51 84.06
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bias for MLP. Table 6 displays the blood dataset test results. 
In this dataset, the BHACRW has the highest accuracy and 
the lowest MSE compared to all nature-inspired algorithms.

The BHA has the third-highest accuracy with a slight 
difference from the SOS. As can be seen, after BHACRW, 
BHA and WOA achieved the lowest error in terms of MSE. 

The results of their evaluation were very close and com-
petitive. According to the boxplots Fig. 6b, the BHACRW, 
BHA, and WOA have shown a low variability. Figure 6a 
also shows that the BHA-based trainer can maintain a stable 
balance between exploration and exploitation tendencies in 

Fig. 9   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for Statlog (Heart) dataset

Table 10   Experimental result 
for balance scale dataset

Algorithms MSE Accuracy (%)

Best Worst Mean STD Best Worst Mean

WOA-MLP – – – – – – –
GA-MLP 0.297 0.801 0.465 0.1160 80.28 38.2 59.76
CS-MLP 0.170 0.214 0.189 0.0118 90.61 82.15 86.31
PSO-MLP 0.140 0.188 0.172 0.0132 89.20 83.56 86.71
BBO-MLP 0.085 0.124 0.102 0.0094 91.54 88.26 90.16
MVO-MLP 0.080 0.104 0.086 0.0060 92.95 89.20 91.43
GSA-MLP 0.137 0.166 0.152 0.0094 91.07 85.91 87.74
SOS-MLP 0.070 0.129 0.105 0.0133 92.01 86.85 90.02
BHA-MLP 0.0428 0.0459 0.0446 0.0011 93.39 87.26 90.02
BHACRW-MLP 0.0420 0.0440 0.0434 0.00097 93.39 89.15 91.22

Fig. 10   Convergence curve of BHA-MLP and BHACRW-MLP a and box plot chart b for the balance scale dataset
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terms of convergence curves, and most of the time can reach 
to least MSE.

5.2.2.4  Experiment 4: Liver Disorders Dataset  The liver dis-
order dataset has 6 attributes and 2 classes, thus we utilized 
a 6-13-2 FNN model to find the best MLP weight and bias. 
The BHA and BHACRW techniques in competition with all 
other trainers could achieve better results with an MSE value 
of 0.1845 and 0.1808, respectively. Other competitive algo-
rithms in terms of accuracy are SOS, MVO, and WOA; but, 
except for WOA, these algorithms demonstrated high vari-
ability in box plots. The box plot shows that the BHA and 
BHACRW-based trainers have the lowest MSE average and 
one of the most compact boxes indicating the consistency of 
the suggested methods for training. The convergence curve 
in Fig. 7a and the result of experiments in Table 7 confirm 
that the BHA and BHACRW have the fastest convergence 
trends as they can reach the lowest MSE before iteration 
100. The result of the BHACRW is promising than BHA in 
terms of both MSE and accuracy.

5.2.2.5  Experiment 5: Seeds Dataset  We used a 7-15-3 
FNN model to figure out the best weight and bias values 
for MLP as the seeds dataset has 13 features and 3 cate-
gories. The findings of the evaluation of the seeds dataset 
are reported in Table 8. As can be seen, in terms of MSE 
and accuracy, BHACRW, BHA, and SOS obtained the best 
results. While their evaluation results have been similar and 
competitive, BHA has shown consistent outcomes as the 
standard deviation is the lowest. The box plot shows that 
SOS, BHACRW, and BHA have more compact boxes, but 
SOS has the lowest error in terms of MSE, and BHACRW 
has the highest accuracy. Compared to most of the MHAs’-
based optimization algorithms, the MSE error of BHA and 
BHACRW is less than 0.03 before 100 iterations (Fig. 8a), 
indicating the faster convergence rate of these algorithms.

5.2.2.6  Experiment 6: Statlog (Heart) Dataset  The Statlog 
dataset consists of thirteen features and two categories, 
so we used the 13-27-2 FNN model to determine the best 

weight and bias for MLP. The results of the assessment 
for the Statlog (heart) dataset are shown in Table  9. The 
BHACRW shows the highest average accuracy ratio and 
the second-lowest MSE ratio. Although the MVO algorithm 
shows the lowest average MSE compared to BHACRW, it 
has low stability by considering the compactness of the box 
plot (Fig. 9b) and the standard deviation of MSE. The lowest 
error value (< 0.08) can be achieved by proposed BHACRW 
and BHA over the course of 200 iterations, which shows 
the faster convergence rate of our proposed algorithms com-
pared to other algorithms.

5.2.2.7  Experiment 7: Balance Scale dataset  The balance 
scale dataset is composed of four features and three catego-
ries, so the 4-9-3 FNN model is used to specify the best 
weight and bias for MLP. The results of identifying equi-
librium scale tips for the balance scale dataset are shown 
in Table 10. The BHACRW has the lowest MSE and stand-
ard deviation, and it is also very competitive in terms of 
classification accuracy. Although the MVO algorithm dis-
plays slightly better results in terms of accuracy compared 
to BHACRW, it has a high MSE variability and thus indi-
cates low stability. Figure 10a also demonstrates, in terms 
of convergence speed, that the BHA and BHACRW-based 
trainers can show a faster convergence rate compared to the 
other algorithms since the MSE value at the 100th iteration 
is less than 0.05, which is lower than the best value of all 
algorithms. BHACRW and BHA will maintain a good bal-
ance between exploration and exploitation and show stable 
performance because it has a more compact box plot.

In summary, the high average accuracy and low MSE and 
the standard deviation obtained by both BHA and BHACRW 
trainers provide strong evidence that the proposed methods 
will consistently hamper premature convergence toward 

Table 11   Average rankings 
of accuracy values among 
10 algorithms on seven 
classification datasets using 
Friedman test

BHACRW-MLP 1.714286
MVO-MLP 2.142857
BHA-MLP 3.14285
SOS-MLP 4.214286
PSO-MLP 5.571429
GSA-MLP 6.142857
BBO-MLP 7
WOA-MLP 7.214286
CS-MLP 8.142857
GA-MLP 9.714286

Table 12   Post-hoc Holm test using Stacking as a control method

Comparision Adjusted P-values Result

BHACRW-MLP vs MVO-
MLP

0.7984509 H0 is not rejected

BHACRW-MLP vs BHA-
MLP

0.4658680165 H0 is not rejected

BHACRW-MLP vs SOS-MLP 0.20226031 H0 is not rejected
BHACRW-MLP vs PSO-MLP 0.0447693 H0 is rejected
BHACRW-MLP vs GSA-

MLP
0.02308965 H0 is rejected

BHACRW-MLP vs BBO-
MLP

0.006117633 H0 is rejected

BHACRW-MLP vs WOA-
MLP

0.005070 H0 is rejected

BHACRW-MLP vs CS-MLP 0.0008004 H0 is rejected
BHACRW-MLP vs GA-MLP 0.0000345 H0 is rejected
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local optimization and can finding the best optimal values 
for MLP weights and biases.

5.2.3 � Statistical Analysis

In this section, statistical analysis has been carried out to 
verify the significance of the results. In particular, due to the 
limited number of comparative approaches, the nonparamet-
ric Friedman test was used to assign average accuracy value 
rankings to each of the ten algorithms on seven classification 
datasets, which is shown in Table 11. As shown in Table 11, 
the proposed BHACRW-MLP has been placed in rank 1. In 
most comparisons, the p value suggests that the null hypoth-
esis can be rejected. This means that the performance of the 
proposed approach is statistically significant vs to most of 
the methods. The findings obtained from the post hoc Holm 
test are shown in Table 12.

5.3 � Evaluation in COVID‑19 Receptor ACE2 Gene 
Expression Dataset

A novel virus which is known as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2 or CV2) was identi-
fied as the cause of coronavirus disease. The CV2 required 
ACE2 to infect the cells. ACE2 is a protein that provides the 
entry point for CV2 to hook into and infect human cells. In 
other words, ACE2 serves as a cellular gateway or a receptor 

for the COVID-19-causing virus. This COVID-19 infectious 
illness may be more severe in patients with asthma. Rhino-
virus (RV) is the respiratory virus that is responsible for 
the majority of asthma exacerbations in children and adults. 
Recently, an analysis was conducted in [76] to examine 
the role of RV infection in ACE2 expression of asthmatic 
patients. It was found that RV infections in asthmatics lead 
to the overexpression of ACE2, and subsequently activate 
cytokine pathways which are associated with severe COVID-
19 disease.

The experimental data of the above study is accessible 
through GSE149273. The GSE149273 is a sequence read 
archive (SRA) dataset that was downloaded from the gene 
expression omnibus database (GEO) and composed of 4056 
common genes and three categories (RVA, RVC, Control). 
After downloading the count data some preprocessing steps 
such as (removing lowly expressed genes, converting counts 
to Differentially Expressed Genes (DGEList), quality con-
trol, normalization for composition bias, finding all common 
genes differentially expressed in (RVA, control) and (RVC, 
Control), extracting ACE2 gene with 90 samples) has been 
done. We only consider the expression of one gene, ACE2, 
so the 1-3-3 FNN model is used to specify the best weight 
and bias for MLP. For this dataset, the population size and 
number of iterations were considered as 50 and 100.

The performance of different classifiers including K-near-
est neighbor (KNN), Naïve Bayes (NB), support vector 
machine (SVM), backpropagation (BP)-MLP, Bayesian neu-
ral network (BNN), decision tree (C4.5), random forest (RF), 
BHA-MLP, and BHACRW-MLP for the GSE149273 (ACE2 
gene) dataset are shown in Table 13. Compared to all classi-
fiers, the BHACRW-MLP achieved the highest accuracy. The 
BHACRW has the lowest average MSE (0.1432 ± 0.0020) 
and highest classification accuracy (80.00 ± 2.06) compare 
to BHA (0.1443 ± 0.0016, 70.00 ± 2.01). Figure 11 also 
demonstrates that BHACRW-based trainer has a faster con-
vergence rate compared to BHA.

5.4 � Discussion

The results of the experiments over several test func-
tions, various benchmark classification datasets, and a real 
COVID-19 related gene expression dataset allow us to draw 
some significant conclusions.

Table 13   Mean classification accuracy of proposed MLP approaches and other algorithms for GSE149273 (COVID-19) dataset

Dataset Algorithms

KNN NB SVM BP-MLP BNN C4.5 RF BHA-MLP BHACRW-
MLP

COVID-19-
GSE149273

53.54 ± 6.68 67.09 ± 3.53 59.99 ± 5.39 64.51 ± 10.45 54.83 ± 3.53 54.19 ± 4.2 57.81 ± 12.37 70.00 ± 2.01 80.00 ± 2.06

Fig. 11   Convergence curve of BHA-MLP and BHACRW-MLP for 
the COVID-19-GSE149273 dataset
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First, adding complementary and Levy flight operators 
improves BHA’s efficiency and lead this enhanced BHA to 
show better optimization ability for various numerical test 
functions. Second, in neural network training, the proposed 
BHACRW algorithm provides high average classification 
accuracy and superior local avoidance in benchmark iris, 
wine, blood, seeds, and Statlog datasets. For dataset wine, 
BHA, and BHACRW’s average classification accuracy are 
99.16% which means that there is only one case that cannot 
be properly classified in the testing dataset. It is noteworthy 
that while MVO has the highest accuracy in the liver disor-
ders, and balance scale datasets, BHA exhibits comparable 
results. However, the accuracy demonstrated in GA is the 

lowest across the algorithms inquired. The low difference 
between the best and worst values of the classification accu-
racy acquired by proposed trainers provides clear evidence 
that these methods are reliably capable of preventing pre-
mature convergence toward local optimization and achiev-
ing the best optimum values for MLP weights and biases 
especially BHACRW.

Third, based on the average of MSE, BHACRW is the 
most successful approach among the comparable trainers 
in three datasets: Balance, liver disorders, and blood. While 
MVO and SOS acquired the minimum average MSE regard-
ing the Statlog (heart) and seeds datasets, BHACRW was 
the second best method, with very close results to MVO 

Fig. 12   MSE performance graphs for each dataset using different methods

Fig. 13   Accuracy performance graphs for each dataset using different methods
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and SOS. In the case of the remaining datasets, BHA and 
BHACRW demonstrate very competitive performance com-
pared to MVO, SOS, and WOA approaches. In regard to box 
plot compactness and standard deviation, we have observed 
that the proposed approaches especially BHACRW perform 
well in most datasets, demonstrating their robustness and 
consistency as compared with other algorithms. Fourth, by 
considering the convergence curves and lowest error val-
ues, the proposed approaches have the fastest convergence 
speed for training all the given datasets and they can reach 
the lowest MSE in the middle of iterations. Figures 12 and 
13 are graphical representations of the experimental results 
shown in Tables 4, 5, 6, 7, 8, 9, 10. From these figures, it 
is concluded that the proposed methods show well results 
as compared with different state-of-the-art methods for test 
benchmark classification datasets. It is worth discussing 
that the reason for the poor performance of metaheuristic 
algorithms is not only related to low efficiency and easily 
dropping into local optimal but also depends on the pres-
ence of many different tuning parameters. By contrast, BHA 
and BHACRW use only one population size parameter, thus 
removes the possibility of compromised performance due to 
inappropriate parameter tuning, and increases performance 
stability.

Lastly, the application of BHACRW-MLP on the real 
ACE2 gene expression dataset prove that the suggested 
approach is exceedingly effectual in solving real and com-
plex classification problems.

In summary, while other papers have already shown that 
BHA is working well on complex combinatorial optimiza-
tion problems and some real-world problems, this study 
shows that the BHA and proposed BHACRW are very capa-
ble of training FNN. The outcomes achieved are at the least, 
perceptive and competitive, at the most, superior to those got 
by most of the nature-inspired algorithms especially GA, 
PSO, CS, BBO, WOA, and GSA in all benchmark datasets.

6 � Conclusion

In this study, a new modified BHA was suggested by the 
integration of complementary learning components and 
Levy flight random walk in BHA’s updating phase. The 
main aim of this paper is to employ both BHA and sug-
gested BHACRW as new FNN trainers to find optimal val-
ues for weight and bias parameters. The BHA’s excellent 
performance in avoiding local optima, high convergence 
speed, and having no controlling parameter motivated 
us to employ the BHA for training MLPs. Furthermore, 
BHACRW was implemented in order to increase the effi-
ciency and performance of the origin BHA. To bench-
mark the efficiency of the developed BHACRW approach, 
experiments were carried out in three steps. In the first 

stage of the experiments, the BHACRW was evaluated 
against 4 benchmark global optimization functions and its 
performance was compared with the original BHA, and 
eight other metaheuristic algorithms: ABC, PSO, LFFA, 
GWO, GSA, CSA, BB-BC, and LBH. Experimental results 
demonstrated BHACRW’s outstanding performance in 
most evaluation cases. In the second stage, seven UCI clas-
sification datasets with different characteristics were used 
to examine the performance of the suggested method for 
training MLP. The obtained result confirms the success of 
the proposed approach in FNN training, compared to other 
optimization techniques, including GA, PSO, CS, BBO, 
WOA, MVO, SOS, and GSA. The suggested BHACRW 
method performs better and in some datasets shows com-
parable results in the term of classification accuracy and 
convergence, due to its high convergence rate, and high 
local optima avoidance. In the third stage, the performance 
of the suggested BHACRW-MLP was tested on the clas-
sification of ACE2 gene expression that was overexpressed 
in asthmatic patients in order to recognize subgroups at 
risk for COVID-19. The result showed that the BHACRW-
MLP classifier performed much more accurately than other 
conventional classification methods.

In conclusion, the present findings confirm the efficiency 
of the suggested approach in solving numerical functions 
and training FNNs for the classification of various datasets. 
However, there is still improvement needed in coverage 
speed and performance dependency of the proposed method 
on datasets.

For future work, the optimal structure of FNNs can be 
identified by BHA and BHACRW, including the number 
of nodes and hidden layers. Training other kinds of ANNs 
such as radial basis function (RBF) using the BHA and its 
variants is also recommended. Moreover, the suggested 
BHACRW approach may be applied to other applications, 
such as text document clustering.
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