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Abstract

Background: The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence
linear information using digital signal processing methods. In this study the RRM concept was employed for structure-
function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like
antitumor/cytotoxic activity.

Methodology/Principal Findings: The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The
biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated.
The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of
cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and
non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect
on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic
effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects
on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt
activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be
affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for
the original viral protein.

Conclusions/Significance: Our findings indicate the successful application of the RRM concept to design a bioactive
peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral
protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the
rational design of therapeutic agents for future cancer treatment.
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Introduction

In recent years, viral therapy has proved to be successful in

cancer treatment, as many viruses were reported to have a

positive effect on tumor regression [1,2]. The ideal oncolytic

virus candidate is required to possess a selective tropism for

tumor tissue, and little or no ability to cause significant disease

in normal tissue [2,3]. The adenovirus, herpes virus, reovirus,

measles virus, poxvirus and myxoma virus were shown to have

varying degrees of oncolytic efficacy in numerous tumor models

[4,5,6,7].

The myxoma virus (MV) is a rabbit-specific poxvirus pathogen

of the Leporipoxvirus genus. It causes a lethal disease known as

myxomatosis in European rabbits but is not known to cause

disease in other vertebrates. Therefore it was used to control the

feral rabbit population in Australia in the last century [8]. MV can

infect non-rabbit cells in vitro including immortalized baby monkey

kidney fibroblasts, primary murine cells genetically deficient in

interferon responses such as B16 mouse melanoma cell line, and a

number of different human tumor cells [9,10]. It has been

considered as an attractive oncolytic agent against human cancers

such as human malignant glioma in vitro and in vivo [6,11]. A recent

study [7] demonstrated that MV is capable of targeting and

destroying tumors while causing no significant disease or collateral

tissue infection in an immunocompetent host.

The ability of MV to replicate in human cancer cells has been

linked to the hyperactivation of an enzyme called serine/threonine

kinase Akt in cancer cell lines and to a viral ankyrin-repeat protein

NM-T5 (or M-T5, GenBank: AAC55050) which binds to Akt, and

promotes its phosphorylation and activation in permissive cancers.
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NM-T5 is a stable, 49 kDa, cell associated protein encoded by a

particular viral host range gene (M-T5). This gene is 1452

nucleotide in length and encodes a protein of 483 amino acids,

which is expressed rapidly following infection and remains

throughout the course of viral infection [9,10].

The M-T5 gene is shown to be required for MV replication in

rabbit lymphocytes. It has been suggested that its product (M-T5)

specifically promotes MV replication in rabbit lymphocytes by

preventing the nonspecific shutdown of protein synthesis,

stimulating the induction of apoptosis in these cells [10,11,12].

The M-T5 gene product was reported to be critical for virus

replication in the majority of human tumor cells, as an M-T5

mutant MV was non permissive in human cancer cells which are

known to support replication of wild-type MV [9,10,12,13].

In recent years, small molecular weight peptides have been

applied into developing cancer therapeutics, mostly for their ability

to easily penetrate cellular membranes and to interfere with

enzymatic functions or protein-protein interactions within cells

[14]. The development of such therapies is focused on small

peptides with strong tumoricidal activity and low toxicity aiming at

a high therapeutic index on cancer cells and minimizing the

undesirable side effects on normal cells [15]. However, the

systematic mutation studies aiming to derive biologically active

peptides would result in the generation of an enormous number of

peptides that must be subsequently synthesized and experimentally

tested.

It is generally recognised that the relationship between a

protein’s structure, its biological function and its abilities to bind to

a specific ligand, can be enunciated in terms of a multistage

process which involves specific bio-recognition, chemical binding

and energy transfer. Property-pattern algorithmic procedures are

based on the representation of the primary structure of a protein as

a numerical series by assigning a numerical value of a

physicochemical parameter to each amino acid. The Resonant

Recognition Model (RRM) interprets the linear information of a

protein sequence using digital signal analysis [16,17,18]. The

RRM concept is based on the finding that there is a significant

correlation between spectra of the numerical representation of the

amino acids and their biological activity. It is assumed that

proteins with the same biological function or interactive activity

have the same periodic components in the distribution of

delocalized electron energies along the protein molecule. It was

found that the RRM frequencies represent the characteristic

features of proteins’ biological functions or interactions [16,17]. It

is proposed that these characteristic frequencies (RRM frequen-

cies) are relevant parameters for mutual recognition between bio-

molecules, and are significant in describing the selectivity of

interaction between proteins and their substrates or targets but are

not chemical binding [19,20,21,22]. The RRM concept was used

to predict the hot spot amino acid distribution in primary

sequences of the neuropeptide Y family. The study concluded that

for the prediction of hot spots, the set of amino acid residues in the

N- and C- terminal halves must be conserved equally [23]. The

Wavelet Transform (WT) was introduced into the RRM [24] to

enable researchers to predict locations of protein active/binding

sites directly from analysis of a protein primary sequence. The

incorporation of the WT into the RRM was successful for the

selected protein examples [22,24,25].

In previous studies the RRM approach was applied to structure-

function analysis of basic fibroblast growth factor (bFGF) and for

analysis of HIV envelope proteins [21,26]. Property-pattern

characteristics for biological activity and receptor recognition for

a group of FGF-related proteins were defined and then used to aid

the design of a set of peptides which can act as bFGF antagonists.

Molecular modelling techniques were then employed to identify

the peptide within this set with the greatest conformational

similarity to the putative receptor domain of bFGF [21].

The interaction between HIV virus envelope proteins and CD4

cell surface antigen has a central role in the process of virus entry

into the host cell. Thus, blocking the interaction between the

envelope glycoproteins and CD4 surface antigen, known to be the

HIV receptor, should inhibit infection. For this purpose, six

peptides, each of 20 amino acids in length, were designed using the

RRM methodology. The activities of the designed peptides were

evaluated experimentally to validate the RRM computational

predictions. The results obtained showed significant cross-

reactivity to the polyclonal antibodies raised against peptides that

share at least one characteristic frequency and phase at this

frequency [26].

In this study we applied the RRM approach [16,17] to the

structure-function analysis of selected MV proteins, and to design

a single short linear bioactive peptide that mimics MV-T5 protein

activity. The de novo designed peptides RRM-MV was assessed for

its biological effects in mammalian tumor and normal cell lines.

Our results indicated that the RRM concept was successfully

applied in the design of a bioactive peptide with a targeted

antitumor effect.

Materials and Methods

The application of RRM in the design of a short peptide
analogue

The RRM is based on the representation of a protein’s primary

structure as a numerical series by assigning a physical parameter

value to each amino acid relevant to the protein’s biological

activity. The parameter employed in these studies, i.e. electron-ion

interaction potential (EIIP) [27], describes a physicochemical

property of amino acids (the energy states of valence electrons

which are important for interaction between molecules) within a

protein sequence. By assigning the EIIP values to the correspond-

ing amino acid in the protein sequence the original protein is

converted into the numerical sequence. The obtained numerical

series can then be analysed by discrete Fourier transformation, and

converted into a discrete spectrum, which carries the same

information content about the arrangement of the amino acids in

the sequence as the original numerical sequence [16,17,18,28].

Comparative analyses of several hundred proteins and their

biological function have shown that: (i) each functional group of

proteins exhibits at least one characteristic frequency in their

Fourier spectra; and (ii) proteins and their receptors have the same

characteristic frequency with opposite phases at this frequency

[17,22,29]. Hence, from corresponding Fourier Transformation

for a particular protein, the amplitude and phase for the specific

characteristic frequency can be calculated.

Determination of the characteristic frequency and phase for a

selected protein sequence is essential for de novo design of bioactive

peptide analogues which can mimic the biological activity of a

selected parent protein sequence [17,18,22,29]. For this design it is

possible to determine the RRM characteristic frequency from the

analysis of proteins’ power spectra. In addition, the corresponding

phase for the particular frequency can be identified from the

analysis of their phase spectra. Amino acid sequences (short

peptides) having specific characteristics related to the proteins’

biological function can be designed on the basis of the determined

RRM characteristic frequencies and phases for a particular group

of protein sequences. Hence, the designed RRM peptide is

expected to exhibit the desired biological activity [17,21,22,26,29].

Cytotoxic Effects of RRM-MV on Cancer Cells
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Bioactive Peptide Design Procedure
In this study the RRM approach was utilised for structure-

function analysis of myxoma virus (MV) proteins and to design a

short therapeutic peptide with MV-like antitumor/cytotoxic

activity. The bioactive peptide analogue RRM-MV and the

negative control peptide RRM-C were designed using the

following strategy for the defined peptide design:

i. The RRM characteristic frequency can be determined from

the multiple cross-spectral function for a group of protein

sequences that share common biological function (interaction).

ii. The phases for the characteristic frequencies of the protein,

which is selected as the parent protein for agonist/antagonist

peptide design, were calculated.

iii. The minimal length of the designed peptide is defined by the

appropriate frequency resolution. An Inverse Fourier

Transform was used to calculate a numerical sequence of

different lengths which exhibits the same prominent

characteristic frequency as a parent protein.

iv. The tabulated EIIP parameter values were used to determine

the amino acids that correspond to each element of the new

numerical sequence defined above. Thus, the resulting new

amino acid sequence presents the anticipated designed

peptide [17,21,22,26,29].

In aiming to design the short bioactive peptide analogue (RRM-

MV) ten MV proteins with the following NCBI GenBank codes were

analysed using the RRM: M-T1 (NP_051880); NM-T2 (NP_051879);

T2 (AAA46632); T3C (CAA09973); MT3 (CAA0997; M-T4

(NP_051716); NM-T5 (AAC55050); M-T6 (CAA09975), NM-T7

(AAA46631); and M-T8 (AAA46630). The 483 aa ankyrin-repeat

protein NM-T5 protein (AAC55050) was selected as a parent protein

for this analysis.

Peptide synthesis
The de novo designed peptides (RRM-MV and RRM-C) were

commercially synthesized to .95% purity by AUSPEP (Mel-

bourne, Australia). Aliquots of the lyophilised peptides were kept

at 220uC at all times. Stocks were freshly prepared in Dulbecco

Modified Eagle medium (DMEM) and used at the required

concentration within one week of preparation.

Cell lines and culture conditions
Mammalian cancer and normal cell lines were used in this

study: mouse skin melanoma B16F0 (donated by Dr. Glen

Boyle, QIMR, Australia), mouse macrophage J774 cell line and

Chinese hamster ovary CHO cell line (our laboratory’s stock

cultures), the wild type mouse skin fibroblasts primary cell

culture, and human squamous cell carcinoma (COLO 16) cell

lines (donated by the School of Medical Sciences, RMIT

University). All cell lines are adherent except J774 which is a

semi adherent cell line.

Cell cultures were grown in complete DMEM (invitrogen,

Oceania) except COLO 16 which was maintained in Roswell

Park Memorial Institute medium (RPMI) 1640 (invitrogen,

Oceania). All cell cultures were supplemented with 10% heat-

inactivated foetal bovine serum (FBS) (Bovogen Biologicals,

Australia) and kept at 37uC in a humidified 10% CO2 incubator.

No antibiotics were used in growing and maintaining the cell

cultures. Cell lines were regularly screened to ensure they

remained Mycoplasma-free using Mycofluor Detection Kit

(invitrogen, Oceania).

Treatment of cell cultures with RRM peptides
Cells were seeded (36105 cells per well) and grown to 90–95%

confluency in 24 well plates before treatment with the bioactive

peptide analogue RRM-MV or with the negative control peptide

RRM-C. Cell cultures, not exposed to any of the peptides, were also

included in all assays as no-treatment controls (blank). Each peptide

was freshly dissolved in DMEM and then added to the 95%

confluent cell culture in final concentrations of 50 ng/ml (21.32 nM

RRM-MV or 20.37 nM RRM-C); 100 ng/ml ( = 42.6 nM RRM-

MV or 40.7 nM RRM-C); 200 ng/ml ( = 85.3 nM RRM-MV or

81.5 nM RRM-C); 400 ng/ml ( = 170.5 nM RRM-MV or

162.9 nM RRM-C); 800 ng/ml ( = 341 nM RRM-MV or

325.9 nM RRM-C) and 1600 ng/ml ( = 682 nM RRM-MV or

651.7 nM RRM-C). The cell cultures were further incubated and

then checked for cellular changes at intervals of 3 h; 6 h, 12 h, and

18 h. Morphological changes in the confluent layer of each cell

culture were initially compared with both the negative and no-

treatment controls using microscopic examination. All samples were

tested in duplicates and each test was repeated at least three times.

Detection of apoptosis and necrosis by confocal
immunofluorescence microscopy

Cellular apoptosis and necrosis were investigated using Vybrant

Apoptosis Assay kit #2 (invitrogen, USA) which contains Annexin

V-Alexa Fluor 488 (AF488) conjugate and Propidium Iodide (PI).

Cell cultures in growth medium (without FBS) were treated with

selected concentrations of the peptides and re-incubated for (3 h–

16 h) to detect the dose-dependent effect of the peptides. After

incubation, cell cultures were washed once with ice-cold 16 PBS

and labelled with annexin V-AF 488 and PI according to the

manufacturer’s instructions with slight modifications. Briefly, cells

were incubated at room temperature for 20 min with annexin V

binding buffer (10 mM HEPES; 140 mM NaCl; 2.5 mM CaCl2,

pH 7.4) containing 5 and 1.5 mL of the conjugate and PI,

respectively. They were then washed twice and resuspended in a

binding buffer for further analysis. Confocal laser scanning

microscopy (CLSM) was carried out with a Nikon Eclipse Ti-E

A1 laser-scanning confocal system (Nikon Instruments Inc, USA),

using 106, 206 and 406 objectives. In order to compare the

extent of apoptosis between treatments, the pinhole aperture and

other settings were fixed. Cell images captured were analysed with

the NIS-Element imaging software.

Quantitative assessment of the peptide treatment
Detection of cellular cytotoxicity by LDH assay. Cell

cytotoxicity was assessed by measuring the release of cytoplasmic

lactate dehydrogenase (LDH) into cell culture supernatants. Cell

cultures were seeded and grown as previously indicated and then

incubated with specific concentrations of the peptides at 37uC for 3 h.

LDH activity was assayed using the Cytotoxicity Detection Kit (Roche

Diagnostics, USA) according to the manufacturer’s instructions.

Experiments were performed in triplicates with three repeats for

each experiment. The percentage of cell cytotoxicity was calculated

using the following formula: 1006[(experimental LDH release-

spontaneous LDH release)/(maximum LDH release-spontaneous

LDH release)], as shown in the manufacturer’s protocol.

Detection of cellular viability after peptide treatment. Cell

survival in samples after treatment was measured using PrestoblueTM

Cell Viability reagent (invitrogen, USA) according to the

manufacturer’s protocol. Data values were measured as OD

readings at 570 nm after addition and incubation with the reagent.

All samples were tested in triplicates and each test was repeated at

least three times. Cell viability was calculated using the following

Cytotoxic Effects of RRM-MV on Cancer Cells
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formula: 1006[(OD570 of treated sample)/(OD570 of untreated

sample)].

Single dose effect. Cells seeded at a density of 16105 cells

per well in 96 well plates were treated with the bioactive peptide

analogue RRM-MV or with the negative control peptide RRM-C.

Cell cultures (untreated with any of the peptides and treated with

60% DMSO) were also included in all assays as no-treatment

(blank) and positive controls, respectively. Each cell line was

incubated in vitro for 8 h; 16 h; 24 h; 48 h and 72 h with DMEM

media containing (50 ng/ml; 100 ng/ml; 200 ng/ml; 400 ng/ml

and 800 ng/ml) of RRM-MV and 400 ng/ml of RRM-C. Cell

viability was assessed as indicated above.

Repeated dose effect. Cells seeded at a density of 16105

cells per well in 96 well plates were treated as indicated above for

16 h. A second dose of DMEM with RRM-C or RRM-MV or

DMSO (positive control) was added after the 16 h treatment and

cell cultures were then incubated further for another 10 h; 24 h

and 48 h. Cell viability was assessed as indicated above.

Detection of p-Akt and total AKT by Immunoblotting
Western blots (WB) to detect total Akt and phospho-Akt (p-Akt)

were carried out on B16F0 cells as described in [9], with minor

modifications. Cells were seeded at a density of 76105 per well and

were serum-starved overnight, then they were either treated with

50 mM PI3 kinase inhibitor LY294002 (Cell Signalling Technol-

ogy, USA) for 1 h, or were treated with 800 ng/ml of RRM-MV

or RRM-C for 3 h. Whole cell proteins were then extracted as

described above, separated by SDS-PAGE and transferred onto

nitocellulose membranes. WBs were probed separately either with

rabbit pan-Akt monoclonal antibody (MAB) (Cell Signalling

Technology, USA) to detect total Akt or with rabbit phospho

Akt (Thr308) MAB (Cell Signalling Technology, USA), to detect

phosphorylated Akt at a 1:1000 dilution. An alkaline phosphatase-

conjugated goat anti-rabbit polyclonal antibody (Sapphire Biosci-

ence, Australia) was used as a secondary antibody at a 1:5000

dilution and detected colorimetrically with BCIP/NBT substrate

(Amresco, USA). WBs were repeated three times with cell cultures

and cell lysates prepared on different days.

Statistical analysis
Statistical analysis on cellular cytotoxicity data and on cell

viability data was conducted with one-way ANOVA and Dunnett’s

test, which compares the means of all treatments with a designated

control (e.g. negative control peptide or untreated cells).

Results

Computational analysis of MV proteins and de novo
peptide design

The RRM characteristic frequency of the selected MV proteins

was identified at fRRM = 0.1152 (Figure 1). According to the RRM

concepts, this prominent peak characterises the common biolog-

ical activity of the analysed MV proteins. Less prominent peaks

observed in Figure 1 indicate that these selected MV proteins can

be involved in different biological processes (i.e. interact with

other proteins). As a result, the 18 aa linear peptide sequence

(MDDRWPLEYTDDTYEIPW) for RRM-MV was designed with

the frequency fMV = 0.1152 and phase QMV = 20.457. ProtParam

(http://au.expasy.org/tools/protparam.html) was used as a tool

for the computation of physical and chemical parameters for the

RRM designed peptide sequences. RRM-MV predicted MW is

2.345 kDa; theoretical pI: 3.66; estimated half-life in mammalian

reticulocytes: 30 h; and instability index: 27.32 which classifies the

protein as stable.

The RRM procedure was also used to design the negative

control peptide (RRM-C), which has different inactive frequency

and phase (fC = 0.2 and phase QC = 1.5) and as assumed, it would

not express MV-like cytotoxic activity. The 22 aa linear peptide

(CVLQDCVLQDCVIQDCVLQDCV), was designed as a nega-

tive control for the biological cytotoxicity assays. RRM-C

predicted MW is 2.454 kDa, theoretical pI: 3.32, and estimated

half-life in mammalian cells is 1.2 h (ExPASy - ProtParam tool).

Evaluation of cytotoxic effects of RRM designed peptides
by confocal immunofluorescence microscopy

Effects on cancer cell lines. The CLSM microscopy results

for in vitro cytotoxicity assays revealed that the bioactive peptide

(RRM-MV) caused noticeable cytotoxic effects (apoptosis and

necrosis) on the mouse melanoma B16F0 cell line when compared

with B16F0 cell culture treated with the negative control RRM-C

and with the non treated B16F0 cell culture (Figure 2 A–C

respectively). There was a negligible cytotoxic effect for RRM-C

on the B16 F0 cell line (Figure 2.B) when compared with the effect

of RRM-MV (Figure 2 A). Longer incubation periods (6 h, 9 h,

and 18 h) with RRM-MV induced stronger cytotoxic effects

(apoptosis, necrosis and detachment) than shorter incubation (3 h),

when the B16F0 cell line was treated with a similar concentration

(800 ng/ml) of RRM-MVT5 (Figure 2 D–F). The micrographs

indicated detachment of the confluent layer when the cell culture

was incubated with 800 ng/ml of RRM-MV for 18 h. In addition,

when the B16F0 cell culture was incubated with double dilutions

(50 ng/ml to 1600 ng/ml) of RRM-MV for a fixed incubation

time (3 h), cellular detachment and cytotoxicity were more

significant in wells treated with higher concentrations of RRM-

MV (AF488 positive, green apoptotic cells and PI positive red

necrotic cells). In contrast, no cytotoxic effect was observed when

the B16F0 cell line was similarly treated and incubated with

1600 ng/ml of RRM-C, as compared to the strong cytotoxic effect

of 1600 ng/ml of RRM-MV on the same cell line (data not

shown). The experimental data presented in (Figure 2) indicate

dose- and time-dependent effects of the bioactive peptide RRM-

MV, and the absence of any cytotoxic effect after treatment with

the negative control peptide RRM-C on the B16F0 mouse

melanoma cell line.

The cytotoxic effects of RRM-MV and RRM-C were also

evaluated on the human squamous cell carcinoma (COLO 16) cell

Figure 1. Multiple cross-spectral function of myxoma virus
proteins (10 sequences alignment).
doi:10.1371/journal.pone.0024809.g001

Cytotoxic Effects of RRM-MV on Cancer Cells
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line. The CLSM data revealed that this human cancer cell line was

more susceptible to RRM-MV treatment than the mouse

melanoma cell line B16F0. Cytotoxic effects were initially detected

when this cell line was treated with 50 ng/ml of RRM-MV for 3 h

(Figure 3 A), with few apoptotic cells (green) and necrotic cells (red)

being observed. Higher concentrations of RRM-MV (above

50 ng/ml) induced significant apoptosis and necrosis leading to

complete detachment of the confluent layer when the cell culture

was incubated with 100 ng/ml and 200 ng/ml of RRM-MV for

3 h (Figure 3, B & C respectively), as compared with the effect of

200 ng/ml of the negative control peptide RRM-C and with the

non-treated cell culture incubated with DMEM only (Figure 3 D &

E respectively). The micrographs in (Figure 3) clearly indicate the

dose-dependent cytotoxic effect of the RRM-MV on the human

squamous cell carcinoma cell line, and the lack of cytotoxic effect

of RRM-C on the same cell line when compared with the non

treated cell culture.

Effects on normal cell lines. A primary cell culture of

mouse skin fibroblast (passage 2) was treated with RRM-MV to

evaluate the effect of this bioactive peptide on normal mouse cell

lines. The primary culture was incubated for 3 h with two-fold

peptide concentrations starting at 100 ng/ml up to 1600 ng/ml of

RRM-MV or RRM-C. The cytotoxic effects were assessed by

CLSM with the apoptosis/necrosis assay. No significant increases

were found in the numbers of apoptotic and necrotic cells in the

three normal cell cultures treated with the bioactive peptide RRM-

MV, even at the highest cytotoxic dose of 1600 ng/ml, when

compared with the negative control peptide RRM-C and with

non-treated cell cultures (Figure 4 A, B & C). It is obvious from the

CLSM micrographs in this figure that RRM-MV did not induce

any significant cytotoxic changes on the normal skin cell culture

from the number of apoptotic cells (green) and/or necrotic cells

(red) in the treated and non-treated normal skin cell cultures

(Figure 4 A), as compared with the cytotoxic effects of RRM-MV

on the two cancer cell lines (Figures 2 &3).

The effects of RRM-MV and RRM-C on the semi-adherent

mouse macrophage cell line J774 were similarly investigated to

evaluate the cytotoxicity of these peptides on murine macrophag-

es. The microscopic images for J774 shown in (Figure 4, B),

indicate the absence of cytotoxic effects of the RRM-designed

peptides on the macrophages, although an increase in the green

fluorescent intensity in cell cultures treated with higher concen-

trations (800 ng/ml and 1600 ng/ml) of RRM-MV was observed.

Necrotic macrophages were not detected in J774 cultures treated

with RRM-MV, indicating the absence of cytotoxic effects on

these normal mouse cells as compared to significant cytotoxic

effects induced by similar concentrations of this peptide on B16F0

mouse melanoma cell line (Figures 2 and 4, B).

To confirm the negligible cytotoxic effect of RRM-MV on

normal cells, another normal transformed cell line CHO was

treated with RRM-MV or with RRM-C. The cytotoxic effects of

the RRM-designed peptides on the CHO cell line were similar to

the effects on the mouse macrophage cell line, as necrotic cells

were not detected in cell cultures treated with either RRM-MV or

RRM-C as shown in the CLSM micrographs (Figure 4, C).

Quantitative assessment of peptide treatment
Detection of cellular cytotoxicity on cancer and normal

cells by LDH assay. When tested by the LDH quantitative

assay, RRM-MV concentrations of 1600 ng/ml and 400 ng/ml

had a significant cytotoxic effect on the mammalian cancer cell

lines B16F0 and COLO16 respectively, leading to high LDH

release and cytotoxicity (Figure 5). Treatment of B16F0 cells with

RRM-MV produced significantly higher LDH levels when

compared to both untreated (blank) and RRM-C-treated cells.

Conversely, RRM-MV had no cytotoxic effect on both the mouse

macrophage J744 and the CHO cell lines when compared with the

non-treated cultures (Figure 5). The LDH cytotoxicity experi-

mental data for the peptide treatment of cancer and normal cell

lines in figure 5, support the observations seen in the CLSM

micrographs, where cancer cells treated with the RRM-MV

analogue showed cellular apoptosis and necrosis and changes in

cell morphology (Figures 2&3), with no similar cytotoxic effects on

normal cell lines (Figure 4).

Interestingly, treatment of the mouse macrophage cell line J774

with RRM-MV or RRM-C appeared to reduce the cytotoxicity

levels in these cells, yet, we cannot explain the factors leading to

this reduction. The mouse primary fibroblasts were not available

at the time when the LDH assay was performed on other cell lines.

Evaluation of cellular viability in peptide treated cell
cultures

Effect of a single RRM peptide dose and incubation time

on cancer and normal cell lines. The PrestoblueTM reagent

was used in an assay to detect cellular viability of a normal cell line

(CHO) and two cancer cell lines (B16F0 and COLO16) following

treatment with RRM peptides. The cell lines were treated with

different concentrations of RRM-MV for up to 72 hours in a

single dose. Cellular viability was calculated for cell lines treated

with RRM-MV concentrations of 50 ng/ml to 800 ng/ml from

4 h to 72 h. The cell lines responded differently to RRM-MV

treatment for both the peptide dose and incubation time as

indicated in Figure 6 (A, B &C).

Treatment of normal cells (CHO) with RRM-MV and RRM-C

did not have any significant effect on the viability of the cells over the

3 days incubation period with all peptide concentrations (Figure 6 A).

On the other hand cellular viability was significantly affected by

RRM-MV treatment in both cancer cell lines. The mouse melanoma

cells (B16F0) were more resistant to the RRM-MV treatment than

Figure 2. CLSM micrographs for apoptosis/necrosis assay with
annexin V-Alexa Fluor 488 (green fluorescence) and propidium
iodide (red fluorescence) in mouse melanoma cell line (B16F0).
After 3 h incubation with DMEM only in A (blank), 3 h incubation with
800 ng/ml RRM-C in B, and with 800 ng/ml RRM-MV in C. Cytotoxic
changes including detachment of confluent layer, apoptotic cells
(green) and necrotic cells (red) and are obvious in C when compared
with A and B. Longer treatment periods 6 h; 9 h; and 18 h in (D–F
respectively) with increased levels of necrosis and cellular detachment
when B16F0 cell cultures were treated with (800 ng/ml) of RRM-MV.
(2006magnification).
doi:10.1371/journal.pone.0024809.g002
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the human squamous cell carcinoma cells (COLO16) with a

maximum cytotoxic effect for the highest concentrations at 16 hours

of incubation for B16F0 while a significant reduction in cell viability

was noticed for COLO16 at 8 h of incubation with the 3 highest

concentrations used as compared with the effect of RRM-C and both

the positive and negative controls (Figure 6, B & C). However, the cell

viability for both cell lines increased significantly after 16 h of

incubation with the single dose of the peptide indicating the limited

effect of a single peptide dose on these cells and the need for a

repeated treatment with a second dose.

Effect of a repeated dose of the RRM peptides on cellular

viability of cancer cells over time. The B16F0 cell line was

subjected to a second dose of similar concentrations of RRM-MV

after 16 hours of treatment with a first dose of (50 ng/ml, 100 ng/ml,

200 ng/ml, 400 ng/ml or 800 ng/ml). Cellular viability was

measured by Prestoblue reagent at 10 h, 24 h and 48 h after

giving the second dose of the peptide (Figure 7). The experimental

data with statistical analysis indicated that the second dose of each of

(50 ng/ml, 100 ng/ml, 200 ng/ml, 400 ng/ml or 800 ng/ml)

RRM-MV given 16 h after the first dose has significantly reduced

the B16F0 cellular viability in 26 h (16+10 h). Yet only RRM-MV

concentrations of 100 ng/ml and 200 ng/ml introduced a significant

reduction in cellular viability at 40 h (16+24 h), and then afterwards

reversed to an increase in cellular viability at (16+48 h) for all of the

above concentrations of RRM-MV (Figure 7). A comparison of data

for cellular viability of B16F0 after incubation for 24 h with a single

dose of RRM-MV (Figure 6 B) with the data for cellular viability of

the same cell line subjected to a second dose of similar concentrations

Figure 3. CLSM micrographs for human squamous carcinoma COLO 16 cell line. Cell cultures were treated with 50 ng/ml, 100 ng/ml and
200 ng/ml of RRM-MV for 3 h in A, B, and C respectively. Cell culture in D was treated with 200 ng/ml of RRM-C, while cell cultures in E were similarly
incubated without any treatment. More necrotic cells and detachment can be seen in B and C as compared with A indicating dose-dependent
cytotoxic effect of RRM-MV. No cellular detachment can be seen in the cell culture treated with 200 ng/ml of the negative control RRM-C in D or in
the non-treated cell culture in E.
doi:10.1371/journal.pone.0024809.g003
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of RRM-MV at (16+10 h) (Figure 7), indicate that the second dose of

the bioactive peptide RRM-MV at 16 h has significantly improved/

increased its cytotoxic effect on the B16F0 cells.

Further more, cellular viability was not significantly affected by

treatment with 400 ng/ml of the control peptide RRM-C at any

time point during this experiment, as indicated by the statistical

analysis for our data. However, it is worth to note that cellular

viability for cell cultures treated with 400 ng/ml RRM-C has

insignificantly increased at (16+48 h), when compared with the

non treated cell culture and with RRM-MV treated cultures

(Figure 7).

The effect of RRM-MV on Akt activity by immunoblotting
Western blot results for detection of total Akt in B16F0 cell

lysates with rabbit pan-Akt monoclonal antibody indicated the

presence of a similar intensity protein band for total Akt (around

60 kDa) in all samples (non treated; treated with 800 ng/ml

RRM-C; with 800 ng/ml RRM-MV). This result indicates that

the peptide treatment has no significant effect on total Akt protein

or on p-Akt (Thr308) (Figure 8 A; I & II). The total Akt activity

was not inhibited when the B16F0 cells were treated with 50 mM

of the PI3 kinase inhibitor (LY294002). Conversely, the p-Akt

immune band was barely detected when the B16F0 cells were

treated with 50 mM of LY294002, as compared with B16F0 cells

without LY294002 treatment, indicating the specific inhibitory

effect of LY294002 on p-Akt in B16F0 cell line (Figure 8 B, III &

IV respectively). These results indicate that the Akt signalling

pathway in the B16F0 cells does not seem to be affected by the

bioactive peptide RRM-MV. In contrast the NM-T5 myxoma

virus protein has been found to activate Akt phosphorylation in

permissive human cancer cells, by forming a complex between

M-T5 and Akt [9].

Figure 4. CLSM micrographs for the apoptosis/necrosis assay
in three normal cell lines after 3 h incubation with 800 ng/ml
of RRM-MV; or 800 ng/ml of RRM-C. Mouse skin fibroblasts in A;
mouse macrophages J774 in B; and CHO in C. No significant cytotoxic
effects (apoptosis, necrosis and cellular detachment) were detected in
all cell cultures treated with RRM-MV or RRM-C as compared with the
non-treated cell cultures similarly incubated in DMEM, indicating the
minimal cytotoxic effect of RRM-MV on the 3 normal cell lines.
doi:10.1371/journal.pone.0024809.g004

Figure 5. Cytotoxic effect of RRM peptide analogues on normal and cancer cells measured by LDH assay. Cells (36105) were incubated
for 3 h with control peptide (RRM-C), or with RRM-MV at 400 ng/ml (for COLO16) and 1600 ng/ml (for CHO, J774A.1 and B16-F0). Cells without
treatment were similarly incubated for 3 h (blank). Each bar represents mean 6 standard errors of 3 separate experiments in triplicate. Data values
that are significantly altered (ANOVA and Dunnett’s post-hoc analysis) are indicated by * (when compared to control treated cells) and + (when
compared to untreated cells) at a significant level of p,0.05.
doi:10.1371/journal.pone.0024809.g005

Cytotoxic Effects of RRM-MV on Cancer Cells

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24809



Figure 6. Cellular viability of mammalian cell lines treated with a single dose of different concentrations of the RRM peptides up to
72 h after treatment. A. CHO, B. B16F0 and C. COLO16 cells. Cell cultures (16105) were incubated for 4 h, 8 h, 16 h, 24 h, 48 h and 72 h with
(50 ng/ml, 100 ng/ml, 200 ng/ml, 400 ng/ml and 800 ng/ml) of RRM-MV and 400 ng/ml of RRM-C. A blank (no treatment control) and a positive
control (treated with 60% DMSO) were included in all assays. OD was measured at 570 nm after addition of the PrestoblueTM reagent and incubation
for 30 min. Cell viability was calculated and is shown relative to that of untreated (blank) sample (set to 100%). Each bar represents mean 6 standard
errors of 3 separate experiments in triplicate. Data values that are significantly altered (ANOVA and Dunnett’s post hoc analysis) when compared to
the untreated cells are indicated by the star symbol (p,0.05).
doi:10.1371/journal.pone.0024809.g006
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Discussion

The RRM approach has been previously utilised in computa-

tional analysis of oncogene and proto-oncogene proteins and the

results showed that the RRM is capable of identifying the

differences between oncogenic and proto-oncogenic proteins with

the possibility of identifying the ‘‘cancer-causing’’ features within

their protein primary structure [17,22,29,30,31]. We have recently

applied the RRM approach in structure-function analysis of

mammalian IL12 proteins and the design of a short therapeutic

peptide having murine IL12-like activity [32]. This IL12 peptide

analogue (2.18 kDa, 18 aa) induced a dose and time dependent

cytotoxic effect on the B16F0 mouse melanoma cell line when

assessed by CLSM microscopy and cellular cytotoxicity assays

[32].

In the current study we applied the RRM approach to designing

RRM-MV, a 2.3 kDa, 18 aa linear peptide with apoptotic

bioactive frequencies, to mimic the effect of the 49 kDa M-T5

protein molecule of myxoma virus. RRM-C, a negative control

peptide, was similarly designed using the RRM, but lacked the

bioactive frequencies of RRM-MV.

The efficacy of RRM-MV peptide as a candidate for cancer

therapy was experimentally validated in vitro on tumor and on

normal cell lines/primary cultures. The cellular cytotoxicity of this

bioactive peptide on cancer and normal cell lines was qualitatively

confirmed by the fluorescent apoptosis/necrosis assay with CLSM,

in addition to the quantitative evaluation of cellular cytotoxicity by

LDH assay, and cellular viability by the Prestoblue reagent.

Cellular viability of peptide treated cancer cells was compared to

cellular viability of peptide treated normal cells. The cytotoxic

effects of the bioactive peptide RRM-MV by LDH assay were

obvious and significant on the mouse melanoma cells (B16F0) and

on the human squamous cell carcinoma (COLO 16), when

compared with the effect of the negative control RRM-C on these

cell lines and with the non-treated cultures incubated under similar

conditions.

When the dose/time -dependent cytotoxic effect of RRM-MV

was assessed by the cell viability assay at different peptide

concentrations, ranging from 50 ng/ml to 800 ng/ml, for

incubation time periods, ranging from 8 h to 72 h, the maximum

significant cytotoxic effect of RRM-MV on B61F0 cells was

achieved at 16 h after treatment with all peptide concentrations

while COLO16 cell line was more affected at 8 h after treatment

with similar concentrations indicating that this cell line is more

susceptible to RRM-MV treatment. However, the cytotoxicity of

the peptide treatment on both cell lines decreased gradually after

24 h which is an expected outcome as the estimated half life of

RRM-MV in mammalian reticulocytes in vitro was calculated as

30 h (http://au.expasy.org/tools/protparam.html). Hence a sec-

ond dose of the RRM-MV given at 16 h after the first dose did

significantly enhanced/extended the cytotoxic effect of the peptide

treatment over 2 days, indicating the need for a third dose after

48 h. It has also been noticed that the cancer cell lines grew more

aggressively after 48 h treatment with the higher concentrations of

RRM-MV. Yet, the negative control peptide RRM-C was not

cytotoxic to any of the cell lines used in the study at the longest

Figure 7. Cellular viability of mouse melanoma cells B16F0 overtime following a repeated dose of the RRM peptides. Cell cultures
(16105) were first treated with 50 ng/ml, 100 ng/ml, 200 ng/ml, 400 ng/ml and 800 ng/ml of RRM-MV and 400 ng/ml of RRM-C for 16 h. A second
dose of RRM-C (400 ng/ml) or RRM-MV (50 ng/ml, 100 ng/ml, 200 ng/ml, 400 ng/ml and 800 ng/ml) or DMSO (positive control for cell cytotoxicity)
was added after the initial 16 h treatment and cell cultures were then incubated further for another 10 h, 24 h and 48 h. OD was measured at 570 nm
after addition and incubation with the PrestoblueTM reagent and cell viability was calculated. Cell viability of all treated samples is shown relative to
that of untreated (blank) sample (set to 100%). Each bar represents mean 6 standard errors of 3 separate experiments in triplicate. Data values that
are significantly altered (ANOVA and Dunnett’s post hoc analysis) when compared to the untreated cells are indicated by the star symbol (p,0.05).
doi:10.1371/journal.pone.0024809.g007

Figure 8. The effect of RRM peptide treatment on total Akt and
p- Akt in B16F0 cell line. A. Western blots for total Akt (pan) Rabbit
MAB in I and p-Akt (Thr308) Rabbit MAB in II without Akt inhibitor. B.
Western blots for B16F0 cells treated with 50 mM LY294002 (PI3 kinase
inhibitor) prior to immunoblotting with total Akt rabbit MAB in III and
p-Akt (Thr308) rabbit MAB in IV. In A, Cells were grown in DMEM only in
lane 1; DMEM and 800 ng/ml RRM-C in lane 2; and DMEM with 800 ng/
ml RRM-MV in lane 3. In B, cells were either grown in DMEM in lane 1, or
in DMEM with 50 mM LY294002 for 1 h in lane 2. Similar intensities of
the 60 kDa immune bands for total Akt and p-Akt in treated and non
treated cells in A indicate the lack of effect of the RRM-designed
peptides on p-Akt activity as compared with the inhibitory effect of the
Akt inhibitor on p-Akt activity in B.
doi:10.1371/journal.pone.0024809.g008
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treatment period. Normal cell lines were not significantly affected

by the RRM-MV treatment which resulted in negligible damage

to normal skin cells, to macrophages and to CHO cells, revealing

that this bioactive peptide analogue (RRM-MV) has a selective

cytotoxic effect on cancer cells only. When the mouse macro-

phages were exposed to RRM-MV, there was some indication of

apoptosis, but we believe that this is because of the ability of

macrophages (as one of the components of the immune system) to

uptake the RRM-MV foreign molecule leading to intracellular

damage as observed by CLSM. This may also indicate the possible

internal effect of RRM-MV on cellular membranes after the

effective uptake of the foreign bioactive peptide analogue by the

macrophages [33,34,35,36,37]. The effect of RRM-MV on

cellular membranes should be further investigated, as the peptide

could be acting on specific internal targets on the cell membrane.

The experimental data on the Akt cell signalling pathway

[38,39] in RRM-MV treated cancer cells, indicated that p-Akt

levels expressed by B16F0, were not affected by the treatment with

RRM-MV as compared with the non-treated controls. It is known

that the direct interaction between NM-T5 and Akt is the key for

MV tropism in some human cancer cell lines, and that the level of

phosphorylated Akt can be affected by this viral protein [9,10]. It

does not seem that RRM-MV is targeting the serine/threonine

kinase (Akt) pathway [33,38] to induce cellular cytotoxicity.

Therefore, other possible apoptotic cell signalling targets for

RRM-MV in human cancer cell lines are currently under

investigation by our team in addition to specific markers on

cellular membranes of cancer and normal cells.

By applying the RRM model we were able to design a single

short peptide with high levels of specificity and apoptotic activity

against cancer cells, yet the same peptide has a negligible toxic

effect on normal cells. This is a unique illustration of utilising the

RRM to design bioactive peptides with specific tumor cell

cytotoxicity, indicating that RRM has the potential to be applied

in designing new, novel peptide therapeutics.
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