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Abstract

Objective

The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders

and disorder-related modifications. We analyzed data from longitudinal twin studies on mul-

tiple metabolic phenotypes in Danish and Chinese twins representing two populations of

distinct ethnic, cultural, social-economic backgrounds and geographical environments.

Materials and Methods

The study covered a relatively large sample of 502 pairs of Danish adult twins followed up

for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a

total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of

39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change

in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to

the variation in Δphenotype.

Results

Moderate to high contributions by the unique environment were estimated for all pheno-

types in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycer-

ides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins;

low to moderate genetic components were estimated for long-term change in most of the

phenotypes in Danish twins except for triglycerides and hip circumference. Compared with

Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal
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changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique

environmental contribution to blood pressure but no genetic contribution to longitudinal

change in body mass traits.

Conclusion

Our results emphasize the major contribution of unique environment to the observed intra-

individual variation in all metabolic phenotypes in both samples, and meanwhile reveal dif-

ferential patterns of genetic and common environmental regulation on changes over time in

metabolic phenotypes across the two samples.

Introduction
Metabolic disorders including obesity, impaired glucose regulation, dyslipidemia, and hyper-
tension are among the top preventable risk factors in association with the development of type
2 diabetes and atherosclerotic cardiovascular disease (CVD) [1–3]. Metabolic phenotypes e.g.
blood glucose, blood lipids, blood pressure, and body mass index are, similar to most complex
traits, regulated by both genetic and environmental factors with the interaction between them
as central to the development of metabolic abnormality and diseases [4,5]. In the literature, the
genetic and environmental contributions to metabolic phenotypes and metabolic diseases have
been intensively studied using family [6–8] and twin [9–14] data with interesting results point-
ing to significant genetic and environmental regulations on the level of metabolic phenotypes.

Although the levels of metabolic traits are good indicators of an individual’s health status
and provide the basis for defining and diagnosis of metabolic abnormality, the rate of change
of metabolic phenotypes in adults may be more indicative of disorder-related modifications
and disease onset [15] given the fact that metabolic profiles are age dependent [16,17]. This is
true not only for metabolism but also for human health in general. For example, based on 10
years follow-up data, Turiano et al. [18] reported that longitudinal change in personality traits
are associated with self-reported health outcomes. From a public health point of view, studying
the individual progression of metabolic traits may contribute to personalized approaches in
health care and for disease control. Likewise, dissecting the genetic and environmental regula-
tion of the intra-individual change over time in metabolic traits can help with development of
more effective strategies for intervention and prevention. Although the genetic and environ-
mental influences on the level of metabolic phenotypes have been intensively studied using
twin methods, twin studies on longitudinal change in metabolic phenotypes have been rare due
to high expense, loss of follow up, and long waiting time in prospective investigations. Never-
theless, there have been several longitudinal twin studies on metabolic phenotypes [19–26].
However, these studies were either limited to body mass traits (weight, height and BMI) [19–
23] or focused on phenotype stability or correlation over ages instead of longitudinal change in
metabolic phenotypes [24–26].

Based on a Danish-Chinese collaboration on twin studies, we collected longitudinal data on
multiple metabolic phenotypes in Danish and Chinese adult twins. The two samples of twins
represent western (Danish) and eastern (Chinese) populations of distinct ethnic, cultural,
socio-economic background, and geographical environment, providing unique data for twin
modeling on longitudinal patterns of multiple metabolic phenotypes within and for compari-
son across the two samples.
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Materials and Methods

The Danish cohort
The Danish cohort consisted of twins originally recruited from the nationwide, population-
based Danish Twin Registry during 1997–2000 to examine the importance of genes, family
environment and individual environment for the development of insulin resistance, abdominal
obesity and cardiovascular risk factors, i.e. the GEMINAKAR study as described previously
[10, 27–29]. This cohort was followed up during 2010 to 2012. At baseline (time 1), the exclu-
sion criteria included known diabetes or cardiovascular disease, conditions making a progres-
sive maximal bicycle test impossible, pregnancy, and breast feeding. The cohort consisted of
756 twin pairs (783 females, 729 males, among them, 309 monozygotic (MZ) and 447 dizygotic
(DZ) twin pairs) who underwent an extensive full day clinical examination of a variety of phe-
notypes. The mean age of the participants at baseline was 38 years, range: 18–67 years. At fol-
low-up (time 2), 1139 twins agreed to participate of which a total of 502 complete pairs (545
females, 459 males), hereof 226 monozygotic (MZ) pairs and 276 dizygotic (DZ) pairs were
available. Mean age at follow-up was 50 years, range: 30–75 years.

Twin zygosity was determined using microsatellite markers. All participants gave their writ-
ten informed consent to participate and the local scientific committee of the Region of South-
ern Denmark (baseline, S-VF-19970271; follow-up, S-20090065) and Danish Data protection
Board (baseline, 1999-1200-441; follow-up, 2009-41-2990) approved the study protocol.

The Chinese cohort
The Chinese twin samples were collected by the Qingdao Twin Registry at the Qingdao Center
for Disease Control and Prevention (Qingdao CDC). At baseline, twins were recruited ran-
domly through residence registry and the local disease control network of Qingdao CDC in
2006–2007. Twins were excluded from the study due to pregnancy, breast feeding, known dia-
betes and/or cardiovascular disease and use of weight-reducing medicaments within one
month [12,13]. Only complete twin pairs who participated both investigations at baseline (time
1) and follow-up (time 2) were included. The same procedure for data collection was applied at
both baseline and follow-up studies. A total of 181 twin pairs (101 MZ and 80 DZ twin pairs)
were identified with longitudinal measurements taken about 7 years apart with a mean age at
baseline 39.5 (range: 23–64) years and at follow up 46.5 (range: 30–71) years. Among them 245
were females and 117 were males. Twin zygosity was determined by DNA testing using 16
short tandem repeat DNAmarkers at the central laboratory of Qingdao Blood Bank. The Chi-
nese study was approved by the local ethics committee at Qingdao CDC, Qingdao, China.

Phenotypes studied
Both studies covered 12 metabolic phenotypes, i.e. total cholesterol (TC), triglycerides (TG), high
density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), fasting blood
glucose (GLU), body weight (WT), body mass index (BMI), waist (WAIST), hip (HIP) circum-
ference, waist-hip ratio (WHR), systolic (SBP) and diastolic (DBP) blood pressure. BMI was cal-
culated as weight (kilogram, kg) divided by the square of height (meter, m) with body weight
measured using a standing beam scale and to the nearest 0.1 kg and height measured using a ver-
tical scale with a horizontal moving headboard and to the nearest centimeter. Waist and hip cir-
cumferences (in centimeter, cm) were taken in standing position with waist circumference
measured midway between the lowest rib and the iliac crest, and hip circumference measured
over the widest part of the gluteal region [12, 28]. Systolic and diastolic blood pressure measure-
ments (mmHg) were taken after at least 5 minutes of rest following a standard procedure using a
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conventional mercurial sphygmomanometer. The mean of three measurements (taken at least 1
minute apart) was calculated and used in subsequent analyses. Blood glucose concentration
(mmol/l) was analyzed by the glucose dehydrogenase oxidation method [12, 27] both for Danish
and Chinese blood samples. TG, TC, HDL and LDL were measured (mmol/l) using standard
clinical biochemical methods both for Danish twins (except LDL which was calculated from TC,
HDL and TG using Friedewald formula) [29] and for Chinese twins [12].

Statistical analysis and twin modeling
Statistical significance of longitudinal change for each phenotype was assessed by fitting the
mixed effect kinship model [30–31] as y = β0+β1age+ β2sex+ β3time+random effects, where y
stands for the phenotype values, with fixed effects for time (0 for baseline or time 1, 1 for time
2), baseline age at intake and sex, and random effect for twin pairing to account for the intra-
pair genetic correlation in MZ and DZ twins.

Twin correlation on longitudinal change in each phenotype, i.e.
Δphenotype = Pheotypetime2 –Phenotypetime1 was estimated by calculating the intra twin pair

correlation coefficient (ICC) as r ¼ s2s
s2sþs2e

with s2
s defined as the between pair variance and s2

e

as the within pair variance in Δphenotype. A higher ICC in MZ twins as compared with DZ
twins provides an indication of genetic influence on Δphenotype.

Univariate twin models were fitted to Δphenotype for each of the 12 metabolic traits with sex,
age and baseline phenotype level at intake adjusted. For each phenotype, the variance for Δpheno-
type was decomposed into additive genetic (A), dominant genetic (D), common or shared envi-
ronmental (C), and unique environmental (E) components. In the model, referred to as ACDE
model, C and D cannot be estimated simultaneously in the classical twin study of MZ and DZ
twins reared together [32,33]. Two separate models containing the A, C and E components (the
ACEmodel) and the A, D and E components (the ADEmodel) were fitted with the latter usually
preferred when the MZ correlation is more than double the DZ correlation for a given phenotype.
Based on the full ACEmodel, nested models were also fitted by dropping the C (AEmodel), the A
(CEmodel), or both (E model) components for best model selection. Likewise two nested models
(AE and E) were fitted for comparison with the full ADEmodel. The DEmodel was excluded
because it is biologically implausible considering that the dominant genetic effects alone are not
enough to explain the very low DZ correlation when compared withMZ correlation [34]. The like-
lihood ratio test (LRT) was applied for comparisons on performances between the full models and
their nested models. In model comparison, the parsimonious model was preferred when no statis-
tical significance was observed between the two models. Goodness of fit was assessed by calculating
the Akaike Information Criterion (AIC) [35]. Robustness of parameter estimates was assessed
using bootstrap re-sampling for empirically calculating the 95% confidence intervals (CIs).

In all the analysis, each phenotype value was log transformed to minimize possible skewed
phenotype distribution. Phenotype values 3 standard deviations above or below the phenotype
mean were set to missing [36]. The mixed effect kinship model was fitted using the free R pack-
age kinship (http://cran.r-project.org/src/contrib/Archive/kinship/). The calculation of ICC
and twin modeling were done by using the free R packagemets (http://cran.r-project.org/web/
packages/mets/index.html).

Results

Longitudinal change in metabolic phenotypes
Table 1 shows the basic statistics (mean, 95% CI) for all the metabolic phenotypes at each time
point together with the statistical testing on their rate of change with age and sex adjusted. For
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the Danish twins, statistically significant increases in phenotype values over the follow-up were
observed for most phenotypes except for TG and WHR which decreased over time (Table 1).
The patterns of longitudinal change in Danish twins are further illustrated in Fig 1 by plotting,
for each phenotype, the residuals of phenotype measurement from the mixed effect model at
time 1 (horizontal axis) against that at time 2 (vertical axis). Samples with no longitudinal
change in the phenotype would fall along the diagonal line from bottom left-hand to top right-
hand corner. Patterns that deviate from the diagonal line would indicate increase (above the
diagonal) or decrease (below the diagonal) in the phenotype values over the follow-up time.
The longitudinal patterns observed in Fig 1 correspond well to the test results from the mixed
effects model in Table 1 for the Danish twins. Moreover, Fig 1 reveals no obvious difference in
the longitudinal change between females (red dots) and males (black dots) after adjustment for
sex in the regression model.

For the Chinese twins, the mean value of the 8 phenotypes increased and 2 (TC, LDL)
decreased while the mean level of TG and HDL remained unchanged according to their p val-
ues (Table 1). Fig 2 is the scatter plot for time points 1 and 2 plotted in the same way as Fig 1.
The figure visualizes the results from Table 1 with no obvious sex difference in the longitudinal
trends after adjustment for age and sex.

Twin correlation on longitudinal change of phenotypes
Table 2 presents the ICCs on change in each phenotype (Δphenotype) in MZ and DZ twins for
both samples. In the Danish twins, except TG and HIP, all other phenotypes showed higher
ICC in MZ than in DZ twins (mostly more than double). In the Chinese twins, no significant
differences in ICC between MZ and DZ twins were observed for HDL, DBP and all body mass
traits, an indication of limited or lack of genetic control over the longitudinal change in those
phenotypes in adult Chinese. Most of the blood biochemical measurements (TC, TG, LDL and
GLU) and SBP had higher ICCs in MZ than in DZ Chinese twins. Overall, ICCs on

Table 1. Basic statistics for baseline (time 1) and follow up (time 2) in Danish and Chinese twins.

Danish Twins (n = 1004) Chinese Twins (n = 362)

Traits Mean, 1 95% CIs Mean, 2 95% CIs P value Mean, 1 95% CIs Mean, 2 95% CIs P value

TC, mmol/l 5.36 3.30–8.00 5.48 3.59–7.70 9.47E-07 5.26 3.26–7.60 4.91 2.91–7.01 1.13E-10

TG, mmol/l 1.27 0.60–2.90 1.23 0.50–2.90 3.91E-03 1.18 0.38–3.00 1.25 0.37–3.13 3.76E-01

HDL, mmol/l 1.52 0.86–2.50 1.55 0.90–2.50 2.90E-05 1.57 0.90–2.25 1.57 0.91–2.59 7.17E-01

LDL, mmol/l 3.29 1.50–5.56 3.37 1.70–5.30 4.74E-06 3.10 1.88–4.62 2.68 1.55–4.14 7.24E-33

GLU, mmol/l 4.76 3.90–6.00 5.58 4.70–7.00 1.64E-276 4.71 3.50–6.40 5.42 4.12–8.99 3.13E-59

WT, kg 73.18 50.30–100.29 76.59 52.60–110.69 1.36E-27 62.70 47.21–87.19 64.03 47.10–88.00 1.83E-06

BMI, kg/m2 24.43 19.03–32.61 25.73 19.42–36.92 5.16E-37 23.89 18.50–31.22 24.45 19.00–31.80 2.98E-08

WAIST, cm 83.77 66.00–108.00 88.04 68.00–112.01 2.31E-45 77.32 61.00–97.00 81.94 65.80–106.50 6.29E-18

HIP, cm 96.40 81.00–115.00 102.17 86.48–120.00 2.14E-95 96.82 84.15–111.93 96.92 85.00–112.01 3.97E-02

WHR 0.87 0.72–1.04 0.86 0.71–1.13 2.62E-02 0.80 0.69–0.92 0.84 0.72–0.97 2.76E-26

SBP, mmHg 116.36 93.33–145.33 123.43 101.67–150.00 5.36E-62 118.11 90.00–160.00 125.38 100.00–169.90 1.51E-12

DBP, mmHg 68.16 50.67–90.00 79.42 64.50–98.33 1.61E-224 80.36 60.00–103.83 81.55 62.05–109.90 3.20E-02

TC: total cholesterol; TG: triglycerides; HDL: high density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; GLU: fasting blood glucose; WT:

body weight; BMI: body mass index; WAIST: waist circumference; HIP: hip circumference; WHR: waist-to-hip ratio; SBP: systolic blood pressure; DBP:

diastolic blood pressure.

doi:10.1371/journal.pone.0148396.t001
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Δphenotype provided evidence of genetic contributions to longitudinal changes in most meta-
bolic phenotypes.

Twin modelling on longitudinal change of phenotype
Considering the ICCs for many of the phenotypes in MZ were more than double in DZ twins,
both ACE and ADE models were subsequently fitted to each Δphenotype with the model of
lower AIC chosen as the full model. Tables 3 and 4 show the parameter estimates in the full

Fig 1. Trend of metabolic phenotypes over time in Danish twins. Scatter plots showing the residuals of phenotype measurement from the mixed effect
model at time 1 (horizontal axis) against that at time 2 (vertical axis) for 12 phenotypes in Danish twins (females in red; males in black). TC: total cholesterol;
TG: triglycerides; HDL: high density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; GLU: fasting blood glucose; WT: body weight; BMI: body
mass index; WAIST: waist circumference; HIP: hip circumference; WHR: waist-to-hip ratio; SBP: systolic blood pressure; DBP: DP: diastolic blood pressure.

doi:10.1371/journal.pone.0148396.g001

Gene, Environment and Metabolism

PLOSONE | DOI:10.1371/journal.pone.0148396 February 10, 2016 6 / 14



model and statistics for the best fitting model for each of the 12 phenotypes in Danish and Chi-
nese twins respectively.

For the Danish twins (Table 3), 9 phenotypes were fitted by the ADE model and only three
by the ACE model (TG, HIP, SBP) as expected from the ICCs in Table 2. The full models (both
ACE and ADE) estimated moderate to high E component in Δphenotype from 0.49 for LDL to
0.71 for TG. In contrast, only low to moderate effects were estimated for the A, C or D compo-
nents. For most estimates of A, C or D components, the 95% CIs included zero suggesting the
need for fitting nested models and for best model selection. In Table 3, the best performance

Fig 2. Trend of metabolic phenotypes over time in Chinese twins. Scatter plots showing the residuals of phenotype measurement from the mixed effect
model at time 1 (horizontal axis) against that at time 2 (vertical axis) for 12 phenotypes in Chinese twins (females in red; males in black). TC: total cholesterol;
TG: triglycerides; HDL: high density lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; GLU: fasting blood glucose; WT: body weight; BMI: body
mass index; WAIST: waist circumference; HIP: hip circumference; WHR: waist-to-hip ratio; SBP: systolic blood pressure; DBP: DP: diastolic blood pressure.

doi:10.1371/journal.pone.0148396.g002
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models were also selected for each Δphenotype with the AE model best fitted to 10 phenotypes
and the CE model to TG and HIP only. According to AICs in Table 3, all the best fitting models
outperformed their full models except for HDL and WHR but none showed statistically signifi-
cant difference to its full model. As supplementary data, we also provided supporting informa-
tion (S1 Table) which shows AICs for both full and nested models fitted to Danish (in left hand
side) and Chinese (in right hand side) twin data with AICs for the best fitting models marked
as bold. Note that the best fitting models again estimated moderate A (from 0.36 for SBP to
0.49 for LDL) and low to moderate C (from 0.28 for TG to 0.43 for HIP) components but, in
contrast, high estimates for the E component (from 0.51 for LDL to 0.72 for TG) (Table 5).

For the Chinese twins, 11 phenotypes were fitted by the ACE model with only SBP by ADE
model (Table 4). Similar to the Danish twins, all full models estimated moderate to high E

Table 2. ICCs for longitudinal change of each phenotype in Danish and Chinese twins.

Danish Twins Chinese Twins

Traits ICCMZ (n = 452) 95% CIs ICCDZ (n = 552) 95% CIs ICCMZ (n = 202) 95% CIs ICCDZ (n = 160) 95% CIs

TC 0.50* 0.38–0.60 0.18 0.06–0.29 0.54 0.37–0.67 0.29 0.06–0.50

TG 0.29Δ 0.17–0.41 0.26 0.14–0.38 0.58 0.40–0.72 0.37 0.16–0.55

HDL 0.47* 0.36–0.57 0.12 0.00–0.24 0.68Δ 0.40–0.84 0.63 0.35–0.81

LDL 0.51* 0.39–0.61 0.20 0.08–0.31 0.53 0.35–0.68 0.34 0.12–0.53

GLU 0.42* 0.29–0.53 0.12 0.00–0.24 0.56 0.38–0.71 0.41 0.19–0.59

WT 0.40* 0.27–0.51 0.17 0.06–0.28 0.38Δ 0.18–0.54 0.35 0.15–0.53

BMI 0.41* 0.29–0.52 0.16 0.04–0.27 0.27Δ 0.05–0.46 0.35 0.15–0.51

WAIST 0.41* 0.31–0.51 0.13 -0.02–0.27 0.37Δ 0.10–0.59 0.46 0.23–0.64

HIP 0.44Δ 0.33–0.54 0.41 0.29–0.52 0.36Δ 0.11–0.57 0.42 0.18–0.62

WHR 0.48* 0.37–0.57 0.13 -0.01–0.26 0.49Δ 0.22–0.68 0.43 0.21–0.61

SBP 0.36 0.22–0.48 0.20 0.08–0.30 0.30* 0.05–0.51 0.10 -0.17–0.36

DBP 0.49* 0.37–0.59 0.17 0.06–0.28 0.32Δ 0.05–0.55 0.23 -0.01–0.45

*ICCMZ>2 times ICCDZ
Δ No statistical difference between ICCMZ and ICCDZ with p>0.05.

doi:10.1371/journal.pone.0148396.t002

Table 3. Full models for longitudinal change of each phenotype in the Danish twins and statistics for best fitting models.

Parameter estimates Likelihood
Ratio Test

Traits Full models A (95% CIs) C/D (95% CIs) E (95% CIs) AIC Best models AIC X2 P value

TC ADE 0.21 (0.00–0.66) 0.29 (0.00–0.77) 0.50 (0.40–0.60) -786.50 AE -787.10 1.40 0.24

TG ACE 0.06 (0.00–0.38) 0.23 (0.00–0.49) 0.71 (0.59–0.82) 771.89 CE 770.02 0.12 0.73

HDL ADE 0.02 (0.00–0.48) 0.45 (0.00–0.94) 0.53 (0.43–0.63) -495.54 AE -494.54 3.00 0.08

LDL ADE 0.29 (0.00–0.74) 0.22 (0.00–0.70) 0.49 (0.39–0.59) -121.07 AE -122.24 0.83 0.36

GLU ADE 0.07 (0.00–0.51) 0.35 (0.00–0.82) 0.58 (0.47–0.69) -2078.00 AE -2078.23 1.77 0.18

WT ADE 0.29 (0.00–0.72) 0.10 (0.00–0.56) 0.60 (0.50–0.71) -2154.63 AE -2156.46 0.17 0.68

BMI ADE 0.22 (0.00–0.65) 0.19 (0.00–0.65) 0.59 (0.48–0.70) -2140.59 AE -2142.01 0.58 0.45

WAIST ADE 0.10 (0.00–0.60) 0.31 (0.00–0.83) 0.59 (0.50–0.68) -2115.32 AE -2116.18 1.14 0.29

HIP ACE 0.06 (0.00–0.32) 0.38 (0.17–0.60) 0.56 (0.47–0.66) -2843.69 CE -2845.53 0.16 0.69

WHR ADE 0.03 (0.00–0.49) 0.45 (0.00–0.93) 0.52 (0.43–0.61) -2336.23 AE -2335.66 2.57 0.11

SBP ACE 0.33 (0.02–0.63) 0.03 (0.00–0.27) 0.64 (0.52–0.76) -2071.94 AE -2073.88 0.07 0.80

DBP ADE 0.20 (0.00–0.63) 0.29 (0.00–0.75) 0.51 (0.41–0.61) -1940.42 AE -1940.98 1.44 0.23

doi:10.1371/journal.pone.0148396.t003
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component (from 0.32 for HDL to 0.70 for SBP); very low to moderate A, C or D components.
As shown in Table 4, all the selected sub-models outperformed their corresponding full models
with lower AICs and none displayed significant statistical difference in the goodness of fit as
compared to the full models. Likewise, AICs for both the full and the nested models fitted to
the Chinese twin data are shown in S1 Table.

Different from the Danish twins that predominantly had the AE model as the best, the vari-
ous categories of metabolic phenotypes for the Chinese twins were best fitted by different sub-
models with the AE model fitted to biochemical measurements (i.e. lipids and glucose except
HDL) and the CE model fitted to all body mass traits (Tables 4 and 5). Moreover, the estimated
A components for lipids and glucose traits tended to be higher in Chinese twins (from 0.54 for
TC and LDL to 0.59 for TG) than in Danish twins (from 0.39 for GLU to 0.49 for LDL) except
for HDL (CE model in Chinese twins). Note that, although most of the body mass traits in the
two samples were best fitted by different models (AE for Danish and CE for Chinese), one trait,

Table 4. Full models for longitudinal change of each phenotype in the Chinese twins and statistics for best fitting models.

Parameter estimates Likelihood
Ratio Test

Traits Full models A (95% CIs) C/D (95% CIs) E (95%CIs) AIC Best models AIC X2 P value

TC ACE 0.49 (0.00–0.97) 0.05 (0.00–0.49) 0.46 (0.33–0.59) -362.90 AE -364.85 0.05 0.82

TG ACE 0.42 (0.00–0.84) 0.16 (0.00–0.53) 0.42 (0.29–0.54) 459.65 AE 458.30 0.65 0.42

HDL ACE 0.09 (0.00–0.38) 0.58 (0.33–0.84) 0.32 (0.22–0.42) -131.95 CE -133.53 0.42 0.52

LDL ACE 0.38 (0.00–0.84) 0.15 (0.00–0.56) 0.47 (0.33–0.61) -154.34 AE -155.86 0.48 0.49

GLU ACE 0.31 (0.00–0.75) 0.25 (0.00–0.63) 0.44 (0.30–0.57) -495.38 AE -495.96 1.42 0.23

WT ACE 0.05 (0.00–0.51) 0.33 (0.00–0.70) 0.62 (0.46–0.79) -965.73 CE -967.69 0.04 0.84

BMI ACE 0.00 (0.00–0.00) 0.31 (0.18–0.44) 0.69 (0.56–0.82) -969.89 CE -971.89 0.00 1.00

WAIST ACE 0.00 (0.00–0.00) 0.42 (0.27–0.57) 0.58 (0.43–0.73) -546.17 CE -548.17 0.00 1.00

HIP ACE 0.00 (0.00–0.00) 0.39 (0.24–0.55) 0.61 (0.45–0.76) -841.78 CE -843.78 0.00 1.00

WHR ACE 0.11 (0.00–0.62) 0.38 (0.00–0.77) 0.51 (0.31–0.72) -677.13 CE -678.97 0.17 0.68

SBP ADE 0.10 (0.00–1.00) 0.20 (0.00–1.00) 0.70 (0.48–0.93) -437.99 AE -439.87 0.12 0.73

DBP ACE 0.17 (0.00–0.81) 0.15 (0.00–0.64) 0.68 (0.44–0.92) -360.47 CE -362.19 0.27 0.60

doi:10.1371/journal.pone.0148396.t004

Table 5. Parameter estimates in best fitting models in the Danish and Chinese twins.

Danish twins Chinese twins

Traits Best model A (95% CIs) C/D (95% CIs) E (95% CIs) Best model A (95% CIs) C/D (95% CIs) E (95% CIs)

TC AE 0.48 (0.38–0.57) 0.52 (0.43–0.62) AE 0.54 (0.42–0.66) 0.46 (0.34–0.58)

TG CE 0.28 (0.19–0.36) 0.72 (0.64–0.81) AE 0.59 (0.48–0.71) 0.41 (0.29–0.52)

HDL AE 0.44 (0.33–0.54) 0.56 (0.46–0.67) CE 0.66 (0.57–0.74) 0.34 (0.26–0.43)

LDL AE 0.49 (0.39–0.59) 0.51 (0.41–0.61) AE 0.54 (0.42–0.67) 0.46 (0.33–0.58)

GLU AE 0.39 (0.28–0.49) 0.61 (0.51–0.72) AE 0.58 (0.46–0.70) 0.42 (0.30–0.54)

WT AE 0.39 (0.28–0.49) 0.61 (0.51–0.72) CE 0.36 (0.24–0.49) 0.64 (0.51–0.76)

BMI AE 0.39 (0.29–0.49) 0.61 (0.51–0.71) CE 0.31 (0.18–0.44) 0.69 (0.56–0.82)

WAIST AE 0.40 (0.30–0.49) 0.60 (0.51–0.70) CE 0.42 (0.27–0.57) 0.58 (0.43–0.73)

HIP CE 0.43 (0.35–0.50) 0.57 (0.50–0.65) CE 0.39 (0.24–0.55) 0.61 (0.45–0.76)

WHR AE 0.45 (0.36–0.54) 0.55 (0.46–0.64) CE 0.45 (0.31–0.60) 0.55 (0.40–0.69)

SBP AE 0.36 (0.26–0.47) 0.64 (0.53–0.74) AE 0.28 (0.07–0.50) 0.72 (0.50–0.93)

DBP AE 0.47 (0.37–0.56) 0.53 (0.44–0.63) CE 0.27 (0.10–0.44) 0.73 (0.56–0.90)

doi:10.1371/journal.pone.0148396.t005
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i.e. HIP had consistently the CE model as the best in both Danish and Chinese twins with com-
parable estimates (Table 5). The blood pressure traits in the Chinese twins were best fitted by
the AE model for SBP and CE model for DBP, both with very high E estimates (SBP: 0.72;
DBP: 0.73) in comparison with other phenotypes in Chinese twins and also with Danish twins
(SBP: 0.64; DBP: 0.53).

Discussion
By treating the longitudinal change in a phenotype, i.e. Δphenotype as the metrics of interest,
we have conducted a longitudinal twin study on multiple metabolic phenotypes in samples
from two populations of distinct ethnic background and social environmental circumstances.
One important finding in the study is the moderate to high contribution by the unique envi-
ronment to intra-individual longitudinal change (Δphenotype) for all 12 phenotypes (Table 5).
In contrast, the genetic component has only low to moderate contribution to Δphenotype. In
summary, the results emphasize the high importance of unique environmental factors in con-
trolling intra-individual variation in metabolic phenotypes over time, both in Danish and in
Chinese twins.

In addition to the unique environmental factors, the shared environments were also
involved in regulating the longitudinal change of all body mass traits in Chinese twins which is
in contrast to the Danish twins. The phenomenon could indicate, in addition to the unique
environment, early-life shared environment could also play an important role in determining
the individual trajectory of body mass traits in the Chinese adult twins.

In the best fitting models, the genetic estimates to longitudinal changes for lipids (except
HDL) and glucose tended to be higher in Chinese than in Danish twins with only a slight over-
lap in the 95% CIs for GLU (0.58, 95% CI: 0.46–0.70 in Chinese versus 0.39, 95% CI: 0.28–0.49
in Danish twins) but with considerable overlaps for TC and LDL (Table 5). Although the differ-
ence lacks strong statistical support for each phenotype considered individually, the same
trend of difference (i.e. A for Chinese> A for Danish) in biochemical measurements could
reflect interesting population differences in the genetic and environmental control over longi-
tudinal patterns of lipids and glucose. In view of the fact that Chinese twins were sampled from
the countryside (the suburban area of Qingdao) where staple food is characterized by high
cereal and vegetable content, we assume that the Chinese samples might be more restricted in
their dietary pattern being much more plant based than the Danish twins who had more suffi-
cient food supply and in general have a dietary pattern that includes high intakes of animal-
based food [37–38]. As a result, the difference in dietary habits between the two samples could
lead to low unique environmental and high genetic components in the variation of Δphenotype
for blood lipids and glucose in the Chinese twins, while high unique environmental and low
genetic components in the Danish twins. Future cross-population studies should help to vali-
date our hypothesis.

Among the lipid phenotypes, no genetic component was estimated in the best fitting models
(i.e. the CE model) for ΔTG in Danish twins and for ΔHDL in the Chinese twins. The absence
of genetic control over ΔTG is consistent with Friedlander et al [39] who reported no genetic
influence on the change in TG over a 10-year follow-up in an adult cohort of American twins.
In another longitudinal study conducted in adult Caucasian twins, Goode et al. [40] reported
no significant proportion of genetic contribution to the variation in age-related change of
blood lipids. Different from the results in adult twins, Middelberg et al. [41] and Zhang et al.
[25] estimated significant genetic component in age-related change on the level of blood lipids
in adolescent Caucasian and Chinese twins respectively. Comparing the results for adolescent
and adult twins, one could conclude that the genes are important in regulating the
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developmental changes of blood lipids in adolescent twins in both Eastern andWestern popu-
lations while in adult twins, the genetic effects on long-term change for some lipids (here TG in
Danish twins and HDL in Chinese twins) could have been weakened and perhaps with popula-
tion-specific patterns.

Different from the lipids and glucose phenotypes, longitudinal change in blood pressure
was highly attributable to unique environment in Chinese twins (0.72 for SBP, 95% CI: 0.50–
0.93; 0.73 for DBP, 95% CI: 0.56–0.90). The estimates of E components for the change of blood
pressures in Danish twins (0.64 for SBP, 95% CI: 0.53–0.74; 0.53 for DBP, 95% CI: 0.44–0.63)
tended to be lower than that for the Chinese twins although their 95% CIs overlapped. On the
other hand, the Danish twins had moderate genetic influence on change in blood pressure
(0.36, 95% CI: 0.26–0.47 for SBP; 0.47, 95%CI: 0.37–0.56 for DBP) which is in contrast to the
lower or no genetic control in the Chinese twins (0.28 for SBP, 95% CI: 0.07–0.50; 0 for DBP).
Although the different patterns could be ascribed to the different ethnic (genetic) backgrounds,
we emphasize the importance of salt consumption in China especially in the rural areas.
According to a global epidemiological study, China was on the top rank in dietary salt intake
[42] and the intake level changed with age [43]. We think that the high contribution by unique
environment to change in blood pressure can be, at least, partly explained by the high level of
salt intake in China considering the significantly positive association of salt intake with blood
pressure [42]. If this was the case, the high salt intake affects not only the variation in the level
[44–47] but also in the variation in the rate of change of blood pressure in the Chinese
population.

This longitudinal twin analysis was based on intra-pair correlation (ICC) on Δphenotype
over time, which did not necessarily imply significant longitudinal change at the mean level of
the phenotype. For example, the mean level of HDL in the Chinese twins had no significant
change over time (p = 0.72) (Table 1) but high ICCs on ΔHDL were estimated for both MZ
(0.68, 95% CI: 0.40–0.84) and DZ (0.63, 95% CI: 0.35–0.81) twins (Table 2) which led to a best
fitting CE model (Table 5). In another example, the mean level for TG had no significant
change over the follow-up period in the Chinese twins (p = 0.38) (Table 1). However, the esti-
mated ICCs for TG were higher in MZ (0.58, 95% CI: 0.40–0.72) than in DZ (0.37, 95% CI:
0.16–0.55) twins (Table 2) suggesting genetic involvement in the intra-individual change over
time. This was confirmed by the best fitted AE model for TG (Table 4) with A component
counting for 59% of the total variance in ΔTG (Table 5). If our results on TG are validated, we
can assume that there could have been genetic polymorphisms inherited by different twin pairs
that up- or down-regulated TG with comparable effect size in each direction and eventually
resulted in no change at the overall mean level of TG. The two examples demonstrate the need
to differentiate the genetic and environmental control over intra-individual longitudinal
change from that over the level of a phenotype. By applying the growth curve model to multi-
wave measurements on BMI, Hjelmborg et al. [22] were able to show that the genetic variants
for longitudinal change in BMI were likely to be different from those affecting the level of BMI.
The estimated genetic regulation of intra-individual phenotype variation could help to guide
genetic association studies to look specifically for genes that influence the rate of change in
multiple metabolic phenotypes.

It is necessary to point out the limitations of our comparative study. First, the Danish and
Chinese twins were followed up for different length of time which could possibly result in dif-
ferent degrees of accumulation for the random environmental effects on Δphenotype.
Although the estimated E components in Table 5 do not seem to support the speculation, we
cannot rule out the existence of differential accumulation effects in the two samples. Second, in
both samples, phenotypes were measured at only two time points. Because of that, it was
impossible to fit the growth curve model and thus it was unable to estimate the genetic and
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environmental effects in the correlation between rate of change and baseline level of the pheno-
types. Third, the small sample size of Chinese twins could be responsible for the insignificant
results on the mean value of longitudinal change in TG and HDL and likewise higher uncer-
tainty in the parameter estimates for the twin models.

Conclusion
Our study emphasizes the major role of individual unique environment in controlling the
intra-individual variation over time in metabolic phenotypes in both Danish and Chinese
twins, and meanwhile, indicates differential patterns of genetic and common environmental
regulations on the long-term intra-individual change in different clusters of metabolic pheno-
types in the two samples.

Supporting Information
S1 Table. AICs for the full and nested models for Danish and Chinese twins. The table pres-
ents AICs for all models fitted (both full and nested models) with the AICs for the best fitting
models marked as bold.
(DOCX)
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