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Abstract
Background: The orthoreoviruses are infectious agents that possess a genome comprised of 10
double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA
viruses, an RNA-dependent RNA polymerase (RdRp) enzyme is required for viral propagation.
RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for
several other closely-related reoviruses, including aquareoviruses, but have not yet been reported
for any avian orthoreoviruses.

Results: We determined the L2 genome segment nucleotide sequences, which encode the RdRp
proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define
conserved and variable regions within reovirus RdRp proteins and to better delineate structure/
function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long,
whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to
encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV
genome segments, and their corresponding proteins, were performed with all currently available
homologous mammalian reovirus (MRV) and aquareovirus (AqRV) genome segment and protein
sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making
the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there
was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive
structure/function mapping of identical and conserved residues within the known MRV λ3 atomic
structure indicated most identical amino acids and conservative substitutions were located near
and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids
were generally located on the molecule's surfaces.

Conclusion: The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values
(~55%) amongst all currently known ARV and MRV proteins. This implies significant evolutionary
constraints are placed on dsRNA RdRp molecules, particularly in regions comprising the canonical
polymerase motifs and residues thought to interact directly with template and nascent mRNA. This
may point the way to improved design of anti-viral agents specifically targeting this enzyme.
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Background
The avian reoviruses (ARVs) are members of the family
Reoviridae, the only group of dsRNA viruses (out of seven
dsRNA virus families) that infect mammals [1,2]. The
ARVs are the prototypic members of syncytia-inducing,
non-enveloped viruses within the Orthoreovirus genus.
This genus is divided into 3 subgroups: non-syncytia-
inducing mammalian reovirus (MRV; subgroup 1; the
prototype of the whole genus), avian reovirus and Nelson
Bay virus (subgroup 2), and baboon reovirus (subgroup
3) [3]. In contrast to the MRV, which are rarely associated
with human pathology [2,4-6], the ARV are significant
pathogens of poultry, and cause a variety of diseases,
including infectious enteritis in turkeys [7], viral arthritis/
tenosynovitis [8], "pale bird" and runting-stunting syn-
dromes [9], and gastroenteritis, hepatitis, myocarditis,
and respiratory illness in chickens [2,8,10].

Like MRV, ARV is a non-enveloped virus with 10 linear
double-stranded RNA gene segments surrounded by a
double concentric icosahedral capsid shell (inner shell
[also called core] and outer shell) of 70–80 nm diameter
[11,12]. The ARV genomic segments can be resolved into
three size classes based on their electrophoretic mobili-
ties, designated L (large), M (medium), and S (small)
[11,12]. In total, the genomic composition includes 3
large segments (Ll, L2, L3), 3 medium sized segments (Ml,
M2, M3), and 4 small segments (S1, S2, S3, S4). Nine of
the segments are monocistronic and encode a single dif-
ferent protein [11-13] while S1 is tricistronic with partially
overlapping open reading frames (ORFs) that encode for
three proteins [14,15]. Although ARVs share many fea-
tures with the prototypic MRVs, several notable differ-
ences exist including host range, pathogenicity,
hemagglutination properties, and syncytium formation
[11,12,16-21].

Genomic coding differences also exist between MRV and
ARV. For example, although the ARV and MRV S1 genome
segments encode homologous receptor-binding proteins
[19,22,23], the ARV S1 genome segment encodes two
additional ARV-specific gene products, one of which is
responsible for ARV's unusual cell-cell fusion ability
[14,15,24], whereas the MRV S1 segment encodes only
one additional protein [25]. In addition, available data
[12,26] suggest each of the homologous orthoreovirus λ-
class proteins are encoded by different ARV and MRV L-
class genome segments. Differences in the functional
properties of homologous ARV and MRV proteins have
also been reported. For example, two non-homologous
dsRNA-binding proteins (the ARV σA core protein and the
MRV σ3 major outer capsid protein) are predicted to reg-
ulate PKR activation [27,28] while the ARV σA core pro-
tein displays nucleoside triphosphate phosphohydrolase
(NTPase) activity [29], ascribed to the non-homologous

MRV μ2 [30] and λ1 [31] core proteins. Based on these
early comparative studies, it seems likely that additional
analysis of ARV will continue to broaden our understand-
ing of the Reoviridae family, possibly leading to the identi-
fication of novel features that impact on the distinct
biological and pathogenic properties of ARV.

Recent advances have allowed sequence determinations
of a growing number of virus isolates. Many ARV and
MRV genome segment sequences have been reported. In
addition, the complete genomic sequences of three proto-
type strains of MRV have been completed [32-34]. In con-
trast, sequence information from ARV isolates is more
limited. While the entire complement of S-class genome
segments (for example, [14,15,35-39]) and M-class
genome segments (for example, [40,41]) have been deter-
mined for some ARV clones, and sequence information is
available for some ARV L1 and L3 genome segments
[42,43], there is, at present, no sequence information for
the ARV L2 genome segment. This segment is presumed to
encode for the viral RNA-dependent RNA polymerase
(RdRp) protein, an essential enzyme for RNA virus repli-
cation. Thus, we determined the genomic sequences of the
ARV L2 genome segments from two different strains of
ARV (ARV138 and ARV176) in order to expand the avail-
able ARV sequence database, determine sequences of the
ARV RdRp protein, and to delineate conserved structure/
function features of this key viral-encoded enzyme.

Methods
Cells and viruses
Avian reovirus strain 138 (ARV138) and strain 176
(ARV176) are laboratory stocks. Virus clones were ampli-
fied in the continuous quail cell line QM5 in Medium 199
(Gibco) supplemented to contain 7.5% fetal calf serum
(Hyclone), 2 mM glutamine, 100 U/ml penicillin, 100 μg/
ml streptomycin, and 1 μg/ml amphotericin B, essentially
as previously described [44].

Sequencing the L2 genome segment
Genomic dsRNA was extracted from amplified virus P2
stocks with phenol/chloroform [45]. The extracted dsRNA
were resolved in 10% SDS-PAGE and resolved L1, L2, and
L3 segments separately excised. Individual segment gel
bands were collected into microcentrifuge tubes, macer-
ated, and incubated in 1–2 volumes of diffusion buffer
(0.5 M ammonium acetate; 10 mM magnesium acetate; 1
mM EDTA, pH 8.0; 0.1% SDS) at 50°C for 30 minutes.
The macerated gel pieces were pelleted by centrifugation
at 10,000 × g for 1 min, supernatants were collected and
dsRNA precipitated by ethanol. Each pellet was dried and
resuspended in ddH2O for 3' ligation-based RT-PCR. All
primers used for ligation, RT-PCR, and sequencing were
synthesized by Invitrogen. An anchor primer, P-5'
CTTATTTATTTGCGAGATGGTTATCATTTTAATTATCTC-
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CATG 3'-Bio (5'-end phosphorylated and 3'-end biotin-
blocked) was ligated to the 3' end of each genome seg-
ment, using T4 RNA ligase according to the manufac-
turer's instructions (Promega Inc., Madison, USA).
Ligated products were precipitated by mixing with 1/2
volume of (30% PEG 8000 in 30 mM MgCl2), and centri-
fuged immediately at 10,000 × g for 30 minutes. The
supernatants were removed and pellets were dried and
dissolved in ddH2O for cDNA synthesis. Full-length
cDNA copies of each L2 genome segment were synthe-
sized using a primer (24-mer) complementary to the
anchor primer by SuperScript™ II reverse transcriptase
according to the manufacturer's instructions (Invitrogen).
PCR amplification was performed using cDNA, a forward
primer (i.e. primer used for RT), and a reverse primer, 5'
ACCGAGGAGAGGgatgaataa 3', designed against highly
conserved 3'-end nucleotide sequences of currently
known consensus ARV L1 and L3 segment plus strands
(shown in lower case) by Expand Long Template PCR Sys-
tem (Roche). PCR products used for DNA sequencing
were gel purified using QIAquick® gel extraction kit
according to the manufacturer's instructions (Qiagen).

DNA sequencing was performed in both directions by use
of an ABI Prism BigDye Terminator v3.1 Cycle Sequencing
Ready Reaction Kit (Applied Biosystems) and an Applied
Biosystems Genetic Analyzer DNA Model 3100. The first
two sequencing reactions were performed with the prim-
ers used for PCR amplification. Primers for subsequent
reactions were designed from newly obtained sequences
to completely sequence each full-length PCR product in
both directions. Sequences nearer the ends of each seg-
ment were determined from PCR products that were
amplified with a primer complementary to the anchor
primer and an internal gene-specific primer. Sequences
obtained from both directions were assembled and
checked for accuracy with SeqMan® (Lasergene®, Version
7.1.0; DNASTAR, Inc.).

Sequence analyses
Sequences were compiled and analyzed using the Laser-
gene® software suite (Version 7.1.0; DNASTAR, Inc.) Pair-
wise sequence alignments were performed using the
Wilbur-Lipman method [46] for highly divergent nucle-
otide sequences, the Martinez-NW method [47] for
closely related nucleotide sequences, and the Lipman-
Pearson method [48] for protein alignments in MegAlign®

(Lasergene®). Multiple sequence alignments were per-
formed using Clustal-W [49] and T-Coffee [50], and align-
ment adjustments were manually performed as needed in
MegAlign®. Amino acid alignment images were adjusted
in Adobe Photoshop 7.0 (Adobe®). Nucleotide composi-
tions and protein molecular weights were calculated by
DNA statistics and protein statistics, respectively, in Edit-
Seq® (Lasergene®). Phylogenetic trees were constructed

using Neighbor-Joining and tested with 1000 bootstrap
replicates in MEGA version 4 [51].

3-D structural analyses
Molecular graphics coordinates of the mammalian reovi-
rus (MRV) λ3 crystal structure (PDB # 1MUK; [52]), were
manipulated with the UCSF Chimera package from the
Resource for Biocomputing, Visualization, and Informat-
ics at the University of California, San Francisco ([53];
supported by NIH P41 RR-01081). Resulting images were
imported into Adobe Photoshop and assembled with
Adobe Illustrator (Adobe).

Results
The sequences of genes that encode the RdRp protein have
been determined for a number of members of the Reoviri-
dae family of viruses (Table 1). However, this information
was lacking for members of the avian orthoreovirus sub-
group. We determined the sequences of two different
strains' ARV L2 genome segments. The L2 genome seg-
ments of ARV138 and ARV176 were determined to be
3829 (GeneBank accession no. EU707935) and 3830
(GeneBank accession no. EU707936) nucleotides long,
respectively (Table 2). The one-nucleotide length differ-
ence is attributed to the 5'-end of the non-translated
region of the plus-strand, where ARV138 L2 contains a
one-base deletion relative to ARV176 L2. No additional
deletions or insertions were found elsewhere in the align-
ment. The nucleotide identity between ARV138 and
ARV176 L2 genome segments is 85% (Table 3). BLAST
searches indicated the ARV L2 genome segments were
most similar to the mammalian reovirus (MRV) and
aquareovirus (AqRV) L1 genome segments, which encode
the RNA-dependent RNA polymerase [54,55]. Pairwise
sequence comparisons between both of these newly-
determined ARV genome segments and all currently avail-
able homologous MRV and AqRV L1 genome segments
(see Table 1) showed a range of nucleotide and protein
identity values. Preliminary comparative studies of all cur-
rently available AqRV L-class genome segments indicated
that the grass carp reovirus (GCRV) and chum salmon reo-
virus (CSRV) L genes were the most distantly related
amongst the AqRV (data not shown). Thus, although all
currently available ARV, MRV, and AqRV L-class genome
segments were aligned and compared in subsequent anal-
yses, we limited presentation in subsequent tables and fig-
ures to these few most-distant clones for clarity. In
addition, preliminary attempts to align the ARV138 and
ARV176 L2 genome segments with homologous genes in
other Reoviridae genera (ie. the Fijivirus Nilaparvata lugens,
the Dinovernavirus Aedes pseudoscutellaris, the Coltivirus
Eyach virus, the Orbivirus St. Croix River virus, the Sea-
dornavirus Kadipiro virus, the Mimoreovirus Micromonas
pusilla reovirus, and the currently unclassified virus Oper-
ophtera brumata reovirus) resulted in much lower identity
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values and significant gaps (data not shown); thus, these
other more-distant genera were not included in subse-
quent analyses. Pairwise nucleotide sequence compari-
sons between ARV L2 and homologous MRV genome
segments showed identities of ~55%, and pairwise nucle-
otide sequence comparisons of ARV L2 with AqRV homo-
logues revealed ~48% identity (Table 3).

The predicted open reading frames for both ARV L2 seg-
ments were determined to be nucleotides 14–3790 for
ARV138 L2 and 15–3791 for ARV176 L2, resulting in
deduced λB proteins of 1259 residues (Table 2). The cal-
culated molecular weights for ARV138 λB and ARV176 λB

are ~140 kDa each (Table 2). The amino acid identity
between the two ARV λB proteins is 97.5%, with no inser-
tions or deletions relative to one another. ARV protein λB
is the only ARV protein whose sequence has not been
reported previously. Thus, completion of the L2 sequence
in this study has allowed us to assign its function at the
sequence level. Amino acid alignments of ARV λB, MRV
λ3, and AqRV VP2 proteins revealed several regions of
high amino acid identity (Fig. 1), many of which corre-
spond to previously identified polymerase domains [56].
A large number of amino acids were completely conserved
across all 14 currently known ARV, MRV, and AqRV RdRp
protein sequences (Fig. 1, closed circles). Amino acid
identities between ARV λB and homologous MRV λ3 or
AqRV VP2 are ~55% and ~42%, respectively (Table 3),
suggesting the ARV and MRV are more closely related to
each other than either are to AqRV (also seen in phyloge-
netic analysis – Fig. 2), reflecting that ARV and MRV
belong to different species in the Orthoreovirus genus [36]
whereas AqRV are members of the different Aquareovirus
genus in the Reoviridae family. Window-averaged analysis
of ARV λB and MRV λ3 protein identities (Fig. 3, dashed
lines) revealed several regions of high amino acid identity.
The highest identity scores, with window-averaged iden-
tity values > 90%, were located within canonical polymer-
ase regions, including "fingers" domains (MRV residues
452 – 467 and 514 – 530) "fingers"/"palm" interface
domains (MRV residues 542 – 571 and 673 – 699),
"palm" domains (MRV residues 725 – 738, which
includes the GDD motif, which is common to all viral
RNA-dependent RNA polymerases [57-59]), "thumb"
domains (MRV residues 864 – 878), and an "undefined"
domain (MRV residues 881 – 896). Addition of the AqRV
VP2 protein to the above analyses provided additional
information about potentially important conserved
domains. Clustal-W (Fig. 1) and T-Coffee (data not
shown) alignments identified 359 amino acid residues
that were identical in the 6 aligned sequences (overall
average identity = 28.3% Fig. 3, horizontal solid line]).
There were numerous window-averaged regions of very
low conservation, with most attributed to AqRV regions
that were poorly conserved compared to corresponding
ARV/MRV regions, a feature also noted in MRV:AqRV
comparisons [60]. Three regions showed higher-than-
average conservation in the ARV:MRV:AqRV alignments,
with window-averaged identity values > 75%, suggesting
these polymerase regions (ARV residues G516LRNQV
QRRPRTIMP530, H542TLS/CADYINYHMNLSTTSGSAV563,
and T677TTFPSGSTATSTEHTANNSTM698, that correspond
to MRV residues G516LRNQVQRRPRSIMP530, H542TLTAD
YINYHMNLSTTSGSAV563, and T677TTFPSGSTATSTEHTA
NNSTM698, respectively) contain important structural/
functional domains. The GDD motif was located within a
region of slightly lower window-averaged scores (~60%),
but in a sequence (in ARV) I724QxxYVCQGDDG735 that,

Table 1: Nucleotide sequences used in this study

Strain GenBank Accession Number

ARVa

138 EU707935

176 EU707936

MRVb

T1L NC_004271

T2J NC_004272

T3D EF494435

T4N AF368033

BYD1 DQ664184

SC-A DQ997719

AqRVc

GCRV AF260512

GCHV AF284502

GSRV NC_005167

AGCRV NC_010585

CSRV NC_007583

ASRV EF434978

a ARV, avian reovirus.
b MRV, mammalian reovirus. T1L, type 1Lang; T2J, type 2 Jones; T3D, 
type 3 Dearing; T4N, type 4 Ndelle.
c AqRV, Aquareovirus. GCRV, Grass carp reovirus; GCHV, Grass 
carp hemorrhagic virus; GSRV, Golden shiner reovirus; AGCRV, 
American grass carp reovirus; CSRV, Chum salmon reovirus; ASRV, 
Atlantic salmon reovirus.
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Table 2: Genome-segment lengths, non-translated regions, and encoded proteins of ARV138 and ARV176

Genome segment Base pairsa 5' NTRb 3' NTR ORFc Codonsd Protein Molecular weight (kDa)e

(no. of bases) (no. of bases) ARV138 ARV176

L1f 3958 20 56 21–3899 1293 λA 142.3 142.2

L2 3829g 13h 36 14–3790i 1259 λB 139.7 139.8

L3f 3907 12 37 13–3867 1285 λC 141.9 142.2

M1 2283 12 72 13–2208 732 μA 82.0 82.2

M2 2158 29 98 30–2057 676 μB 73.1 73.3

M3 1996 24 64 25–1929 635 μC 70.9 70.8

S1 1643 24 33 25–318 98 p10 10.3 10.3

293–730 146 p17 16.9 16.9

630–1607 326 σC 34.9 34.8

S2 1324 15 58 16–1263 416 σA 46.1 46.1

S3 1202 30 68 31–1131 367 σB 40.9 40.9

S4 1192 23 65 24–1124 367 σNS 40.5 40.6

Total 23492j

a Total nucleotides on each strand.
bNTR, non-translated region.
cNucleotide positions indicated for starting and ending codons.
dTotal number of amino acids in deduced protein.
eMolecular weight calculated from deduced protein and rounded to closest 0.1 kDa.
fUnpublished.
g3830 for ARV176.
h14 for ARV176.
i15–3791 for ARV176.
j 23,493 for ARV176.

Table 3: Percent identities of the ARV L2 genome segments and homologous encoded proteins of MRV and Aquareovirusesa

Strain ARV138 ARV176 T1L T2J T3D T4N GCRV CSRV

ARV138 98 55 55 55 55 42 41

ARV176 85 55 55 55 55 42 41

T1L 55 55 92 99 97 42 41

T2J 55 55 75 92 91 42 40

T3D 55 55 96 76 98 42 41

T4N 56 56 89 75 90 42 41

GCRV 49 49 48 47 48 47 58

CSRV 47 47 47 46 47 47 59

a Percent amino acid identities indicated in upper triangle; percent nucleotide identities are in lower triangle, in bold.
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Alignment of the deduced ARV138 and ARV176 λB amino acid sequencesFigure 1 (see previous page)
Alignment of the deduced ARV138 and ARV176 λB amino acid sequences. All 14 currently available homologous 
ARV λB, MRV λ3, and AqRV VP2 proteins (determined for each clone shown in Table 1) were aligned, both by T-Coffee [50] 
(data not shown) and by Clustal-W [49], with only minor differences in the alignments created by different gap penalties (data 
not shown). Only the two most-distant ARV, MRV, and AqRV sequences (see text for details) are shown for clarity. Clones 
are: MRV – T1L (GenBank No. NC_004271) and T2J (GenBank No. NC_004272); ARV – ARV138 (GenBank No. EU707935) 
and ARV176 (GenBank No. EU707936); AqRV – Grass Carp reovirus (GCRV) (GenBank No. AF260512) and Chum Salmon 
reovirus (CSRV) (GenBank No. NC_007583). Amino acid residues that are identical in at least four of the sequences are indi-
cated by black background shading. The single letter amino acid code is used. Previously identified polymerase domains (labeled 
I – III) [56] are indicated with solid horizontal lines above the sequences. Amino acid residues that are completely conserved in 
all 14 sequences are indicated by closed circles, and the GDD motif found in all polymerases is indicated by open circles, shown 
above the sequences.
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Phylogenetic tree analyses of the prototype ARV L2 genome segments and homologous genes in other reovirusesFigure 2
Phylogenetic tree analyses of the prototype ARV L2 genome segments and homologous genes in other reovi-
ruses. Abbreviations are as defined in the legend to Fig. 1. Lines are proportional in length to nucleotide substitution. Align-
ments were performed by Neighbor-Joining and tested with 1000 bootstrap replicates in MEGA version 4 [51].
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apart from the residues at positions 726 and 727, were
completely conserved in all 14 currently-available ARV,
MRV, and AqRV RdRp sequences. In addition to the 359
identical residues found in all 6 sequences discussed
above, blossum50 weighting alignments indicated that an
additional 206 positions contained either identical amino
acid residues or conservative substitutions in at least 4 of
the 6 aligned sequences.

Discussion
The atomic structure of few ARV proteins have been
reported [61], and such high-resolution structures are not
known for any λ-class ARV proteins. By contrast, atomic
structures are known for most MRV proteins, including
the RdRp [52]. Comparative sequence analyses described
in this report have indicated that ARV and MRV RdRp pro-
teins share ~55% amino acid identity, ARV and AqRV
RdRp proteins share ~42% identity, and that only 359
(~28%) amino acids are completely conserved (identical)
when ARV138, ARV176, MRV T1L, MRV T2J, AqRV CSRV,
and AqRV GCRV are aligned (Fig. 1). Thus, to gain struc-
ture/function information about this key viral-encoded
enzyme, ARV, MRV, and AqRV identical amino acids, con-
servative substitutions, and non-conservative substitu-
tions were modeled in the MRV λ3 crystal structure (Fig.
4). This comparative analysis indicated that most non-

conserved amino acids were located on the surfaces of the
protein exposed to the core interior and in the N-terminal
and C-terminal bracelet domains, whereas most identical
amino acids and conservative substitutions were located
within canonical fingers, palm, and thumb polymerase
motifs, particularly those lining channels used by tem-
plate and nascent RNA during transcription (Fig. 4). Sim-
ilar observations had been reported from MRV:AqRV
comparisons [60] and our results support and extend
these earlier observations. As was previously reported
from MRV:AqRV comparisons [60], conserved residues
surround the GDD motif and additional residues shown
to be important for a variety of polymerase functions are
also conserved, including Arg522, Arg523, Arg525, Ala587
(which are needed to properly position the incoming NTP
triphosphate), Ile527 and Pro529 (needed to help position
template nucleosides), Thr557, Ser558, Gly559, Ser560, and
Val562 (portions of a loop that maintains priming NTP),
and Asp589, Ser681, and Gln731 (specifies ribonucleotides).
Each of these residues is located one amino acid more N-
terminal in the MRV sequence (ie. ARV Arg522 = MRV
Arg523 and all (as well as numerous others) are completely
conserved in all 14 currently available ARV, MRV, and
AqRV RdRp sequences (Fig. 1, indicated by closed circles).
In addition, our comparative analyses indicated many
identical amino acids and conservative substitutions were

Window-averaged scores for sequence identity among the ARV λB, AqRV VP2, and MRV λ3 RNA-dependent RNA polymer-ase proteinsFigure 3
Window-averaged scores for sequence identity among the ARV λB, AqRV VP2, and MRV λ3 RNA-dependent 
RNA polymerase proteins. To provide consistent weighting to the averaged scores, only the two most-distant clones from 
each of the three groups (ARV: ARV138 and ARV176; AqRV: GCRV and CSRV; MRV: T1L and T2J – see text for details) were 
used. Identity scores averaged over running windows of 15 amino acids and centered at consecutive amino acid positions are 
shown for ARV:MRV comparisons (dashed lines) and ARV:MRV:AqRV comparisons (solid line). The global identity scores for 
each of the compared sequence sets are indicated by the horizontal lines. Previously-identified enzymatic motifs are indicated 
with boxes below the plots.
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located on the surface of the protein that is predicted to
interact with the core shell [62]. This might imply that
conserved domains are needed to help tether the RdRp to
the underside of the core shell. This hypothesis could be
tested by extending such ARV:MRV:AqRV sequence com-
parisons to the other core proteins.

In conclusion, we report the first sequence analysis of the
avian reovirus RdRp gene and protein. The ARV λB and
MRV λ3 proteins showed the highest ARV:MRV identity
values (~55%) amongst currently known ARV and MRV
proteins, suggesting significant evolutionary constraints
are placed on dsRNA RdRp molecules, particularly in
regions comprising the canonical polymerase motifs and
residues thought to interact directly with template and
nascent mRNA.
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