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Immune profiling of formalin-fixed, paraffin-embedded tissues using multiplex
immunofluorescence (mIF) staining and image analysis methodology allows for the
study of several biomarkers on a single slide. The pathology quality control (PQC) for
tumor tissue immune profiling using digital image analysis of core needle biopsies is an
important step in any laboratory to avoid wasting time and materials. Although there are
currently no established inclusion and exclusion criteria for samples used in this type of
assay, a PQC is necessary to achieve accurate and reproducible data. We retrospectively
reviewed PQC data from hematoxylin and eosin (H&E) slides and from mIF image analysis
samples obtained during 2019.We reviewed a total of 931 reports from core needle biopsy
samples; 123 (13.21%) were excluded during the mIF PQC. The most common causes of
exclusion were the absence of malignant cells or fewer than 100 malignant cells in the
entire section (n � 42, 34.15%), tissue size smaller than 4 × 1 mm (n � 16, 13.01%), fibrotic
tissue without inflammatory cells (n � 12, 9.76%), and necrotic tissue (n � 11, 8.94%).
Baseline excluded samples had more fibrosis (90 vs 10%) and less necrosis (5 vs 90%)
compared with post-treatment excluded samples. The most common excluded organ site
of the biopsy was the liver (n � 19, 15.45%), followed by soft tissue (n � 17, 13.82%) and
the abdominal region (n � 15, 12.20%). We showed that the PQC is an important step for
image analysis and that the absence of malignant cells is the most limiting sample
characteristic for mIF image analysis. We also discuss other challenges that
pathologists need to consider to report reliable and reproducible image analysis data.
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INTRODUCTION

Pathology quality control (PQC) consists of multiple technical steps that evaluate and measure the
quality of a sampling process (Adyanthaya and Jose, 2013). PQC also provides consistent checks to
identify and address errors and obtain accurate, precise, and reproducible data (Mangino, 2006;
Greig, 2019). A retrospective analysis at the National Cancer Institute Developmental Therapeutics
Clinic found that 74% of the core needle biopsies performed in pharmacodynamic studies that
included fluorescence and mass spectrometry analyses passed their quality control criteria (Ferry-
Galow et al., 2016; Parchment and Doroshow, 2016). The study used hematoxylin and eosin (H&E)
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slide-based analyses as the first PQC step and found that the lack
of malignant cells (MCs) excluded the largest number of samples.

In the last 5 years, the immune profiling of formalin-fixed,
paraffin-embedded (FFPE) tissues using multiplex
immunofluorescence (mIF) staining and digital image analysis
methodologies has arisen as a new technology to study several
biomarkers on a single slide in longitudinal studies (Francisco-
Cruz et al., 2020). However, an efficient PQC process developed
by pathologists with experience in digital image analysis is
needed. This type of PQC for image analysis and mIF is
necessary to avoid expending unnecessary resources and
laboratory personnel time (Parra et al., 2020) and to obtain
high-quality and reproducible results.

The success of any research study that uses FFPE tissues
depends on the quality of the samples. Therefore, it is
important to establish minimum parameters for biopsy sample
quality that should be met before the staining process begins
(Ferry-Galow et al., 2018). Core needle biopsy samples are
generally around 1.58 mm in diameter and 12.7 mm long,
although their size can vary. The small size of these samples
makes them the most challenging for digital image analysis
because it is more likely for a significant proportion of the
sample to be damaged during cutting, staining, and scanning,
especially when sensitive staining methodologies such as mIF are
used. Yet, these tissues are invaluable material for longitudinal
studies, so efforts to obtain quality data, which is important for
translational studies, should be maximized.

The goal of this manuscript is to maximize the workflow of the
PQC for digital image analysis. Thus, we retrospectively studied
this assessment to standardize the process, to minimize time and
cost expenditures, and to guarantee high-quality and
reproducible results using mIF and digital image analysis.

MATERIALS AND METHODS

From 4,371 biopsies collected by the Adaptive patient-oriented
longitudinal learning and optimization program from different
research programs at The University of Texas MD Anderson
Cancer Center from January through December of 2019, we
retrospectively reviewed the PQC reports based on the H&E
slides of 931 core needle biopsies from longitudinal studies.
Biopsies from different time points were included in this study
(608 baseline biopsies and 323 post-treatment biopsies), and all
the samples had been processed for mIF and digital image
analysis to study the tumor microenvironment, including the
presence of cytokeratins, SOX10, and GFAP to characterize
malignant cells in different organs; immune checkpoint
markers (i.e., PD-L1, B7-H3, B7-H4, IDO-1, VISTA, LAG3,
ICOS, TIM3, and OX40); tumor-infiltrating lymphocyte
markers (i.e., CD3, CD8, CD45RO, granzyme B, PD-1, and
FOXP3); and markers to characterize myeloid-derived
suppressor cells (i.e., CD68, CD66b, CD14, CD33, Arg-1, and
CD11b), and these samples were placed in panels similar to those
previously published (Parra et al., 2021).

Five principal characteristics as annotated in the H&E PQC
reports of the biopsies were analyzed: 1) tissue size (length and

width), 2) percentage of tumor area with respect to the total size
of the sample, 3) percentage of MCs in the tumor area of the
sample, 4) percentage of necrotic area, and 5) percentage of
fibrosis. In parallel, the PQC of the digital image analysis was
retrieved from the final data reports of the mIF panels and
reviewed. Similar characteristics were analyzed on the mIF
slides. For the cases in which image analysis could not be
performed, the comments containing the criterion of exclusion
were retrieved instead. All the data from the H&E and digital
image analysis PQCs were tabulated, and the results are
shown below.

RESULTS

None of the 931 core needle biopsies evaluated were excluded
during the H&E PQC, while 123 biopsies (13.21%) were excluded
during the digital image analysis PQC at low magnification (10x)
(Figures 1, 2). The range of excluded samples per project was
3.45–24.17%. Post-treatment samples were more frequently
excluded (62 of 323, 19.20%) compared to the baseline
samples (61 of 608, 10.03%). An important characteristic of
the samples was their size. The median length was 12 mm
(range, 1–24 mm), and the median width was around 1 mm
(range, 0.8–1.2 mm). However, we observed that the median
length of the samples excluded due to small size was 1.25 mm
(range, 0.5–4 mm), and the median width was similar for
included and excluded samples.

After we retrieved the annotated characteristics of the samples
from the H&E PQC reports, we compared the baseline and post-
treatment characteristics of the excluded and included samples.
(See examples on Figure 3). In the excluded baseline biopsies, the
median percentages of tumor area and MCs in the tumor area
were both 0% (range, 0–60%). For the included baseline biopsies,
the median tumor content area was 95% (range, 30–100%), and
the median percentage of MCs in the tumor area was 60% (range,
5–100%). Interestingly, we observed that the excluded baseline
samples had tumor areas with a median of 90% fibrotic areas
compared to only 20% fibrotic areas in the included baseline
samples. The percentage of necrosis was similar in the excluded
and included samples. Furthermore, in the excluded post-
treatment biopsies, the median tumor area was 10% and the
percentage of MCs in the tumor area was 5%. In the included
post-treatment samples, the median tumor area was 20% and the
percentage of MCs in the tumor area was 50%. We also found a
higher percentage of necrotic area in the excluded samples than in
the included samples (median, 90 versus 25%, respectively).
However, the percentage of fibrotic area was lower in the
excluded post-treatment biopsies as shown in (Table 1).

When we reviewed the digital image analysis PQC reports for
the excluded samples, the most common causes of exclusion were
absence of MCs or fewer than 100 MCs (n � 42, 34.15%), small
tissue sample size (n � 16, 13.01%), mostly fibrotic tissue without
inflammatory cells (n � 12, 9.76%), and mostly necrotic tissue (n
� 11, 8.94%). The less common reasons for exclusion were
fragmentation conditions (n � 2, 1.63%); crushed cell artifact
(n � 2, 1.63%); staining artifact, apparently for oxidation and
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desiccation of the sample (n � 2, 1.63%) and hemorrhagic tissue
(n � 1, 0.81%); (Table 2 and Figure 4). Although most of the
samples showed one of the previously mentioned predominant
causes for exclusion, some samples showed more than one cause
for exclusion. For these samples, the most frequent combinatory
factors were few or no MCs and mostly fibrotic tissue without
inflammatory cells (n � 7, 5.69%) as well as mostly necrotic and
fibrotic tissue without inflammatory cells (n � 4, 3.25%)
(Table 2).

With respect to the site of the biopsy, the liver had the most
samples excluded (19 of 123, 15.45%), followed by soft tissues (17
of 123, 13.82%) and the abdominal region (15 of 123, 12.20%).
The remaining excluded samples came from a wide range of
anatomic locations, such as the breast, cervix, gastrointestinal
tract, lung, and lymph node, and none of these sites alone
accounted for more than 10% of the total excluded samples
(Table 3). It was possible to identify differences in the causes
of exclusion in the context of the biopsy location. For example,
liver biopsies were excluded more frequently due to fibrotic areas
without inflammation, whereas soft tissue samples were excluded
more frequently for having few or no MCs (Figure 5).

DISCUSSION

This study shows that different characteristics of core needle
biopsies can impede digital image analysis, and PQC specific to
digital image analysis can help guarantee high-quality and
reproducible data. In this study, we observed that sample size,
tumor content, percentage of necrosis, and percentage of fibrosis
are important in quality control of physical and scanned H&E
slides as well as scanned mIF slides. We also showed that a
systematic PQC assessment of core needle biopsies is important
to maintain the quality of the biopsies for image analysis.

According to our study, tissue size and tumor content were the
most challenging and important characteristics for determining
which samples could undergo digital image analysis to study the
phenotypes expressed by the tumor immune microenvironment
and MCs. We showed that 34.15% of the samples were excluded
owing to the absence of MCs or low tumor content, and 13.01% of
the samples were excluded owing to small sample size. These
excluded samples had a median size of 1.25 x 1 mm. Similar to a
previous study in which themost important exclusion criteria was
the absence ofMCs, 44% of the biopsy specimens evaluated in this
study contained less than 25% viable MCs (Pisano et al., 2001). As
we expected, in these core needle biopsy samples the most
important measure that differentiated excluded and included
biopsies was sample length, given that sample widths were
determined by the different needle diameters as well as the
fixation process.

As previously published (Parra et al., 2020), we noted that a
tumor content of at least 10% in a biopsy sample that is at least 2 ×
1 mm is enough to perform image analysis; however, we can
successfully stain samples as small as 0.5 mm2. The idea that these
samples are representative of the entire tumor microenvironment
is still controversial due to intratumoral heterogeneity in
biomarker expression (Nicoś et al., 2020). Thus, we
recommend an area of analysis at least 1 mm2 to obtain
reliable data from this type of sample, but this minimum area
will vary depending on the tumor content of the sample
(Padmanabhan et al., 2017). For example, in the literature
there are publications that considered samples 10 mm in
length to be adequate for the diagnosis of prostate cancer
(Cicione et al., 2012) and 15 mm in length adequate for the
diagnosis of liver disease (Palmer et al., 2014). Another study
using mIF on pre-treatment biopsies and post-treatment tumor
resections of breast carcinoma found that adequate tissue
sampling, with at least 15 regions of interest, was necessary to

FIGURE 1 |Workflow of pathology quality control (PQC) for core needle biopsy sample assessment for multiplex immunofluorescence and digital image analysis.
Showing the overall three steps of PQC, including assessment of the hematoxylin and eosin (H&E) slides for PQC, image analysis PQC at 10x magnification, and image
analysis PQC of region of interest (ROI) images at 20x/40x magnification. The numbers of cases evaluated and excluded at each step are indicated.
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have a strong correlation between the tumor-infiltrating
lymphocytes and PD-L1 markers included in an mIF panel
and the H&E/PD-L1 clone SP142 clinical assays (Sanchez
et al., 2021). However, there are not standardized image
analysis PQC protocols to determine the minimum sample
size needed for immunoprofiling, and more studies are

warranted to address this need. We believe that each sample
should be evaluated separately, according to its type (whole
section or core needle biopsy) and the study aims.

When comparing baseline and post-treatment biopsies, the
median tumor content was 90 vs 20%, respectively. While an
adequate tumor presence is required in baseline biopsy samples,

FIGURE 2 | Decision tree for pathology quality control (PQC) of core needle biopsy sample assessment for multiplex immunofluorescence and digital image
analysis. The tree shows the detailed protocol with corresponding decisions for the pathologist to make during the three PQC steps. H&E, hematoxylin and eosin; MCs,
malignant cells; mIF, multiplex immunofluorescence.
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fewer MCs or an absence of tumor cells in cases with complete
pathological response after treatment is appropriate in post-
treatment biopsy samples. Regarding the minimum number of

MCs needed to analyze specific marker clones that are
expressed by MCs, such as PD-L1, at least 100 MCs are
recommended to obtain consistent and reliable data (Tsao

FIGURE 3 |Microphotographs of representative examples of excluded and included core needle biopsies using hematoxylin and eosin slides for pathology quality
control. Excluded examples (left column) compared with samples considered appropriate for image analysis (right column). Small sample size (A) compared with a large,
adequate sample (B). Sample without malignant cells and only with normal tissue (C) compared with a sample with adequate amount of malignant cells (D). Sample with
extensive fragmentation (E) compared with another fragmented sample that could be included in the analysis (F). Small sample with extensive hemorrhagic area (G)
compared with another large sample with extensive hemorrhagic area but also with enough tumor content (H). Sample with extensive necrotic area (I) compared with
another similarly sized sample with enough tumor content for analysis (J). Sample with mucinous and scattered malignant cells (K) compared with a sample considered
appropriate for image analysis (L). Sample with predominant fibrosis and calcification (M) compared with an adequate tumor-containing sample (N). A biopsy with
artifact of desiccation (O) compared with a well-preserved biopsy (P).
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et al., 2018; Francisco-Cruz et al., 2020). However, there is not a
consensus regarding the minimum number of MCs needed for
image analysis of different markers expressed by MCs. According
to our experience, we believe that a minimum of 100 MCs is
needed to consider a sample as representative for digital image
analysis. If the sample has fewer than 100 MCs, then we consider
it to be inadequate to perform image analysis to study markers
expressed by those cells. It is important to consider that when
performing immune profiling for longitudinal studies, we work
not only with baseline biopsies that need to contain enough MCs
but also with post-treatment biopsies that many times lack
enough MCs because of the effects of treatment. In these cases
and when the study is not related to a specific marker expressed
by MCs, exclusion of the sample shoud also be based on criteria
other than the number of MCs, including the proportion of
inflammatory cells, especially T-cells that play an important role
in the tumor immune response, and other components such as
fibrosis, edema, or necrosis (Hellmann et al., 2014).

The presence of inflammation in the tumor and stroma
compartment is required when the aim of the study is to quantify
the immunemicroenvironment (Parra et al., 2020). However, there is a

lack of consensus on the areas that adequately show the inflammatory
microenvironment. Thus, the pathologist must subjectively define an
adequate area. After the mIF slides are scanned, the pathologist should
always try to select the entire tumor area in the sample. However, they
must capture at least 1mm2 of the regions of interest (Parra et al., 2020)
to obtain reliable data

In our daily routine, we always look for characteristics such as
inflammatory cells forming aggregates, as tertiary lymphoid
structures (Sautès-Fridman et al., 2019) or in a diffuse
distribution, as these can direct the analysis toward a reliable
minimum quantity of cell phenotypes to obtain comprehensive
data to be correlated with the clinicopathologic component.
However, there is not a universal minimum number of cell
phenotypes considered to be an adequate representation of the
sample, partly because this number depends on the biological
characteristics of the tumor and because we are often limited by
software, which requires a minimum of five cells expressing a
marker per sample to start the image analysis process.

Fibrotic samples without inflammatory cells are another
important cause of exclusion. In our cohort, we excluded 9.76%
of our samples because of this criterion in both baseline and post-

TABLE 1 | General overview of pathology quality control characteristics in our cohort (N � 931) divided by baseline (N � 608) and post-treatment (N � 323) core needle
biopsies.

Biopsy timepoint Status N Characteristic of the sample, median percentage

Tumor area Malignant cells Fibrosis Necrosis

Baseline Included 547 95 60 20 10
Excluded 61 0 0 90 5

Post-treatment Included 261 20 50 25 25
Excluded 62 10 5 10 90

TABLE 2 | Characteristics of exclusion criteria observed during digital image analysis PQC (N � 123).

One exclusion criterion Extent N (%)

No or fewer than 100 MCs Entire sample 42 (34.15)
Small biopsy size (< 1 mm2) Entire sample 16 (13.01)
Tissue availability after staining Entire sample 14 (11.38)
Fibrotic tissue without inflammatory cells More than 80% 12 (9.76)
Necrotic tissue More than 80% 11 (8.94)
Fragmented biopsy Entire sample 2 (1.63)
Staining artifact of oxidation/desiccation Entire sample 2 (1.63)
Crushed cells artifact Entire sample 2 (1.63)
Mostly hemorrhagic tissue Entire sample 1 (0.81)

Two exclusion criteria

No MCs or fewer than 100 MCs and fibrotic tissue without inflammatory cells More than 80% 7 (5.69)
Necrotic tissue and fibrotic tissue without inflammatory cells Entire sample 4 (3.25)
Fragmented biopsy and staining artifact of oxidation/desiccation Entire sample 3 (2.44)
Small biopsy size and necrotic tissue More than 80% 2 (1.63)
Necrotic tissue and crushed cells artifact Entire sample 2 (1.63)
Small biopsy size and fibrotic tissue without inflammatory cells More than 80% 1 (0.81)
No MCs or fewer than 100 MCs and necrotic tissue More than 80% 1 (0.81)
Staining artifact of oxidation/desiccation and crushed cells artifact Entire tissue 1 (0.81)

Total 123 123 (100)

PQC, pathology quality control; MC, malignant cell.
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treatment samples. However, we found that our baseline and post-
treatment samples had similar fibrotic content (20–25%).
Curiously, we found that excluded baseline samples had more

fibrotic content than excluded post-treatment samples (90 versus
10%, respectively). As expected, one of the important exclusion
factors for post-treatment samples was necrosis, which was often a

FIGURE 4 | Microphotographs of representative examples of excluded and included core needle biopsies in multiplex immunofluorescence slides using digital
image analysis assessment for pathology quality control. Excluded examples (Left column) compared with samples considered appropriate for image analysis (right
column). A small sample (A) compared with a large sample with adequate amount of tumor content in yellow (B). Sample without malignant cells and with only normal
tissue in yellow (C) compared with nets of malignant cells in yellow (D). Nets of malignant cells in yellow in the middle of extensive fibrotic areas with lack of
inflammatory cells (E) compared with a sample with a large amount of inflammatory cells (F). Sample with extensive necrotic area in grayish green (G) compared with a
sample without necrotic areas (H). Sample with staining artifact showing the lack of marker expression (I) compared with another sample with adequate staining (J).
Sample with crushed cells artifact (K) compared with a sample with clear individualization of the different cells (L). A hemorrhagic sample (M) compared with a sample
with adequate tumor tissue (N). A sample with mostly mucinous material and few tumor cells (O) compared with another sample with a regular amount of tumor cells (P).
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result of the treatments’ effects on tumors. Although this
characteristic is often evaluated as a positive sign of treatment

response, it is a limiting factor for digital image analysis (Parra
et al., 2020).

Tissue artifact-related sample exclusion was less frequent
(1.63%). When the H&E PQC is performed properly, these
tissue artifacts could be related to the effects of surgical
trauma, tissue ischemia, poor fixation, cutting procedures, or
scanning problems (Flamminio et al., 2011). Even subtle artifacts
can have large implications for the algorithms used to recognize
positive biomarkers, resulting in inaccuracies. For this reason,
there have been many attempts to create digital pathology tools
for automated PQC (Ameisen et al., 2013; Senaras et al., 2018;
Bengtsson and Ranefall, 2019). Software for automated PQC that
employs image metrics and identifies H&E scanned slides with
gross technical artifacts exists, but it is not suitable for use on
mIF-stained slides (Janowczyk et al., 2019).

We also observed that some specific organ site characteristics
can interfere with the image analysis and thus are extremely
important in digital imaging analysis PQC. The most often
excluded biopsy site was the liver, with extensive fibrosis as
the most common exclusion criterion. Soft tissue samples were
excluded the second most often, mainly for absence of or few
MCs. Nevertheless, these high rates of exclusion could be related
to the high numbers of liver and soft tissue projects included in
our study. Each location or organ has its own technical
specifications for obtaining an adequate sample. For example,
for breast cancers, some authors have described that the use of the
semi-automated needle yielded a 23% rate of inadequate results
compared to 9% when using an automated needle to obtain breast
samples (Sridharan et al., 2015). Different needle sizes are

TABLE 3 | Location of excluded core needle biopsies.

Location N (%)

Connective tissue, head and neck 7 (5.69)
Ovary 2 (1.63)
Abdomen 15 (12.20)
Soft tissue 17 (13.82)
Brain 6 (4.88)
Breast 2 (1.63)
Cervix 3 (2.44)
Esophagus 1 (0.81)
Gastroesophageal junction 1 (0.81)
Kidney 6 (4.88)
Liver 19 (15.45)
Lung 8 (6.50)
Lymph node 7 (5.69)
Omentum 1 (0.81)
Bone 2 (1.63)
Pancreas 1 (0.81)
Parotid gland 1 (0.81)
Pelvis 1 (0.81)
Peritoneum 7 (5.69)
Pleura 3 (2.44)
Retroperitoneum 8 (6.50)
Sternum 1 (0.81)
Stomach 1 (0.81)
Thyroid gland 3 (2.44)
Total 123 (100)

FIGURE 5 | Bar graph showing localization and exclusion criteria of the samples. Inset box containing the exclusion criteria divided in one or two criteria.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 6612228

Lazcano et al. Pathology Quality Control

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


recommended depending on the organ and its vascularization
status to avoid the risk of hemorrhage, especially in liver samples
(Hall et al., 2017; Hoang et al., 2018). However, the use of
different needle sizes did not to affect the quality of the biopsy
of breast tissue (Huang et al., 2017). For these reasons, each
specialist must analyze the risks and benefits of the selected
biopsy technique and its effect on the quality of samples.

Finally, other tissue characteristics that should be avoided for
the mIF analysis but were not found to be exclusion criteria in the
current study are the presence of noncellular materials, e.g.,
glandular secretions; intra-alveolar material, which may
contain inflammatory cells and debris; cartilage; bone tissue, in
which decalcification may affect tissue staining; and adipose
tissue, which can lead to tissue detachment during the staining
process (Parra et al., 2021).

In conclusion, PQC for digital image analysis for mIF is
extremely important to obtain reliable results. However,
consensus and guidelines are necessary to produce reliable data
in multi-institutional longitudinal studies. Evaluation of H&E
slides at the beginning of any process as well as evaluation of
mIF image slides for digital image analysis is fundamental and
should consider the study design and material received, including
the markers included in the mIF panels.
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