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Erjing prescription (EJP) was an ancient formula that was recorded in the General Medical Collection of Royal Benevolence of the
Song Dynasty. It has been frequently used to treat type 2 diabetes mellitus (T2DM) in the long history of China. ,e formula
consists of Lycium barbarum L. and Polygonatum sibiricum F. Delaroche with a ratio of 1 :1. ,is study aimed to identify the
potential effects and mechanisms of EJP treatment T2DM. ,e target proteins and possible pathways of EJP in T2DM treatment
were investigated by the approach of network pharmacology and real-time PCR (RT-PCR). 99 diabetes-related proteins were
regulated by 56 bioactive constituents in EJP in 26 signal pathways by Cytoscape determination. According to GO analysis, 606
genes entries have been enriched. ,e PPI network suggested that AKT1, EGF, EGFR, MAPK1, and GSK3β proteins were core
genes. Among the 26 signal pathways, the PI3K-AKTsignal pathway was tested by the RT-PCR.,e expression level of PI3K p85,
AKT1, GSK3β, and Myc mRNA of this pathway was regulated by EJP. ,e study based on network pharmacology and RT-PCR
analysis revealed that the blood sugar level was regulated by EJP via regulating the PI3K-AKT signal pathway. Plenty of new
treatment methods for T2DM using EJP were provided by network pharmacology analysis.

1. Introduction

Type 2 diabetes (T2DM, Chinese name: Xiaoke) is a com-
mon chronic metabolic disease with a high prevalence. In
2019, over 463 million people suffered from diabetes. It is
estimated that there will be 578 and 700 million diabetic
patients in 2030 and 2045, respectively [1, 2], which would
bring up a huge economic burden on society. In general,
many cases may be undiagnosed in a long predetection
period [3]. A lot of complications, such as heart failure,
cardiovascular complications, and diabetic nephropathy, are
always accompanied with the occurrence of diabetes [4–7].
Low immunity is a common feature for almost all forms of
diabetes [8]. ,erefore, the researcher devotes to exploring
effective drugs to prevent and treat T2DM. Nowadays,

traditional Chinese medicine (TCM) has been increasingly
popular for the T2DM treatment [9]. For example, Liuwei
Dihuang pills and Huanglian decoction have been widely
researched for treating T2DM [10–12]. Alizarin, isolated
from TCM (Rubia cordifolia), reduced blood sugar levels
and alleviated insulin resistance through the PI3K/Akt
pathway [13].

EJP (also known as Erjingwan) is a formula consisting of
Lycium barbarum L. and Polygonatum sibiricum
F. Delaroche, which is recorded in General Medical Col-
lection of Royal Benevolence, early traced back to the Song
Dynasty. Erjingwan, a classic formula of nourishing, showed
antiaging effects in the skin through activation of Nrf2 and
inhibition of NF-κB [14]. ,ese two medicines possessed a
certain hypoglycemic effect and mainly contained
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polysaccharides and flavonoids [15]. ,e extract of EJP
exhibited hypoglycemic and hypolipidemic activities on the
model mouse of T2DM [16]. L. barbarum had a substantial
value as a homology of medicine and food [17]. Rui Zhao
reported L. barbarum polysaccharides improved the insulin
resistance in NIDDM rats [18]. Galactomannan extracted
from Iraqi L. barbarum fruit treatment improved the
bodyweight and alleviated diabetic complications associated
with lipid peroxidation in the alloxan-induced diabetes in
rats [19]. Besides, phenolic amides from L. barbarum also
had an immunomodulatory activity [20]. It was recorded
that P. sibiricum had a rich pharmacological function, such
as strengthen immunity, cardioprotection, antibacterial, and
antidiabetes [21], in modern and ancient pharmacology
literatures. P. sibiricum polysaccharide improves inflam-
matory cytokines and promotes glucose uptake in high
glucose and high insulin-induced 3T3-L1 adipocytes by
promoting Nrf2 expression [22]. Although EJP had been
applied to treat T2DM, the mechanism was not completely
elucidated.

In this study, network pharmacology can be used to
elucidate the correlation between components (except for
the L. barbarum polysaccharide) and pathways by con-
structing a network model. First, effective components from
EJP, certain targets of these components, and the gene of
T2DM were excavated through the TCMSP database. Sec-
ond, the interaction of compound and proteins were elu-
cidated through the network models of compound-target
and key proteins. ,e network of the component-target-
pathway was also built to analyze the mechanism of T2DM
treated by EJP.,ird, the PI3K p85, AKT1, GSK3β, and Myc
mRNA of PI3K-AKT signal pathways were validated at the
RT-PCR analysis. In total, the research will be expected to
provide new strategy and thinking on the study for EJP.

2. Materials and Methods

2.1. -e Preparation of Aqueous Extract from EJP. ,e
Lycium barbarum L. were purchased from Ningxia, PR
China (batch no. 070101, 104.17°–107.39°E, 35.14°–39.23°N),
and Polygonatum sibiricum F. Delaroche were purchased
from Sichuan, PR China (batch no. 070101, 97.21°–108.31°E,
26.03°–34.19°N). L. barbarum and P. sibiricum were dried
severally and extracted (1 h× 3) with water at 1 :1 ratio.
,en, the aqueous extract was concentrated and dried. After
that, the extract with a concentration of 1mg/mL was
prepared to treat IR-HepG2.

2.2. Ingredients Database Construction. All potential com-
pounds of EJP were obtained from the Traditional Chinese
Medicine Systems Pharmacology (TCMSP) database anal-
ysis platform database (http://lsp.nwu.edu.cn/tcmsp.php/)
[23]. In the TCMSP database, 500 Chinese herbal medicines
and 30,069 constituents were registered from the Chinese
Pharmacopoeia (2010 edition). A total of 56 compounds
were gained from EJP, including 45 in L. barbarum and 12 in
P. sibiricum. ,e details of each class of compounds are
summarized in Table 1.

First, effective constituents that contributed to its efficacy
were selected by absorption, distribution, metabolism, and
excretion parameters (ADME), meanwhile those are inef-
fective or even toxic were removed [24]. Second, higher oral
absorption, bioavailability, and biological properties were
essential for candidate constituents. ,erefore, these com-
pounds needed to satisfy the 30% in oral bioavailability (OB)
and 0.18 in drug-likeness (DL).

,e related proteins of active components in EJP were
acquired from TCMSP databases. Genes related to proteins
were retrieved from the UniProt Knowledgebase (Uni-
ProtKB) (http://www.uniprot.org), which was a protein
database containing 54,247,468 sequence entries [25].

2.3. Predicting Targets of T2DM. ,e target proteins of
T2DM were obtained from four sources: (1) 15,500 gene
entries were included in OMIM database (http://www.
omim.org/), which was focused on illustrating gene and
genetic disorders [26]. (2) GeneCards (https://www.
genecards.org/) is a comprehensive database that provided
human genes of annotation and prediction. It could effec-
tively establish the linkages of gene disease [27]. (3) Dis-
GeNET (http://www.disgenet.org/) database, the current
release contains more than 24,000 diseases and traits, 17,000
genes, and 117,000 genomic variants [28]. (4) ,erapeutic
target database (TTD) contained information from three
aspects: (i) the microRNAs and transcription factors of
target regulation, (ii) the proteins of target interaction, and
(iii) targeting agents and targets, which can be easily re-
trieved and further enriched by the mechanisms of regu-
lation or biochemical classes [29]. All targets linked to
T2DM were only limited to Homo sapiens. ,e 1,260 genes
totally were gained. ,e 99 same target proteins of com-
pound and disease were selected as the main target of EJP in
the treatment of T2DM (Table 2).

2.4. Network Construction

2.4.1. Compound-Target Network. ,e pharmacological
mechanisms of action were explored by the compound-
target network, which was founded for the 57 compounds
and relevant protein targets in T2DM utilizing Cytoscape
3.7.2. [30].

2.4.2. GO and KEGG Analyses. Gene ontology (GO) is to
annotate genes and their expression products. It is mainly
divided into 3 parts: cell component (CC), biological process
(BP), and molecular function (MF) [31]. Kyoto Encyclopedia
of Genes and Genomes (KEGG) can analyze the signal
pathways of drug targets in order to search the disease signal
pathways that havemaximum correlation, which is significant
for discovering the possible mechanism of EJP in the treat-
ment of T2DM [32]. In this study, the enrichment analysis of
GO and KEGG were performed through DAVID bio-
informatics resources (https://david.ncifcrf.gov) [33] in order
to explore the related CC, BP, MF, and pathways. It illustrated
the connection of genes and target proteins in diabetes.
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Table 1: Compounds database of two herbs in Erjing prescription.

MOL ID Molecule MW OB (%) DL Medicine
MOL001323 Sitosterol α1 426.8 43.28 0.78 L. barbarum
MOL003578 Cycloartenol 426.8 38.69 0.78 L. barbarum
MOL001494 Mandenol 308.56 42 0.19 L. barbarum
MOL001495 Ethyl linolenate 306.54 46.1 0.2 L. barbarum
MOL001979 LAN 426.8 42.12 0.75 L. barbarum
MOL000449 Stigmasterol 412.77 43.83 0.76 L. barbarum
MOL005406 Atropine 289.41 45.97 0.19 L. barbarum
MOL005438 Campesterol 400.76 37.58 0.71 L. barbarum
MOL006209 Cyanin 411.66 47.42 0.76 L. barbarum
MOL007449 24-Methylidenelophenol 412.77 44.19 0.75 L. barbarum
MOL008173 Daucosterol_qt 414.79 36.91 0.75 L. barbarum
MOL008400 Glycitein 284.28 50.48 0.24 L. barbarum
MOL010234 δ-Carotene 536.96 31.8 0.55 L. barbarum
MOL000953 CLR 386.73 37.87 0.68 L. barbarum
MOL009604 14b-Pregnane 288.57 34.78 0.34 L. barbarum
MOL009612 (24R)-4α-Methyl-24-ethylcholesta-7, 25-dien-3β-yl acetate 482.87 46.36 0.84 L. barbarum
MOL009615 24-Methylenecycloartan-3β, 21-diol 456.83 37.32 0.8 L. barbarum
MOL009617 24-Ethylcholest-22-enol 414.79 37.09 0.75 L. barbarum
MOL009618 24-Ethylcholesta-5, 22-dienol 412.77 43.83 0.76 L. barbarum
MOL009620 24-Methyl-31-norlanost-9 (11)-enol 428.82 38 0.75 L. barbarum
MOL009621 24-Methylenelanost-8-enol 440.83 42.37 0.77 L. barbarum
MOL009622 Fucosterol 412.77 43.78 0.76 L. barbarum
MOL009631 31-Norcyclolaudenol 440.83 38.68 0.81 L. barbarum
MOL009633 31-Norlanost-9 (11)-enol 414.79 38.35 0.72 L. barbarum
MOL009634 31-Norlanosterol 412.77 42.2 0.73 L. barbarum
MOL009635 4, 24-Methyllophenol 414.79 37.83 0.75 L. barbarum
MOL009639 Lophenol 400.76 38.13 0.71 L. barbarum
MOL009640 4α, 14α, 24-Trimethylcholesta-8, 24-dienol 426.8 38.91 0.76 L. barbarum
MOL009641 4α, 24-Dimethylcholesta-7, 24-dienol 412.77 42.65 0.75 L. barbarum
MOL009642 4α-Methyl-24-ethylcholesta-7, 24-dienol 426.8 42.3 0.78 L. barbarum
MOL009644 6-Fluoroindole-7-dehydrocholesterol 402.7 43.73 0.72 L. barbarum
MOL009646 7-O-Methylluteolin-6-C-β-glucoside 318.3 40.77 0.3 L. barbarum
MOL009650 Atropine 289.41 42.16 0.19 L. barbarum
MOL009651 Cryptoxanthin monoepoxide 568.96 46.95 0.56 L. barbarum
MOL009653 Cycloeucalenol 426.8 39.73 0.79 L. barbarum
MOL009656 (E, E)-1-Ethyl octadeca-3, 13-dienoate 308.56 42 0.19 L. barbarum

MOL009660
Methyl (1R, 4aS, 7R, 7aS)-4a, 7-dihydroxy-7-methyl-1-[(2S, 3R, 4S, 5S, 6R)-3, 4,

5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxy-1, 5, 6, 7a-
tetrahydrocyclopentapyran-4-carboxylate

406.43 39.43 0.47 L. barbarum

MOL009662 Lantadene A 552.87 38.68 0.57 L. barbarum
MOL009664 Physalin A 526.58 91.71 0.27 L. barbarum
MOL009665 Physcion-8-O-β-D-gentiobioside 608.6 43.9 0.62 L. barbarum
MOL009677 Lanost-8-en-3β-ol 428.82 34.23 0.74 L. barbarum
MOL009678 Lanost-8-enol 428.82 34.23 0.74 L. barbarum
MOL009681 Obtusifoliol 426.8 42.55 0.76 L. barbarum
MOL000098 Quercetin 302.25 46.43 0.28 L. barbarum
MOL001792 DFV 256.27 32.76 0.18 L. barbarum
MOL002714 Baicalein 270.25 33.52 0.21 L. barbarum
MOL002959 3′-Methoxydaidzein 284.28 48.57 0.24 L. barbarum

MOL000358 β-Sitosterol 414.79 36.91 0.75 L. barbarum/P.
sibiricum

MOL000359 Sitosterol 414.79 36.91 0.75 P. sibiricum
MOL003889 Methylprotodioscin_qt 446.74 35.12 0.86 P. sibiricum
MOL004941 (2R)-7-Hydroxy-2-(4 hydroxyphenyl) chroman-4-one 256.27 71.12 0.18 P. sibiricum
MOL000546 Diosgenin 414.69 80.88 0.81 P. sibiricum
MOL006331 4′, 5-Dihydroxyflavone 254.25 48.55 0.19 P. sibiricum
MOL009760 Sibiricoside A 432.71 35.26 0.86 P. sibiricum
MOL009763 (+)-Syringaresinol-O-β-D-glucoside 580.64 43.35 0.77 P. sibiricum
MOL009766 Zhonghualiaoine 1 458.75 34.72 0.78 P. sibiricum
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Table 2: 99 genes related to compounds of EJP and T2DM.

Symbol name Gene
name Symbol name Gene

name Symbol name Gene
name

Prostaglandin G/H synthase 2 PTGS2 Acetylcholinesterase ACHE Mitogen-activated protein
kinase 14 MAPK1

Prostaglandin G/H synthase 1 PTGS1 Epidermal growth factor
receptor EGFR Interstitial collagenase MMP1

Mineralocorticoid receptor NR3C2 RAC-α serine/threonine-
protein kinase AKT1 Hypoxia-inducible factor 1-α HIF1A

β-2 Adrenergic receptor ADRB2 Vascular endothelial growth
factor A VEGFA

Signal transducer and
activator of transcription 1-

α/β
STAT1

Urokinase-type plasminogen
activator PLAU Apoptosis regulator Bcl-2 BCL2 Receptor tyrosine-protein

kinase erbB-2 ERBB2

Sodium channel protein type 5
subunit α SCN5A Bcl-2-like protein 1 BCL2L1 Peroxisome proliferator-

activated receptor gamma PPARG

5-Hydroxytryptamine 2A receptor HTR2A Proto-oncogene c-Fos FOS Heme oxygenase 1 HMOX1
Sodium-dependent serotonin
transporter SLC6A4 Cyclin-dependent kinase

inhibitor 1 CDKN1A Cytochrome P450 3A4 CYP3A4

D (2) dopamine receptor DRD2 Apoptosis regulator BAX BAX Cytochrome P450 1A2 CYP1A2
Estrogen receptor ESR1 72 kDa type IV collagenase MMP2 Caveolin-1 CAV1
Androgen receptor AR Interleukin-10 IL10 Myc proto-oncogene protein MYC
Peroxisome proliferator-activated
receptor-c KCNH2 Proepidermal growth factor EGF Tissue factor F3

Estrogen receptor β ESR2 Retinoblastoma-associated
protein RB1 Gap junction α-1 protein GJA1

Mitogen-activated protein kinase 14 MAPK14 Tumor necrosis factor TNF Intercellular adhesion
molecule 1 ICAM1

Glycogen synthase kinase-3 β GSK3β Transcription factor AP-1 JUN C-C motif chemokine 2 CCL2
Cell division protein kinase 2 CDK2 Caspase-3 CASP3 E-selectin SELE

Nitric oxide synthase, inducible NOS2 Cellular tumor antigen p53 TP53 Vascular cell adhesion
protein 1 VCAM1

Collagenase 3 MMP13 Ornithine decarboxylase ODC1 Interleukin-8 CXCL8
Phosphatidylinositol-4, 5-
bisphosphate 3-kinase catalytic
subunit, c isoform

PIK3CG Xanthine dehydrogenase/
oxidase XDH Protein kinase C β type PRKCB

Dipeptidyl peptidase IV DPP4 Caspase-8 CASP8 Heat shock protein β-1 HSPB1

Stromelysin-1 MMP3 RAF proto-oncogene serine/
threonine-protein kinase RAF1 Transforming growth factor

β-1 TGFB1

Coagulation factor VII F7 Superoxide dismutase (Cu-
Zn) SOD1 Maltase-glucoamylase,

intestinal MGAM

Nitric oxide synthase, endothelial NOS3 Protein kinase C alpha type PRKCA Interleukin-2 IL2

Tissue-type plasminogen activator PLAT Interferon gamma IFNG Poly (ADP-ribose)
polymerase 1 PARP1

,rombomodulin THBD Interleukin-1α IL1A
Solute carrier family 2,

facilitated glucose
transporter member 4

SLC2A4

Plasminogen activator inhibitor 1 SERPINE1 Myeloperoxidase MPO Collagen α-1 (III) chain COL3A1

Collagen α-1 (I) chain COL1A1 Nuclear factor erythroid 2-
related factor 2 NFE2L2 Serine/threonine-protein

kinase Chk2 CHEK2

C-reactive protein CRP C-X-C motif chemokine 10 CXCL10 Osteopontin SPP1

Runt-related transcription factor 2 RUNX2 Cathepsin D CTSD Insulin-like growth factor-
binding protein 3 IGFBP3

Insulin-like growth factor II IGF2 Serum paraoxonase/
arylesterase 1 PON1 Cytosolic phospholipase A2 PLA2G4A

CD40 ligand CD40LG Type I iodothyronine
deiodinase DIO1 Canalicular multispecific

organic anion transporter 1 ABCC2

Receptor tyrosine-protein kinase
erbB-3 ERBB3 Catalase CAT Serine/threonine-protein

kinase mTOR MTOR

Insulin receptor INSR Peroxisome proliferator-
activated receptor-α PPARA Peroxisome proliferator-

activated receptor δ PPARD
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2.4.3. PPI Network. ,e effective components of drugs
effected on the human body not only by directly acting on
one target but also by indirectly acting on other targets. ,e
prevention and control disease was regulated by multi-
farious intricate signal pathways, which are interactions
and transductions between upstream and downstream
targets. ,e complex relationship between targets and
targets can be clearly displayed by constructing PPI. Target
proteins related to diabetes were analyzed by online
STRING 11.0 (https://string-db.org/cgi/input?
sessionId�biiGmvCwYzjy&input_page_show_search�on)
to construct the PPI network [34, 35].

2.4.4. Component-Target-Pathway Network. ,e relation-
ships of component, target, and pathway were clarified
utilizing Cytoscape 3.7.2.

2.5. Cell Culture. HepG2 cells were grown in Dulbecco’s
modified eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum, 100 IU/mL penicillin, and 100 µg/mL
streptomycin at 37°C, 5% CO2 having 95% relative humidity
atmosphere. ,e cells were seeded at a density of 1.0×104
cells/well in a 96-well plate for 24 h, and then, the cells were
treated with high concentrations of insulin (1× 10−5) for
48 h. After the period, the cells were divided into four groups
(control, model, DMBG, and HG group). ,e control and
model group were treated DMEM and DMBG, and the HG
group was treated metformin (100 μg/mL) and EJP (100 μg/
mL). After 24 h, the glucose content was measured using a
spectrophotometric microtiter plate reader at 520 nm, and
IR-HepG2 cells were prepared.

2.6. RT-PCR Analysis. ,e IR-HepG2 cells were extracted for
RT-PCR analysis. First, the total RNA of IR-HepG2 was
extracted with RNA rapid extraction solution, after treated as
extracts of concentrations ranging from 100 to 500ng/L.
Second, the RNA was reverse-transcribed through a PCR in-
strument. ,ird, RT-PCR was performed using the PCR
amplification instrument. ,e primer sequences were as fol-
lows: H-ACTIN-S: CACCCAGCACAATGAAGATCAAGAT;
H-ACTIN-A: CCAGTTTTTAAATCCTGAGTCAAGC;
H-PIK3r1-S: GGAAGCAGCAACCGAAACAA; H-PIK3r1-A:
TCGCCGTCCACCACTACAGA; H-AKT (1)-S:
GCTCAGCCCACCCTTCAAG; H-AKT (1)-A:
GCTGTCATCTTGGTCAGGTGGT; H-GSK3β-S:
GTTAGCAGAGACAAGGACGGCA; H-GSK3β-A: GCAA-
TACTTTCTTGATGGCGAC; H-MYC-S: CTCGACTAC-
GACTCGGTGCA; H-MYC-A: CGGGTCGCAGATGAAA
CTCT.

3. Results

3.1. Compound-Target Network. Ninety-nine (99) kinds of
candidate genes relevant to diabetes were excavated from
OMIM, GeneCards, Dis-GeNET, and TTD databases. As
shown in Figure 1, 130 nodes (56 compound nodes and 99
target nodes) and 288 edges were seen in the compound-

target network. ,e yellow and blue nodes represented the
compounds and targets, respectively. Furthermore, each
edge represented the correlation of compound and target. In
the network, larger degree represents a stronger interaction.
Furthermore, the larger degree nodes may represent the key
compound or target in the network. Quercetin, β-sitosterol,
diosgenin, baicalein, and 3′-methoxydaidzein were found as
the potential composition of treating diabetes in EJP.
Quercetin was connected to 85 proteins, β-sitosterol was
associated with 15 proteins, diosgenin was related to 12
proteins, baicalein was relevant in 16 proteins, and 3′-
methoxydaidzein was connected to 10 proteins.

3.2. GO and KEGG Analyses. ,e DAVID 6.8 database
(https://david.ncifcrf.gov) was utilized to elucidate the CC, BP,
andMF annotations of the selected 99 proteins.,ere were 606
genes entries (FDR, Figure 2 shows the top 8 according to FDR
<0.05), out of which 46 genes entries were relevant to CC
including the extracellular region, plasma membrane, and
cytosol. 477 items were related to BP, including the hypoxia
and drug responsion, positive regulation of gene expression
and transcription, DNA-templated, angiogenesis, inflamma-
tory response, and positive regulation of cell proliferation. 83
items were related to MF, including protein binding, identical
protein binding, and the homodimerization activity of protein.
,erefore, the positive regulation of transcription with RNA
polymerase II promoter, DNA-templated, and responsion of
hypoxia about the action of EJP were regulated through the
binding of protein, identical protein, and enzyme, as well as
plasma membrane, cytosol, and the homodimerization activity
of protein. A target-pathway network was constructed from the
data screened of DAVID for determining the relationship
between T2DM proteins and related pathways. Furthermore,
the key signal pathways (HIF-1, PI3K-AKT, and MAPK) were
based on the KEGG analysis (FDR <0.05) and literature
analysis (Figures 3 and 4).

3.3. PPI Network Analysis. ,e network of protein and
protein was constructed for exploring the interaction of 99
antidiabetic protein. As shown in Figure 5, AKT1, EGF, EGFR,
MAPK1, andGSK3β proteins were located at the core position.
,ese five proteins mainly involved PI3K/AKT, MAPK, and
VEGF signaling pathways. AKT1 regulated many processes
including metabolism, proliferation, cell survival, growth, and
angiogenesis. AKT1 was indirectly activated by insulin and
other growth factors [36]. Inhibition of EGFR or HB-EGF
intercepted the proliferative response to HB-EGF and glucose
in rat islets [37]. MiR-133 may be an effective target for the
treatment of diabetic nephropathy via the MAPK/ERK path-
way [38]. ,e antidiabetic effect of SJE might be dependent on
the AMPK pathway, which was indicated through the inhi-
bition of gene expression in INS1 andGSK3β, and upregulating
the hepatic phosphorylation of AMPKα in liver of mice [39].

3.4. Component-Target Pathway Network. To further clarify
the mechanism of action of EJP in the treatment of T2DM,
the component-target-pathway network was established. As
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shown in Figure 6, the network was composed of chemical
components, protein targets, and pathways, including 156
nodes and 643 edges. 56 components interacted with 99
target proteins and were associated with 26 pathways. Only
66 proteins were related to 26 pathways, so these 66 proteins
were potential key proteins of EJP for T2DM.,is prediction
provided a scientific evidence for further research into the
mechanism of EJP in the T2DM treatment.

3.5. RT-PCR Analysis. Based on the prediction of network
pharmacology, PI3K p85, AKT1, GSK3β, and Myc proteins
in the PI3K-AKT signal pathway were selected and used to
verify the mechanism of action of EJP in treating T2DM at
the mRNA level by RT-PCR. As shown in Figure 7, com-
pared to the control group, the expression level of the model
group of PI3K p85 and AKT1 mRNA reduced while GSK3β

and Myc mRNA increased. ,e expression level of DMBG
and HG groups of PI3K p85 and AKT1 mRNA increased
while GSK3β and Myc mRNA reduced compared with the
model group. ,us, EJP controlled the blood glucose levels
of T2DM mice via upregulating mRNA of PI3K p85 and
AKT1 and downregulating mRNA of GSK3β and Myc in
PI3K-AKT signal pathways.

4. Discussion

,e prevalence rate of T2DM is gradually increasing due to
the aging of the population and changes in lifestyle [40].
Long-termmedication is inevitable for the treatment of such
chronic metabolic disease. Due to TCM featuredmultitarget,
multicomponent, and low toxicity became more and more
popular in the treatment of diabetes. So, it is vital to elucidate
the pharmacological mechanism of TCM formula. ,e
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active ingredient and targets of TCM could be preferentially
predicted by network pharmacology [41]. In this study, the
bioactive component and the action mechanism of EJP for
diabetes treatment was predicted via the network pharma-
cology method, and some proteins were verified through
RT-PCR monitoring.

,e compound-target network clarified that the treat-
ment efficacy of EJP against T2DM was exactly related 56
compounds. Quercetin, β-sitosterol, diosgenin, baicalein,
and 3′-methoxydaidzein were found as the potential com-
position of treating diabetes in EJP. ,e hyperglycemia was
modulated through regulating the enzymes activities as for
metabolism in glucose and improving the antioxidant status
of pancreatic in rats of T2DM model from the results of
Oyedemi’ studies [42]. Quercetin can be used for the
treatment of T2DM by lowering the pancreatic iron depo-
sition and PBC ferroptosis [43]. β-Sitosterol attenuates in-
sulin resistance and high fat diet-induced detrimental
changes via mediating IRS-1/AKT signaling for the man-
agement of T2DM [44]. Diosgenin ameliorates cognitive
deficits in T2DM, owing to its amelioration of astrogliosis,
inflammation, and oxidative stress [45]. Baicalein (10−6 and
10−5mol/L) regulated glucose uptake, glycolysis, and glu-
coneogenesis of hepatocytes to treat T2DM [46]. 3′-
Methoxydaidzein has not been reported about the antidi-
abetic effect and may be as a potential T2DM drug.
,erefore, T2DM treated by EJP was closely related to key
target compound including quercetin, β-sitosterol,

diosgenin, baicalein, and 3′-methoxydaidzein. ,e network
pharmacology prediction of EJP for the T2DM treatment has
been proved to be appropriate, and the screening of new
compounds for the T2DM treatment provides ideas for the
development of new drugs.

,e component-target-pathway network depicted that
the therapeutic effect of EJP on T2DM directly interacted
with 99 genes. ,e results of KEGG pathway enrichment
analysis of 66 proteins indicated that 26 pathways were
exactly connected to the occurrence and progression of
T2DM, suggesting that these pathways might be the mo-
lecular mechanism of EJP against T2DM. ,e relationships
of some pathways with T2DM were succinctly discussed as
follows. Hepatitis B: A study showed hepatitis B virus (HBV)
coinfection was significantly related to blood glucose levels.
,e participants of 28% with HBV coinfection developed
T2DM. It was an increasing evidence that infection of HBV
is strongly associated with the development of T2DM [47].
Bladder and prostate cancer pathway: T2DM are becoming
increasingly prevalent worldwide and is associated with the
increased incidence of bladder cancer [48]. However, a
personal history of T2DM is connected with a lower inci-
dence of prostate cancer [49]. Apoptosis pathway: apoptosis
plays important roles in the pathophysiology of T2DM. ,e
prevention and revert of β-cell apoptosis by regulating the
balance of Bcl family, and apoptotic genes against apoptosis
might be a new path for prevention and therapeutic ap-
plication on T2DM [50]. FoxO signaling pathway: forkhead
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box protein O1 (FOXO1) played important roles in β-cell
growth and function. FOXO1 mRNA levels were increased
in the islets of patients with T2DM [51]. TNF signaling
pathway: there was a growing evidence that tumor necrosis
factor-α (TNF-α) involved in insulin resistance, and it is
associated with the development of T2DM [52]. Glioma
pathway: it was inverse relations between diabetes and
glioma risk [53]. ,yroid hormone signaling pathway: the
downregulation of FT3 was significantly related to the

prevalence of DR in T2DM with normal thyroid function
[54, 55]. Neurotrophin signaling pathway: the changes in the
serum neurotrophic factor levels were associated with
metabolic syndrome components in T2DM [56, 57]. T cell
signaling pathway: in a study, it showed that the presence of
senescent Tcells exerted a detrimental influence on immune
function during T2DM [58]. VEGF signaling pathway: the
redox environment influences vascular endothelial growth
factor (VEGF) production in response to proinflammatory

Figure 5: ,e network of protein-protein interaction.
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stimuli in T2DM [59]. Toll-like receptor signaling pathway:
toll-like receptor, the central of innate immunity, was sig-
nificantly involved in progression of T2DM [60]. MAPK and

PI3K-AKT signaling pathways: MAPK and PI3K-AKT are
essential for glucose homeostasis. ,e PI3K-AKT signaling
pathway is the major effector of metabolic insulin action
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[61, 62]. HIF-1 signaling pathway: hypoxia inducible factors
(HIFs) play a value in T2DM. Furthermore, the HIF pathway
is disordered in major metabolic tissues involved in the
pathogenesis of diabetes [63]. According to the PPI network
and RT-PCR analysis, PI3K-AKT, MAPK, and VEGF sig-
naling pathways might play significant roles on T2DM.

5. Conclusion

99 targets and 58 signal pathways were screened via network
pharmacology. Only 66 targets and 26 pathways were di-
rectly related to diabetes with literature analysis. In the
compound-target network, quercetin, β-sitosterol, dio-
sgenin, baicalein, and 3′-methoxydaidzein were core com-
pounds. Furthermore, PI3K-AKT, MARK, and estrogen
signal pathways might be significant. ,e expression of PI3K
p85 and AKT1 p85mRNAwere upregulated and GSK3β and
Myc mRNA were downregulated in the analysis of RT-PCR.
It implied that the hyperglycemia of T2DM model rats were
alleviated via the PI3K-AKTpathway. In conclusion, EJP was
proved to treat T2DM. It is helpful for researchers to further
design pharmacodynamics experiments on these compo-
nents in the next protocol. Meanwhile, it provided a ref-
erence to study the effective constituents of EJP and
mechanism of treating T2DM. ,ese specific targets were
also worth researching deeply in future.
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