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Abstract: In this work, we applied single-pulse electrodeposition method to prepare biodegradable
zinc coating for the shell of an implantable dosing pump, and explored the effect of pulse frequency on
microstructures and degradation behavior of electroformed zinc. Samples were produced by single-
pulse electro-deposition technique with different pulse frequencies (50 Hz, 100 Hz, and 1000 Hz).
By controlling the pulse frequency, the thickness of the zinc coating can be adjusted. The 50 Hz
produced zinc film possesses strong (11.0) grain orientation, 100 Hz produced zinc film possesses
clear ((11.0) and (10.0)) grain orientations, yet 1000 Hz produced zinc film shows more random
grain orientations of (10.0), (10.1), and (11.0), which provides a possible way to design a controllable
nanometer surface microtopography. Although thermodynamic degradation tendency implied from
open current corrosion voltage were similar, the kinetic corrosion rate showed a clear increasing trend
as pulse frequency increased from 50 Hz to 1000 Hz, which corresponded with the electrochemical
impedance spectroscopy and long-term soaking test in hanks solution. According to ISO 10993-5:2009
and ISO 10993-4:2002, electrodeposited zinc materials produced in this study showed a benign
hemolysis ratio and no toxicity for cell growth. Zinc prepared under 50 Hz shows the best blood
compatibility. Electrodeposited zinc materials are expected to be used for the shell of a degradable
dosing pump.

Keywords: zinc; coating; bioabsorbable; electroform

1. Introduction

Bioabsorbable metals and metal alloys are widely used in short-term implanted dosing
pumps [1]. Zinc can be considered a candidate for the shell of implanted dosing pump
because of its beneficial features [2]. Zinc is essential for normal basic functions of the
body [3] and is also reported to be crucial to certain bio-functions such as immunity [4],
osteogénesis [5], and keratinocyte migration [6]. In addition, zinc has specific and limited
antibacterial properties [7]. Bowen has found that the degradation rate of pure zinc is
suitable for clinical applications [8].

The continuous development of material processing technology and surface modifica-
tion methods has promoted the research of medical devices with ideal mechanical, morpho-
logical and biocompatible [9] properties to meet functional requirements [10]. Appropriate
coating of temporary biomedical implants could improve antibacterial properties [11],
blood compatibility [12], osteogenesis, and tissue regeneration [13]. Materials commonly
used to make coatings for biomedical implants include metals [14], polymers [15], and
hydrogels [16]. Due to the low mechanical strength of pure zinc, it is not easy to fabricate a
zinc layer with adjustable thickness with complex shape by conventional casting extrusion
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methods. Electroplating zinc can be used as a coating on the surface of objects to play
a protective role [17]. However, most of these galvanized coatings are less than 5 µm in
thickness. Electro-deposition is a rapid proto-typing thin-wall coating technology, which
can prepare coating with a thickness of 10 µm to 5 mm according to the thickness require-
ments [18]. The principle of electro-deposition is similar to electroplating, in which the
anode is oxidized to provide cations, which are deposited on the cathode. The purpose of
electroplating technology is to make coatings for decoration and reinforcement. In contrast,
electro-deposition technology aims to produce an independent entity and the grain size of
electro-deposition products is much smaller than that of casting products [19].

Some studies have used electrodeposition technology to produce composite elec-
trodeposition zinc coating to optimize its performance [20], but most of them use direct
current electrodeposition [21]. Surface morphology is a significant factor affecting the
biocompatibility of implanted medical devices. Youssef, KMS et al. [22] studied the surface
morphologies of pulse current electrodeposited nanocrystalline zinc, but they did not
investigate the effect of pulse frequency on surface morphology. For one thing, energy
and nucleation rate determine the preferred orientation during crystallization, for another
pulsed current of different frequencies can provide different amounts of energy. The pulse
frequency is likely to affect the surface morphology of the implanted devices. At present,
there is no research on the application of electrodeposition technology in the preparation
of implanted drug pump shells. In this study, we hypothesized that changing the pulse
frequency would result in different surface morphology, degradation rate, and blood com-
patibility. Therefore, we hope to explore the effect of pulse frequency on microstructures
and the degradation behavior of electroformed zinc and find a possible way to design a
controllable nanometer surface microtopography for the shell of an implantable dosing
pump suitable for clinical applications.

In this study, we used pulsed current electro-deposition to prepare a bioresorbable
zinc coating layer for the shell of an implantable dosing pump with a thickness from 50 µm
to 500 µm. Samples were produced by the single-pulse electrodeposition technique with
different pulse frequencies (50 Hz, 100 Hz, 1000 Hz). The coatings were characterized by
X-ray diffraction analyses (XRD), scanning electron microscope (SEM), polarization test,
electrochemical impedance spectroscopy (EIS), and long-term static immersion test. Then
the cytocompatibility and hemolytic rate of electroformed zinc was evaluated. We focused
on the influence of pulse frequency on the microstructure, mechanical, and corrosion prop-
erties of electroformed zinc material and analyzed and discussed the experimental results.

2. Materials and Methods
2.1. Materials Preparation

The composition of the electro-deposition solution and operation conditions are shown
in Table 1. The schematic diagram of the experiment device is shown in Figure 1. On electro-
deposition, a commercially available zinc specimen (99% purity, 60 mm × 150 mm × 3 mm)
was used as the anode. A 10 mm × 10 mm titanium plate was used as the cathode for
forming zinc coating. Due to the low mechanical strength of zinc, we designed the zinc film
with a thickness of 400 µm. The thickness of the zinc coating was controlled by modulating
the time for electro-deposition. In this study, all samples were electrolytically deposited for
7 h. After electro-deposition under unidirectional pulsed current at different frequencies
(50 Hz, 100 Hz, 1000 Hz), all as-prepared samples were immersed in 1% HNO3 for about
2 s to remove the alkaline film on the surface of samples, then rinsed by deionized water
and put into the natural-draft drier. Then the samples were carefully removed from the
titanium electrode with a tweezer. The freshly prepared samples were used for SEM, XRD,
polarization test, EIS, and long-term static immersion test.
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Table 1. The composition of the electro-deposition solution and operation conditions.

Bath Composition Range Operation Conditions

ZnSO4·7H2O 300–450 g/L 300 g/L γ = 30%
H3BO3 25–35 g/L 25 g/L t = 7 h

Brightening agent (S-Z95) 18–20 mg/L 19 mg/L
pH 3.5–5.5 4

Temperature 283–323 K 313 K
Cathode-current density 1–4 A/dm2 4 A/dm2

Ton/Toff = 2/1
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2.2. Microstructure Characterization

The impact of different frequencies on grain orientation and morphology was analyzed
using a scanning electron microscope (SEM, Quanta 250 FEG, FEI, USA) and X-ray diffrac-
tion analyses (XRD). XRD analyses were carried out using a Rigaku MiniFlex diffractometer,
with Cu Kα radiation (1.54056 Å) to determine the grain size and the texture of the deposits.
The scan rate was 0.02◦/s over a 2θ ranging from 20◦ to 80◦. The preferred orientation was
calculated from the XRD spectrum. The preferred orientation of the obtained zinc samples
was analyzed by Muresan’s method [23]. If any crystal plane shows a Tc result bigger than
1, zinc will have the preferred orientation on this crystal plane.

The average grain size could be calculated by the Scherrer equation [24] (Equation (1)):

D = Kγ/Bcos θ (1)

where D is the half-value breadth of the diffracted beam, K is a numerical constant that has
the value of 0.93, γ is the X-Ray wavelength, B is the diffraction peak half-height width of
the sample and θ is the Bragg angle.

2.3. Mechanical Test

The Vickers hardness of different pulse frequency electroformed zinc deposits
(10 mm × 10 mm, mechanical polished) was conducted on Vickers micro hardness tester
(HTV-PHS30, Foundrax, UK) at an applied load of 10 gf and indentation time of 15 s. As
well, 6 measurements were taken at different positions on each zinc sample.
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2.4. Static Immersion Test

The characterization of degradation behavior was measured by the immersion test.
Four 5 mm × 5 mm zinc specimens were selected for each group prepared in different
frequencies. Before the immersion test, all samples were ultrasonic cleaned in ethanol for
15 min and then in deionized water for 15 min. After drying the samples, weigh and record
the weight of each sample. Then each zinc specimen was completely immersed in 50 mL of
simulated body fluid Hank’s solution [25] at 37 ◦C. After 30 days, 60 days, and 120 days of
immersion, samples were precisely measured the weight loss. The immersion degradation
rate of zinc specimens was calculated according to Equation (2):

V = (q1 − q0)/Atρ (2)

where q1 is the mass after immersion, q0 is the mass before immersion, A is the surface area
of the specimen, t is the immersion time, and ρ is the density of zinc.

2.5. Electrochemical Measurements

The polarization curves were tested using a three-electrode system (Ag/AgCl as
reference electrode, 10 mm × 10 mm zinc plate as working electrode, Platinum as an
auxiliary electrode with a surface area approximately two times as zinc plate) with CHI
600B electrochemical workstation. The theoretical degradation rate of zinc specimens was
calculated by Faraday’s Law [26]. The EIS test was then performed with the frequency
ranging from 1 MHz to 10 KHz and analyzed its impedance data.

2.6. Cytocompatibility Evaluation

To investigate the feasibility of using electroformed zinc as the implantable materials,
we accessed the cytocompatibility of electroformed zinc according to ISO10993-5:2009 [27].
Mesenchymal stem cells (MSC) and human umbilical vein endothelial cells (HUVEC)
were chosen. For metal extract preparation, a metal plate with the geometric size of
10 mm × 10 mm was placed at the bottom of a 12-well flat-bottom plate, sterilized by
UV light for 12 h. Then extracts were cultured for 24 h at 37 ◦C. Then we added 200 µL
as-prepared metal supernatant into each well and cultured it with 1 × 104 cells for 3 days.
Finally, an MTT kit was used to detect cell activity. Three samples were taken from each
group of different frequencies (50 Hz, 100 Hz, 1000 Hz) for cytocompatibility tests.

2.7. Hemolysis Evaluation

Diluted blood for hemolysis evaluation was prepared with healthy adult blood from a
male volunteer. All the experiments were approved by the medical ethics committee of
Xiangya III Hospital of Central South University (No. 2016-S139). Pure zinc samples were
smashed and dipped in a 10 mL 0.9% NaCl solution for 30 min. A 0.9% NaCl solution was
prepared as the negative control. Deionized water was prepared as the positive control.
After incubation with 0.2 mL blood, zinc metals were removed, and the supernatant in each
tube was measured by ultraviolet spectrophotometer at 545 nm. Three samples were taken
from each group of different frequencies (50 Hz, 100 Hz, 1000 Hz) for hemolysis evaluation.
The hemolysis result could be calculated using the formula as follows [28]:

Hemolysis = (ODtest − ODneg)/(ODpos − ODneg) (3)

where OD was the optical density at 545 nm.

2.8. Statistic Analysis

Data are presented as a mean ± standard deviation and a one-way analysis of vari-
ance (ANOVA) was employed with a Tukey’s HSD posthoc test using Graphpad version
7.4 software. A value of p < 0.05 was considered significant.
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3. Results and Discussion

Figure 2 shows the theoretical and actual thicknesses in experiments of the elec-
trodeposited sample. The p values between the calculated groups were all less than 0.05,
indicating that the data differences between the groups were significant. With the increase
of pulse frequency from 50 Hz to 1000 Hz, the thickness of the electrodeposited zinc layer
decreased from 396 µm to 363 µm. Higher pulse frequency leads to a lower energy conver-
sion rate, and therefore lower zinc formation efficiency. Such phenomenon is due to the
zinc deposition kinetic processes during pulse electro-deposition. The primary technique
adopted in this experiment is single-pulse electro-deposition. During one pulse cycle,
charging time and pulse duration time inverse the pulse frequency. The double electric
layer is formed during charging and acts as a resistance at the beginning of each pulse.
According to the capacitance effect theory mentioned by Gülesin Yılmaz [29], the charging
time and discharging time are much shorter than the whole pulse duration, and owing to
the increasing pulse frequency, the considerable accumulation of capacitive effect reduces
the energy efficiency. Therefore, the energy efficiency decreases correspondingly as pulse
frequency increase, thus making the thickness of electro-deposition zinc decrease with the
increase of pulse frequency.
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Figure 2. The theoretical and real thickness of electroformed zinc.

The XRD patterns identified the samples electrolytically deposited under 50 Hz,
100 Hz, and 1000 Hz pulse frequency as pure zinc (PDF NO.04-0831) with a hexagonal
close-packed (hcp) crystal structure in Figure 3. The average grain size of the coating is
estimated by the Scherrer equation, which is 641 Å in 50 Hz, 457 Å in 100 Hz, and 387 Å
in 1000 Hz. Moreover, all the samples exhibited considerably high crystallinity with the
remarkably high sharpness of the XRD patterns.

To explore the preferred orientation of the electrodeposited zinc deposit, the texture
coefficient was calculated according to Muresan’s method [30]. The corresponding texture
coefficient (Tc) values are shown as a bar chart in Figure 4. According to Muresan’s method,
the Tc value above 1 refers to the preferred orientation of a certain plane. Figure 4 shows
that (11.0) and (10.0) are the preferred orientation for all frequencies.

The atom density of the (11.0) plane is relatively higher than that of the (10.0) or (10.1)
plane in hcp structure, and the surface energy of the (10.0) or (10.1) plane is lower than
that of the (11.0) plane [31]. The Tc value of (11.0) at 50 Hz is much higher than 100 Hz and
1000 Hz. When frequency arises from 50 Hz to 1000 Hz, the Tc value of (10.1) and (10.2)
increases, while the Tc value of (11.0) and (10.3) decreases. During crystallization, energy
and nucleation rate determine the preferred orientation. In the normal crystallization
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process, where energy dominate, atoms always tend to crystallize in the (00.2) plane due to
the lowest surface energy. However, the electroplating process provides sufficient energy,
and the nucleation rate becomes more important. If the increased fresh metal atoms do not
migrate to the (10.0) plane, then some of these atoms could stay at the (11.0) plane thus the
orientation is changed. As mentioned above, a lower frequency means a relatively longer
Toff and Ton, and according to the capacitive effect, more energy is charged to the samples
under 50 Hz. Then a more rapid nucleation rate exists under 50 Hz. Finally, the (11.0) plane
becomes dominant for the samples electrolytically deposited under 50 Hz. But such an
effect is less obvious for the 1000 Hz sample as less energy is inputted to the system, which
makes zinc film exhibit more random orientations at 1000 Hz [32] and the Tc value of the
(11.0) plane decreased. This finding could be further studied to control desirable surface
conditions for the implantable electronic device material.
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Figure 5 shows the SEM images of the surface morphology of zinc films which are
electrolytically deposited under 50 Hz, 100 Hz, and 1000 Hz pulse frequency. The electrode-
posited zinc materials all showed metallic brightness and smooth surface observed with
naked eyes, but when magnified by SEM, the samples exhibited an anisotropic dendritic
morphology. Figure 5 represents grain obtained under 1000 Hz pulse frequency tends to
grow more randomly compared to zinc film under 50 Hz and 100 Hz, which is consistent
with the Tc results in Figure 4. Both XRD and SEM results indicate that frequency has
effects on the grain orientations for electrodeposited zinc, and in our case, reducing PC
frequency would help to grow the preferred orientation in zinc, and versa.
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Figure 6 shows the SEM images of the cross-section of deposited coatings under 100 Hz
and 1000 Hz. The grain orientation can not be seen from the cross-section image, but it can
be seen that the matrix formed by electrodeposition is very dense, which can effectively
prevent the infiltration of water and water vapor.
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Higher hardness of coating for implantable electronic devices is desirable, as it secures
the electrodeposited layer structural functionality. Figure 7 shows the bar chart of Vickers
hardness of pure electrodeposited zinc under different PC frequencies. The microhardness
of the three samples is almost the same. In addition, electrodeposited zinc shows better
performance (~48 HV) than normal zinc (37 HV) [33].
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The corrosion properties could be detected by Tafel curves, where the Ecorr and Icorr
are the most important parameters which can serve as theoretical predictions. Figure 8
shows the Tafel plot test of three samples carried out in CHI660B electrochemical station. It
can be seen from Table 2, the calculated Tafel slope reveals that zinc under 50 Hz shows a
slightly lower Tafel slope than zinc under 100 Hz and 1000 Hz, which indicates the lower
corrosion rate of 50 Hz zinc due to the higher activation energy, though the difference is not
significant. Table 2 lists the annual corrosion rate calculated by Faraday’s law. Ecorr of zinc
under 50 Hz, 100 Hz, and 1000 Hz are close, which indicates the similar corrosion tendency
of zinc prepared under different PC frequencies. As the pulse frequency changes from
50 Hz to 1000 Hz, the annual corrosion rate gradually increases from 0.11182 mm/year·cm2

to 0.12779 mm/year·cm2, which shows a non-significant increasing trend and is similar to
as-cast pure Zinc (0.132 mm/year·cm2) [26].
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Table 2. Electrochemical parameters of zinc under 50 Hz, 100 Hz, and 1000 Hz, respectively.

Samples (Hz) βa (mV/decade) βb (mV/decade) Icorr (10−6 A/cm2) Ecorr (V) C (mm·year−1·cm2)

50 15.148 8.118 7.993 −1.0427 0.11182

100 16.155 8.334 8.134 −1.0497 0.12092

1000 16.388 8.445 8.596 −1.0474 0.12779

After the electrochemical test, a long-term simulation degradation test should be
conducted to testify to the degradation property of certain materials. We conducted
immersion tests for up to 120 d in Hank’s solution. As indicated in Figure 9, the degradation
rate of zinc samples electrolytically deposited under a pulse frequency of 1000 Hz is higher
than zinc samples electrolytically deposited under 100 Hz and 50 Hz. A positive correlation
between degradation rates and immersion time is found. All electrodeposited zinc samples
show accelerated degradation behavior. Interestingly, this phenomenon is more apparent
when the immersion time changes from 30 days to 60 days, which means the degradation
rate accelerated with prolonged soaking time, despite the corrosion product layer formed
during corrosion. However, only the 30-day degradation rates are lower than bulk zinc
(0.0438 mm year−1) [34], and the 60-day and 120-day degradation rates are similar to the
literature values.
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To further address the difference in degradation rate, as shown in Figures 8 and 9,
EIS measurements in Hank’s solution (37 ◦C) were conducted. The impedance diagram
is shown as a Nyquist plot in Figure 10. The equivalent circuit fitted to study impedance
spectra is shown in Figure 11. Mou Cheng Li et al. [35] obtained a similar equivalent circuit
of zinc in 3.5% NaCl solutions. Table 3 indicates the impedance parameters.

The zinc sample electrolytically deposited under 50 Hz pulse possesses higher Rp
and lower double-layer capacitance than zinc samples under 100 Hz and 1000 Hz, the
Rp value increases in the order 1000 Hz < 100 Hz < 50 Hz. Thus, the order of samples
corrosion resistance is 50 Hz < 100 Hz < 1000 Hz, which is coincidental with Tafel plots.
The impedance data from Table 3 indicates the significant improvement of polarization
resistance on 1000 Hz zinc samples after the static immersion test. EDAX results show
the increased concentration of O and the existence of elements C and Zn on the 1000 Hz
static immersed zinc sample. From SEM characterization and L Yin’s work [34], we
understood that upon being immersed in Hank’s solution, zinc quickly reacts with the
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acid components, forming a porous layer consisting of ZnO, Zn(OH)2, and other chloride
corrosion products [35].
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Table 3. Impedance parameters.

F
(Hz)

Rs
(Ω·cm2)

C1
(µF·cm−2)

R1
(Ω·cm2)

C2
(µF·cm−2)

R2
(Ω·cm2)

C3
(µF·cm−2)

R3
(Ω·cm2)

Rp *
(Ω·cm2)

50 4.664 0.1916 10.22 184.1 49.65 41.89 28.45 88.32
100 4.425 0.1849 9.857 21.84 48.21 57.28 27.12 85.19
1000 4.582 0.1301 8.82 135.7 47.57 82.59 27.8 83.65

* Polarization resistance (RP) is the sum of all three resistances R1, R2, and R3.

The surface morphologies of both original and soaked zinc films (1000 Hz) in Figure 12
clearly illustrate the effect of corrosion on surface conditions. Figure 12a shows some
pseudo-hexagonal plane crystals on the zinc coating samples. The white porous corrosion
product layer on the metal substrate during immersion is observed in Figure 12b. After the
immersion test, the crystals grow and form islands that spread over the entire surface.
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The difference in degradation rate could be explained by the electro-deposition process
of zinc. Girin [31] and Jantaping [36] reported that zinc coatings with a prismatic (11.0)
texture have better corrosion resistance than other coatings. According to their study, the
zinc layer with (11.0) texture promotes the formation of the amorphous-oxide layer, and
this formed amorphous-oxide layer plays an effective protective barrier role which could
effectively reduce the corrosion of zinc samples. In the corrosive environment, the corrosion
rate of each zinc metal grain varies because of the difference in the binding energy of atoms
between the crystallographic planes [37]. Mouanga successfully inhibited the corrosion of
zinc by using urea; the presence of urea leads to the increase of (11.2) plane’s intensity [38].
In our study, zinc film prepared under 50 Hz pulse frequency showed obviously (11.0)
preferred orientation, which may be the reason for the better anti-corrosion performance of
50 Hz-zinc than the others.

As shown in Figure 13, in the cytocompatibility evaluation, the toxic effects on the cell
viability of MSC are higher than those on HUVEC. The toxic effects on the cell viability
of all the electrodeposited zinc samples do not significantly differ. S-295 brightener was
used in the preparation process of electrolytic deposition, and there was inevitable residue.
However, the cytocompatibility evaluation results indicate that electrodeposited zinc ma-
terials do not present any toxic effects on MSC and HUVEC cells and exhibit excellent
biocompatibility, which is in good consistent with the results of coating fabricated by the
conventional casting methods [39].
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Table 4 shows the results of the hemolysis test. The calculated hemolysis rates of zinc
(50 Hz, 100 Hz, and 1000 Hz) are 0.478%, 1.368%, and 0.752%, respectively, which are far
less than the safe value of 5%, suggesting that the electrodeposited zinc materials would not
lead to severe hemolysis according to ISO 10993-4:2002. Among them, zinc prepared under
50 Hz shows the best blood compatibility. One possible explanation is that the microphase
structure with certain roughness can sometimes obtain extremely high blood compatibility,
and the material with heterogeneous microphase structure in the range of 0.1~2 µm has
better anticoagulant properties [40]. According to Figure 5, the surface grain size of zinc
under 50 Hz is 0.628 ± 0.095 µm, and the surface grains show an anisotropic arrangement
and heterogeneous microfacies structure.

Table 4. The hemolysis test of electrodeposited zinc.

50 Hz 100 Hz 1000 Hz Positive
Control

Blank
Control

OD (A) 0.043 0.056 0.047 0.036 1.498
T (%) 90.7 87.7 89.7 91.8 3.1

Hemolysis rate 0.478 1.368 0.752 - -
OD: optical density; T: transmittance.

4. Conclusions

In this study, the way to control the thickness of zinc films by electro-deposition time
management has been found and used to produce 50 µm~500 µm zinc films, successfully.
Pulse electrodeposited zinc materials with different preferred grain orientations and mi-
crostructures were produced by varying pulse frequencies to 50 Hz, 100 Hz, and 1000 Hz.
The main conclusions are as follows.

1. The thickness can be adjusted by electrodeposition, which is convenient and control-
lable, and the product has no cracking phenomenon.

2. The test results also imply that pulse frequency will affect the grain orientation, and
thus the corrosion properties. It is shown that the 50 Hz produced zinc film possesses
strong (11.0) grain orientation, 100 Hz produced zinc film possesses clear (11.0) and
(10.0) grain orientations, yet 1000 Hz produced zinc film shows more random grain
orientations of (10.0), (10.1) and (11.0).

3. The effect of the pulse frequency resulting from microstructures was clarified by
electrochemical tests. Although thermodynamic degradation tendency implied from
open current corrosion voltage (Ecorr) were similar, the kinetic corrosion rate showed
a clear increasing trend as pulse frequency increased from 50 Hz to 1000 Hz, which
corresponded with the EIS test and long-term soaking test in hanks solution. This
tendency is probably attributed to the refined grain that increased the structural
stability of the PC-formed zinc. It provides a possible way to design a controllable
nanometer surface microtopography by adjusting PC frequency.

4. Our results also indicated that appropriate pulse frequency can improve the blood
compatibility of the material. According to ISO 10,993-5:2009 and ISO 10993-4:2002,
electrodeposited zinc materials produced in this study showed a benign hemolysis
ratio and no toxicity for cell growth. Zinc prepared under 50 Hz shows the best blood
compatibility. Electrodeposited zinc materials are expected to be used for the shell of
a degradable dosing pump.
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