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1, José D. Andrade-FilhoID

1, Aldenise M. CamposID
1,

Carina MargonariID
1, Amanda R. Amaral1, Petr VolfID

2, Elisabeth J. Shaw3, James G.

C. HamiltonID
3*

1 Grupo de Estudos em Leishmanioses, Instituto René Rachou, FIOCRUZ Minas, Brasil, 2 Department of
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Abstract

The males of many species of New World Phlebotomines produce volatile terpenoid chemi-

cals, shown in Lutzomyia longipalpis s.l. to be sex/aggregation pheromones. Pheromone is

produced by secretory cells which surround a cuticular reservoir which collects the phero-

mone and passes it through a cuticular duct to the surface of the insect. The pheromone

then passes through specialised cuticular structures on the abdominal surface prior to evap-

oration. The shape and distribution of the specialised structures are highly diverse and differ

according to species. In this study we used SEM to examine the interior cuticular phero-

mone collection and transport structures of 3 members of the Lu. longipalpis s.l. species

complex and Migonemyia migonei. We found a new structure which we have called the

manifold which appears to be a substantial extension of the interior tergal cuticle connected

in-line with the cuticular duct and reservoir. The manifold of the Campo Grande member of

the complex is longer and wider than the Jacobina member whereas the manifold of the

Sobral member was shorter than both other members of the complex. Overall, the secretory

apparatus of the Sobral member was smaller than the other two. The manifold of M. migonei

was very different to those found in Lu. longipalpis s.l. and was positioned in a pit-like struc-

ture within the tergal cuticle. The secretory reservoir was connected by a short duct to the

manifold. Differences in the size and shape of the manifold may be related to the chemical

structure of the pheromone and may have taxonomic value. Examination of the interior cuti-

cle by SEM may help to locate the secretory apparatus of vector species where pheromonal

activity has been inferred from behavioural studies but the external secretory structures or

pheromones have not yet been found.
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Author summary

The males of many species of New World sand flies produce volatile chemicals shown in

Lutzomyia longipalpis s.l. to be attractive to females and other males. These sex/aggrega-

tion pheromones are produced by secretory cells which surround a cuticular reservoir

that collects the pheromone and from which it passes through a cuticular duct and a spe-

cialised structure on the surface of the abdomen, from where it evaporates. We examined

by SEM the structure of the interior cuticular secretory apparatus of 3 members of the Lut-
zomyia longipalpis s.l. species complex and Migonemyia migonei and found a new struc-

ture associated with pheromone release that we have called the manifold. The manifold

appears to be a substantial extension of the interior tergal cuticle that is connected in-line

with the duct and reservoir. Significant differences in size and shape of the manifold

between members of the Lu. longipalpis complex were observed. The M. migonei secretory

apparatus were substantially different in appearance to those of Lu. longipalpis with the

manifold positioned in a pit-like structure within the tergal cuticle. These differences

which may have taxonomic value and may be related to the chemical structure of the

pheromone or phylogenetic differences.

Introduction

Members of the sand fly species complex, Lutzomyia longipalpis s.l. (Lutz and Neiva, 1912) are

vectors of the Protist parasite Leishmania infantum Nicolle, 1908, the etiological agent of vis-

ceral leishmaniasis (VL) [1–3]. There is a close relationship between the distribution of VL

cases and the distribution of Lu. longipalpis s.l. throughout most of Brazil and it has been pro-

posed that the urbanization of members of this complex and it’s anthropophilic behaviour

have increased the incidence of VL in many Brazilian states [4,5].

In some regions of Brazil, where Lu. longipalpis is not the most abundant sand fly species,

VL cases are associated with another incriminated vector, Migonemyia migonei (França, 1920)

[6,7]. This species is considered to be a potential vector because of its’ distribution, prevalence,

anthropophily and the detection of Leishmania infantum DNA in blood-fed females [6]. In

addition, based on evidence of the development of late-stage parasite forms in artificially

infected sand flies this species is considered permissive for transmission of Le. infantum [8].

Migonemyia migonei has also been implicated as a vector of Le. (V.) braziliensis, the etiological

agent of cutaneous leishmaniasis in different Brazilian regions [9,10].

Male Lu. longipalpis s.l. produce sex/aggregation pheromones which when present with

host odour are attractive to conspecific males [11–13] and lead to the formation of leks on or

near host animals where the males compete with each other for access to mating opportunities

[14,15]. Females are attracted by the combination of the male produced pheromone and host

odour [16–18]. They arrive at the lekking site after the males [17], choose a mate [14] take a

blood-meal and depart [19]. It has been proposed that synthetic sex/aggregation pheromone

co-located with insecticide could be used for vector control [20–22]. Pheromones have been

used as a taxonomic tool to differentiate between morphologically identical members of New

Zealand Tortricinae moths [23]. The sex/aggregation pheromones of Lu. longipalpis can also

be used to differentiate between members of the Lu. longipalpis species complex [16,24–26].

In Lu. longipalpis s.l. the sex/aggregation pheromone has been associated with cuticular

structures on the surface of tergites III or III and IV and associated with underlying glandular

tissue where they have the visual appearance of either 1 or 2 pale spots (1S or 2S) [16,27].

Under SEM the external cuticular structures appear as small round elevations (papules) (mean
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diameter 3.0–3.5 um) with a central pore (mean diameter 0.25 μm) and a density of 21±2 (1S)

or 19±2 (2S) 1000 μm-2 [28,29]. The pheromone is believed to be produced by the glandular

cells that underly the papules and to be passively transported to the surface pores via a cuticular

duct [27,29]. Five members of the Lu. longipalpis complex can be distinguished based on quali-

tative and quantitative differences in their sex/aggregation pheromones [24]. Two members

have been characterised as producing methylsesquiterpene (C16) sex/aggregation pheromones

and two members produce diterpene (C20) sex/aggregation pheromones [16,30,31]. Lutzo-
myia longipalpis from Lapinha (MG) produces significantly less (S)-9-methylgermcrene-B,

than those from Sobral (CE) and is thus identifiable as a fifth member of the complex [24]. The

characterisation of the complex as having these 5 putative members is supported by identifica-

tion of molecular correlates (SNPs and CNVs) in the chemosensory genome [32].

Possible pheromone associated tergal structures have also been observed in other sand fly

species where they occur in a variety of forms [13,19]. For example, in Evandromyia lenti and

E. carmelinoi, apple-shaped structures with a central pore are present on the V and VI tergal

segments [29]. Terpenoids including oxygenated compounds are produced in some of these

other species e.g. E. lenti, Lu. lichyi, Lu. cruciata, [33–35] but they do not appear to be present

in all those species that have structures [35]. Behavioural evidence for pheromonal activity for

any of these compounds is limited to Lu. longipalpis and Lu. cruciata [33,36]. SEM analysis of

the tergal structures in M. migonei have revealed that they form a shallow crater (average diam-

eter ca. 3.2 μm) with a central pit (av. diameter ca. 0.4 μm) containing a central spike (height

ca. 0.2 μm) within it [13,19,37]. There is some behavioural evidence that this species also pro-

duces a sex aggregation pheromone [37].

The presence of internal cuticular structures i.e. the reservoir and cuticular duct associated

with the end apparatus and secretory cells has been revealed by TEM studies [27,29,38], there

has been no SEM investigation of the internal cuticular structures in sand flies. Therefore, this

SEM study was undertaken to investigate the internal cuticular structures associated with

pheromone production and release and to compare the morphology of these structures in

three members of the Lu. longipalpis species complex and M. migonei.

Material and methods

Ethics statement

Sand fly blood feeding at Lancaster University for colony maintenance was performed accord-

ing to the guidelines and regulations of the Animals in Science Regulation Unit (ASRU) and in

accordance with the terms of a regulated licence (PPL P2DB5013A) and in compliance with

the Animals (Scientific Procedures) Act (ASPA) 1986 (amended 2012) regulations and was

consistent with UK Animal Welfare Act 2006. All procedures involving animals were reviewed

and approved by the Faculty of Health and Medicine Ethical Review Committee (FHMR

EC15125) at Lancaster University. Sand fly blood feeding at Charles University for colony

maintenance was performed in accordance with institutional guidelines and Czech legislation

(Act No. 246/1992, amendment No. 359/2012) which complies with relevant European Union

guidelines for experimental animals. All procedures involving animals were approved by the

Committee on the Ethics of Laboratory Experiments of the Charles University (Registration

Number: MSMT-8604/2019-6).

Sand flies

The male Lu. longipalpis used in the study were obtained from colonies held at Lancaster Uni-

versity, UK and the M. migonei were obtained from a colony held at Charles University, Czech

Republic. The Lu. longipalpis males were representative of 3 of the 5 members of the species
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complex [24,30,32] and were established from females originally collected using miniature

CDC light traps in chicken shelters (Table 1). The M. migonei colony was established from

material originally collected using CDC light traps in Baturité, Ceará State, Brazil (04˚19041@S,

38˚53005@W). The Lu. longipalpis colonies were maintained in an insectary (28±2˚C, 80±5%

RH and a 12:12 light:dark (L:D) photoperiod) and all males used in this study were 7d old and

classified as two spot (2S) [39]. The M. migonei colony was maintained under slightly different

conditions (25–26˚C, 70–95% RH and a 14:10 L:D photoperiod) [40] and males used were 5-

7d old.

The male sand flies used in this study were removed from the colony and killed by placing

them in a freezer (-5˚C) for 20 mins. They were then placed in a plastic screwcap vial and cov-

ered with a few drops of ethanol (70%) and stored (-20˚C) until dissection.

Dissection

To prepare the male sand fly abdomen for SEM, a male was placed in a drop of saline solution

(1% w/v) on a glass microscope slide. The entire abdomen was removed from the thorax with

entomological needles under a dissecting microscope (Stemi 508, Carl Zeiss Ltd, Cambridge,

UK). The interior of the whole abdomen or the abdominal segments III and IV (excised from

the other abdominal segments) were then exposed by a further dorsoventral incision.

Digestion, cleaning and drying of cuticle sections

To remove the internal soft tissue covering the interior cuticular structures we submerged the

dissected abdominal samples in 10% (w/v) KOH [41] in glass Petri dishes placed on a plate

rocker. Lutzomyia longipalpis samples were digested in KOH for 4 hours and M. migonei were

digested in KOH for 24 hours. After the KOH digestion, the samples were washed in saline

solution (1% w/v) in a Petri dish for 5 mins (3 times) followed by a final rinse in distilled

water. The samples were then dehydrated by washing in alcohol (50%, 70%, 90% and 100%)

for 5 mins each and then left overnight in a fume hood in hexamethyldisilazane until

completely dry.

Scanning electron microscopy (SEM)

After the digestion, cleaning and drying, samples were mounted on SEM stubs with double

sided adhesive tape and sputter coated with gold (20nm) (Edwards S150A; Edwards UK, Bur-

gess Hill, UK). The samples were then examined with a scanning electron microscope (JEOL

JSM-7800F and JEOL JSM-5600; Jeol (UK) Ltd, Welwyn Garden City, UK) operated at 18kV.

In total nine Campo Grande, eight Sobral and seven Jacobina Lu. longipalpis specimens as well

as nine M. migonei specimens were prepared and examined by SEM.

Secretory apparatus measurements

We measured; manifold width, manifold length, reservoir and cuticular duct length, and secre-

tory apparatus length in 10 randomly selected secretory apparatus from five individuals of

Table 1. Original collection site and pheromone type of the members of the Lu. longipalpis species complex held

at Lancaster University used in the study.

collection locality grid reference pheromone type

Campo Grande—MS 20˚ 28’S, 54˚ 37’W (S)-9-methylgermacrene-B (9MGB)

Jacobina—BA 11˚ 11’S, 40˚ 31’W 3-methyl-α-himachalene (3MH)

Sobral—CE 3˚ 41’S, 40˚ 20’W Sobralene (SOB)

https://doi.org/10.1371/journal.pntd.0009733.t001
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each of the three Lu. longipalpis pheromone types (total measurements = 600) using Image J

software.

Comparison of the size of the different components of the secretory apparatus measured in

each of the three Lu. longipalpis chemotypes and M. migonei was made by Generalized Linear

Model (GLM). We assumed that there was no difference in the morphology of the structures

of individuals originating from the same location. The dimensions of each part of the structure

measured were used as response variables, while the colonies were considered to be explana-

tory variables. Tukey’s test was used to determine which measurements were different from

each other. All the models were made using R (v3.6.1, R Development Core Team 2016), fol-

lowed by residual analysis to standardize the data distribution.

Results

The Lutzomyia longipalpis complex secretory apparatus

Preliminary investigation showed that digestion of sand fly samples in KOH (10%) over 4

hours removed tissue from the inner cuticular surface of the abdomen without damaging the

target structures.

Examination of the interior surface of the Lu. longipalpis abdomen showed structures that

were distributed over an area that matched both the size and shape of the pale spots previously

observed on the external surface of tergites III and IV [19,29,42] Fig 1. Density of these struc-

tures in the samples from Campo Grande was approximately 13/1000 μm2 (ca. 1627 structures

in total), Jacobina 18/1000 μm2 (ca. 1415 structures in total) and Sobral 18/1000 μm2 (ca. 3469

structures in total).

Observation of the morphology of the internal cuticular structures which remained after

KOH digestion indicated that two sections were present; the first was a section which

Fig 1. SEM of the interior cuticular surface of abdominal segments II-VI of Lu. longipalpis from Campo Grande

showing the areas corresponding to pale patches normally seen from the exterior. Tergites II to VI are indicated by

Roman numerals. The areas of the internal surface corresponding to the pale spots seen from the exterior area

indicated by the white oval shapes. The insert is a close-up magnification of the cuticular structures associated with the

secretory apparatus and seen within the oval-shaped (pale patch) areas.

https://doi.org/10.1371/journal.pntd.0009733.g001
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connected to the interior wall of the tergite (or which is an extension of the tergite) and which

we have called the manifold (Fig 2A). The manifold has two distinct parts; the base and a dis-

tally positioned section, the ring, which has the appearance of a doughnut shaped ring of

thicker cuticle (Fig 2B). The second part of the whole structure is the cuticular duct (named

the “chitinous duct” previously by [42], connected to the manifold at the proximal end and

which terminates in the reservoir (this is surrounded by the cellular end apparatus) at the distal

end (Fig 2C). The reservoir is seen to be a cuticular bag that can assume different shapes. Both

the cuticular duct and the reservoir are structures that have been previously observed in TEM

studies [27,29] but which have not been observed by SEM studies. All parts together can be

described as the secretory apparatus (Fig 2D). In some cases, during the preparation of the

samples the ductule/reservoir complex become detached from the manifold structure showing

that the interior of the manifold appears to be hollow.

The secretory apparatus of the three members of the Lu. longipalpis complex examined in

this study are shown in Fig 3.

There was a highly significant difference in the widths of the manifolds (Fig 2) of the 3

members of the Lu. longipalpis complex (df = 147; F = 15.17; P<0.001). The Campo Grande

manifold was significantly wider (mean±sem; 1.70±0.031μm) than either the Jacobina (1.50

±0.036μm) or Sobral (1.48±0.027μm) manifolds which were not significantly different from

each other (Fig 4A).

There was also a highly significant difference in the lengths of the manifolds (Fig 2) of the 3

members of the Lu. longipalpis complex (df = 147; F = 116.01; P< 0.001). The Campo Grande

manifolds (0.94±0.024μm) were significantly longer than the Jacobina manifolds (0.84

±0.028μm) which were significantly longer than the Sobral manifolds (0.49±0.012μm)

(Fig 4B). There was also a significant difference in the lengths of the cuticular duct + reservoir

(Fig 2) in the 3 members of Lu. longipalpis complex (df = 147; F = 75.55; P = 0.001). The

Campo Grande and Jacobina cuticular ducts + reservoir were not significantly different from

each other (1.52±0.027μm and 1.53±0.038μm respectively) whereas the Sobral ducts + reservoir

were significantly shorter than the others (1.06±0.028μm) (Fig 4C). The overall length of the

Fig 2. Drawing of the components of the secretory apparatus of Lu. longipalpis from Campo Grande, Brazil. A) manifold connected to

the inner surface of the abdominal cuticle; B) components of the manifold, ring + base; C) secretory reservoir + cuticular duct; D) secretory

apparatus; reservoir + cuticular duct + manifold.

https://doi.org/10.1371/journal.pntd.0009733.g002
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secretory apparatus (Fig 2) was also significantly different in the 3 members of the Lu. longipal-
pis complex (df = 147; F = 133.53; P<0.001). The Campo Grande secretory apparatus was simi-

lar in length to the Jacobina secretory apparatus (2.45±0.046μm and 2.33±0.051μm

respectively). However, the Sobral secretory apparatus was significantly shorter than either

Campo Grande or Jacobina (1.53±0.032μm) (Fig 4D).

The differences in the size and shape of the secretory apparatus are summarised in Fig 5.

The manifold of the Campo Grande (Fig 5A) member of the complex was longer and wider

than the Jacobina type (Fig 5C). Overall, the secretory apparatus of the Sobral (Fig 5B) type

was smaller than the others.

Fig 3. SEM images of the inner cuticle surface of the abdominal tergites of 3 members of the Lu. longipalpis s.l.

species complex showing the cuticular elements; manifold, reservoir and cuticular duct, of the secretory

apparatus. Secretory apparatus observed by SEM after KOH digestion of Lu. longipalpis abdominal tergites from; A)

Campo Grande, B) Sobral and C) Jacobina. The Manifold (M), Reservoir (R) and cuticular duct (cd) are indicated in

the enlarged images on the right of the figure. Images on the left side (x3,500 magnification) were taken on a Jeol JSM-

5600. Images on the right (x12,000 magnification) were taken on a Jeol JSM-7800F.

https://doi.org/10.1371/journal.pntd.0009733.g003
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Migonemyia migonei secretory apparatus

We found structures resembling the manifold, secretory duct and reservoir (ca. 9/1000μm2)

previously seen in the Lu. longipalpis also present in the M. migonei samples. These structures

Fig 4. Dimensions of the components of the secretory apparatus observed in 3 members of the Lu. longipalpis s.l.

species complex. Mean size of the measured structures (μm); manifold width (A), manifold length (B), reservoir and

cuticular duct length (C) and secretory apparatus length (D) for each of the three members of the Lutzomyia
longipalpis species complex; Campo Grande (CG), Jacobina (JAC) and Sobral (SOB). Error bars are ± standard error of

the mean. Tukey’s test was used to compare sizes of structures between each member of the complex, measurements

with the same letter (a, b or c) were not significantly different (P<0.05) from each other.

https://doi.org/10.1371/journal.pntd.0009733.g004
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were present on the internal cuticle surface of tergites III–VII. This distribution partially

matched the distribution of the craters (with central pore and spike) previously reported on

the external surface of tergites III-VI [37] (Fig 6A). The manifold was inserted within a deep

Fig 5. Drawing illustrating the morphological differences observed in the size and shape of the manifold in the

three members of the Lu. longipalpis s.l. species complex. Campo Grande (A), Sobral (B) and Jacobina (C).

https://doi.org/10.1371/journal.pntd.0009733.g005

Fig 6. SEM of the interior surface M. migonei showing the observable cuticular elements of the secretory

apparatus. A) Distribution of the secretory structures on the inner surface of the abdominal cuticle on tergite III, B)

secretory apparatus set within a deep pocket embedded in the abdominal cuticle on tergite IV, C) close-up of a

secretory unit showing the manifold embedded within the abdominal cuticle observed at the bottom of the pocket on

tergite III. D1) Drawing of the M. migonei secretory apparatus from above (top left) showing the reservoir positioned

over the hole in the abdominal cuticle and then D2) a side-on view showing the reservoir connected via cuticular to the

top of the manifold sitting within the hole in the cuticle.

https://doi.org/10.1371/journal.pntd.0009733.g006
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recess (av. max width 1.50±0.04μm) and appeared to be embedded (ca. 0.25μm) within the

cuticle. Only the reservoir appeared to be positioned fully within the interior of the abdomen

(Figs 6B and 6C). Multiple observations of the manifolds from different positions suggest that

it has the appearance illustrated in Fig 6D1 and 6D2.

Discussion

Pheromone disseminating structures have been observed on the cuticle of 53 species of New

World (Lutzomyia and Brumptomyia spp) and 5 Old World (Sergentomyia) species [13,19].

These structures take a diverse range of morphological forms and include structures such as

pores in craters, pores with emergent spines, mammiform papules with or without spines and

apple shaped structures [19]. This study reveals that in addition to the pheromone disseminat-

ing structures visible on the external surface of the abdomen and the elements (reservoir and

cuticular duct) of the secretory apparatus observed by previous TEM studies [27,29,43] there

are additional cuticular structures on the inside surface of the abdominal cuticle which have

not been observed or described before. Each external structure is associated with a new inter-

nal structure which we have called the manifold (an engineering term to describe a device used

in fluid or gas mechanics to aggregate or distribute gases or fluids). Although the precise func-

tion of the manifold is unknown it is connected via a tubule (cuticular duct) to the reservoir

which is surrounded by the cellular secretory end-apparatus [27–29,43]. The manifold is thus

clearly associated with the distribution of the pheromone from the secretory end-apparatus via

the reservoir and cuticular duct to the external surface of the sand fly.

Scanning electron microscopy has been widely used to examine the external secretory appa-

ratus and other externally visible cuticular structures in sand flies and other insects. The cells

associated with pheromone production have been examined by TEM in sand flies

[19,29,37,42,43] and other pheromone producing insect groups e.g. Lepidoptera, Coleoptera,

Hymenoptera and species of Trichoptera from the families Rhyacophilidae and Limnephilidae

[38,44–51]. Most of these studies were carried out to describe the arrangement, location and/

or distribution of the pheromone gland secretory cells and were not carried out to examine the

mechanisms by which the pheromone was transported from the site of biosynthesis to the

point of dissemination on the surface of the cuticle. We are not aware of any published SEM

studies that have examined the internal structures associated with pheromone production and

transport in sand flies. The reservoir structures which can be seen in sand flies may also be

seen in Blattaria: Blaberidae [52] and Coleoptera: Staphylinidae [53]. However, from the lim-

ited studies that have been undertaken in other insect species the manifolds appear to be

unique to sand flies.

The M. migonei samples from the Charles University colony that had been stored in 70%

ethanol required longer KOH digestion to remove the interior abdominal tissue than the

freshly prepared Lu. longipalpis samples. Digestion for up to four hours was useful for Lu. long-
ipalpis specimens and up to 10 hours was required for M. migonei specimens. For future stud-

ies freshly prepared samples are more likely to give better results than samples preserved in

70% ethanol.

In addition to the differences in the structure of their sex-aggregation pheromone, the

members of the Lu. longipalpis s.l. species complex analysed in this study, have also shown dif-

ferences related to the biosynthesis and release of their pheromones [54]. The results of this

study also show significant morphological differences between the size and shape of the mani-

folds and the secretory apparatus overall. Interestingly there have been no reported differences

in the size and shape of the papules which can be observed on the surface of the tergites in Lu.

longipalpis s.l. The manifolds and other elements of the secretory apparatus of the Sobral
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member of the complex are significantly shorter than either Campo Grande or Jacobina. The

manifold width of Sobral Lu. longipalpis is not significantly different to that of Jacobina but

both are significantly narrower than in Campo Grande. The overall effect of the differences is

that the Jacobina and Campo Grande are similar in size and shape to each other whereas the

Sobral structure appears shorter and squatter. The effect of these differences may be to position

the secretory cells that would surround the end apparatus closer to the surface in the Sobral

member of the complex than the other two members. This may reflect the difference in the

molecular weight and consequent volatility of the 2 methylsesquiterpenes (m.w. 218) found in

Campo Grande and Jacobina compared to the increased molecular weight and decreased vola-

tility of the diterpene (sobralene) pheromone (m.w. 272) found in Sobral. Thus, the distance

for the larger molecule to travel from the secretory cell to the external surface is less than for

the other two smaller and more volatile molecules. Alternatively, the differences may be related

to phylogenetic differences in gland development [55] in different members of the Lu. longipa-
lis species complex. Both hypotheses require further study to understand the situation in the

Phlebotominae.

The manifold of M. migonei is very different to those observed in Lu. longipalpis s.l. and is

positioned within the tergal cuticle in a pit-like structure. The reservoir is connected by a short

duct to the manifold. The effect of this arrangement is that the secretory cells would be much

closer to the surface than in Lu. longipalpis and this may reflect a relatively lower volatility

(either higher molecular weight or presence of functional groups) of any sex aggregation pher-

omone produced by M. migonei. Although there is behavioural evidence for the presence of a

sex-aggregation pheromone in M. migonei, no compound(s) with a chemical profile similar to

the sex aggregation pheromones found in the Lu. longipalpis s.l. species complex has been

found [37].

The density of manifolds found on the internal cuticle of sobralene producing Sobral (CE)

Lu. longipalpis was 18 per 1000 μm2 (ca. 3469 in total) and matched the density of papules pre-

viously observed on the tergal surface of Lu. longipalpis from Sobral, (19 per 1000 μm2) [29].

This is not dissimilar to estimates of 14 per 1000 μm2 for the same Sobral population [28]. The

density of manifolds in the Campo Grande (MS) (S)-9-methylgermacrene-B producing popu-

lation was approximately 13 per 1000 μm2, part-way between the 8 per 1000 μm2 papules

observed by Lane and Ward (1984) in Lu. longipalpis collected at Lapinha (MG) and 21 per

1000 μm2 papules in Lu. longipalpis also collected at Lapinha [29]. The meaning of this differ-

ence is unclear, it may be related to significant differences between the Campo Grande popula-

tion and the Lapinha population, similar to those observed between the Sobral (S)-

9-methylgermacrene-B and the Lapinha population in which the Sobral population was found

to produce significantly more pheromone than the Lapinha population [24].

This is the first time that the manifold structure has been seen in any group of insects and

its function is unclear. It may be that the manifold is only found in Phlebotomine sand flies,

but it may occur in other insect orders. It could simply be a device to ensure the safe transport

of the sex aggregation pheromone from the secretory cells through the cuticle. The sturdiness

of the structure could suggest that it is designed to minimise possible leakage of potentially

toxic terpene [56] pheromone into the abdomen. Male sand flies engage in combat with other

males to defend territory and in these aggressive battles [57,58] males could potentially risk

dislodging unprotected plumbing carrying pheromone without the additional support pro-

vided by the manifold. It would be worth examining the internal cuticular secretory structures

of other insect groups where males produce sex/aggregation pheromones and fight with other

males to defend territories e.g. Frankliniella occidentalis [59,60]. Without a clear view of the

interior, it is uncertain if additional functionality may exist within the manifold e.g. a passive

or controllable valve or a reservoir of pheromone or other mechanism to regulate pheromone
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flow to help provide a supply of pheromone when it is required [54]. In the future it may be

possible to get a clear view of the interior of these structures using Synchrotron Radiation

Microtomography [61].

Observing the location, distribution and density of the manifolds on the inner cuticle was a

convenient way to check the whole inner cuticle of the abdomen for secretory structures.

More studies should now be conducted to compare the number of these structures in different

members of the Lu. longipalpis s.l. complex and from different parts of Brazil as well as to

determine their distribution in other New and Old-World species.

The M. migonei manifold lay within the cuticle and although it was possible to observe

it within the clearly defined recess in which it was positioned we could not check morpho-

logical details. The details of how the secretory apparatus is connected to the exterior

remains elusive and although there was one manifold per external structure (“spined crater”)

it was not possible to clarify if there was more than one opening per pheromone secreting

structure through the cuticle [19] to the exterior of the insect. We found that the manifolds

were distributed on tergites III to VII but more studies should be carried to fully describe the

morphology of the manifold and then link the morphological form to the pheromone and its

function.

These results may contribute to the discussion of the nature of the Lu. longipalpis species

complex, as they show that there are clear morphological differences between 3 of the mem-

bers of the complex. These structures may also be useful taxonomic tools more generally

within the Phlebotominae. This study also shows that in addition to the widespread distribu-

tion of the external structures linked to pheromone release these internal structures are likely

to be strongly associated with active pheromone production and release. Their presence in spe-

cies where pheromone production has been inferred through behavioural studies but not con-

firmed through chemical analysis should be determined. Behavioural analysis for example, in

the lab and field has shown that female Phlebomomus papatasi and P. argentipes are attracted

to conspecific males [62–64], however no external structure, associated with pheromone

release, has been observed on the abdomen. In addition, several species of sand flies have been

found to have external structures that could be associated with pheromone release however no

putative pheromone chemicals have been found [35]. The presence of the manifold and associ-

ated cuticular duct and reservoir is considerably easier to locate than hidden isolated external

structures, as in L. renei [29], therefore locating the secretory apparatus and thus identifying

which sand fly species may produce pheromone will be easier and may simplify the search for

the pheromone source.
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