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Abstract

Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing
individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula
for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced
‘‘games in phenotype space’’ and ‘‘evolutionary set theory.’’ There can be local interactions for determining the relative
fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We
study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in
the limit of weak selection. We derive an intuitive formula for the structure coefficient, s, and provide a method for efficient
numerical calculation.
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Introduction

Constant selection implies that the fitness of individuals does not

depend on the composition of the population. In general, however,

the success of individuals is affected by what others are doing.

Then we are in the realm of game theory [1–3] or evolutionary

game theory [4–8]. The latter is the study of frequency dependent

selection; the fitness of individuals is typically assumed to be a

linear function of the frequencies of strategies (or phenotypes) in

the population. The population is trying to adapt on a dynamic

fitness landscape; the changes in the fitness landscape are caused

by the population that moves over it [9]. There is also a close

relationship between evolutionary game theory and ecology [10]:

the success of a species in an ecosystem depends on its own

abundance and the abundance of other species.

The classical approach to evolutionary game dynamics is based

on deterministic differential equations describing infinitely large,

well-mixed populations [6,11]. In a well-mixed population any two

individuals interact equally likely. Some recent approaches

consider stochastic evolutionary dynamics in populations of finite

size [12,13]. Evolutionary game dynamics are also affected by

population structure [14–22]. For example, a well-mixed popula-

tion typically opposes evolution of cooperation, while a structured

population can promote it. There is also a long standing tradition

of studying spatial models in ecology [23–25], population genetics

[26,27] and inclusive fitness theory [28–30].

Evolutionary graph theory is an extension of spatial games,

which are normally studied on regular lattices, to general graphs

[31–34]. The graph determines who meets whom and reflects

physical structure or social networks. The payoff of individuals is

derived from local interactions with their neighbors on the graph.

Moreover, individuals compete locally with their neighbors for

reproduction. These two processes can also be described by

separate graphs [35].

‘Games in phenotype space’ [36] represent another type of

spatial model for evolutionary dynamics, which is motivated by the

idea of tag based cooperation [37–39]. In addition to behavioral

strategies, individuals express other phenotypic features which

serve as markers of identification. In one version of the model,

individuals interact only with those who carry the same phenotypic

marker. This approach can lead to a clustering in phenotype

space, which can promote evolution of cooperation [36].

‘Evolutionary set theory’ represents another type of spatial model

[40]. Each individual can belong to several sets. At a particular time,

some sets have many members, while others are empty. Individuals

interact with others in the same set and thereby derive a payoff.

Individuals update their set memberships and strategies by global

comparison with others. Successful strategies spawn imitators, and

successful sets attract more members. Therefore, the population

structure is described by an ever changing, dynamical graph.

Evolutionary dynamics in set structured populations can favor

cooperators over defectors.

In all three frameworks – evolutionary graph theory, games in

phenotype space and evolutionary set theory – the fitness of

individuals is a consequence of local interactions. In evolutionary

graph theory there is also a local update rule: individuals learn

from their neighbors on the graph or compete with nearby

individuals for placing offspring. For evolutionary set theory,

however, [40] assumes global updating: individuals can learn from

all others in the population and adopt their strategies and set
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memberships. Global updating is also a feature of the model for

games in phenotype space [36]. The approach that is presented in

this paper requires global updating. Therefore, our result holds for

evolutionary set theory and for games in phenotype space, but

does not apply to evolutionary graph theory.

Results

Consider a game between two strategies, A and B. If two A
players interact, both get payoff a; if A interacts with B, then A
gets b and B gets c; if two B players interact, both get d . These

interactions are represented by the payoff matrix

A B

A

B

a b

c d

 !
ð1Þ

We consider a population of finite size N. Each individual uses

either strategy A or B. In the framework that we investigate here,

the population structure specifies how people interact to derive

their payoff. It could be that some individuals interact while others

do not, or that some individuals interact stronger or more

frequently than others. For example, in evolutionary set theory

individuals interact with others who are in the same set and two

individuals interact as many times as they have sets in common; in

games in phenotype space, individuals interact with others who

share the same phenotype.

Based on these interactions, individuals derive a cumulative

payoff, p. The fitness of an individual is given by 1zwp where the

parameter w characterizes the intensity of selection. In this paper

we consider the limit of weak selection, w?0.

Reproduction is proportional to fitness but subject to mutation.

With probability 1{u the offspring adopts the strategy of the

parent. With probability u a random strategy is chosen (which is

either A or B).

A state of the population contains all information that can affect

the payoffs of players. It assigns to each player a strategy (A or B)

and a ‘location’ (in space, phenotype space etc). Thus, one can

think of a state as a binary vector which specifies the strategy of

each individual, together with a real N|N matrix whose ij-th
entry specifies the weight of the interaction of individual i with j.
For example, in evolutionary set theory, the ij-th entry of this

matrix gives the number of sets i and j have in common [40]. Note

that this matrix is not necessarily symmetric: the weight of i’s
interaction with j might be different from the weight of j’s
interaction with i. In this paper, whenever we refer to the number

of interactions between individuals, we always count them with

their weights or multiplicities.

For our proof we assume a finite state space and we study the

Markov process defined by gameplay together with the update rule

on this state space. The Markov process has a unique stationary

distribution defined over all states.

It is shown in [41] that for weak selection, the condition that A

is more abundant than B in the stationary distribution of the

mutation-selection process described above can be written as

sazbwczsd: ð2Þ

Therefore, the crucial condition specifying which strategy is more

abundant is a linear inequality in the payoff values, a,b,c,d . The

structure coefficient, s, can depend on the population structure,

the update rule, the population size and the mutation rate, but not

on the payoff values, a,b,c and d. This ‘structural dominance’

condition (2) holds for a wide variety of population structures and

update rules, including games in well mixed populations [12,13],

games on graphs [32–34], games in phenotype space [36] and

games in set structured populations [40].

For a large well-mixed population we obtain s~1. Therefore,

the standard risk-dominance type condition, azbwczd , specifies

if A is more abundant than B. Spatial structure leads to s values

that are greater than 1. The larger s the greater is the deviation

from the well mixed population. For very large s strategy A is

more abundant than B if awd . Therefore, spatial structure

promotes Pareto efficiency over risk dominance [41]. If a spatial

model generates sw1 then it is a mechanism for the evolution of

cooperation [42].

Here we derive a formula for s that holds for all processes

satisfying two conditions:

(i) global updating, which means individuals compete uniformly

with all others for reproduction and

(ii) constant birth or death rate which means the payoff from the

game can affect either the birth rate or the death rate but not

both.

These assumptions are fulfilled, for example, by games in

phenotype space [36] and by games on sets [40]. They do not

hold, however, for games on graphs [32]. The first assumption is

necessary because our calculation requires that the update rule

depends only on fitness, and not on locality. Local update rules are

less well-behaved and can even lead to negative values of s. The

second assumption insures that the change in the frequency of

players is due only to a change in selection. Without this second

assumption the conditions would be more complicated.

For each state of the system, let NA be the number of individuals

using strategy A; the number of individuals using strategy B is

NB~N{NA. Furthermore, let IAA denote the total number of

encounters that A individuals have with other A individuals. Note

that every AA pair is counted twice because each A individual in

the pair has an encounter with another A individual. As specified

before, whenever we say ‘number of interactions’ we count the

interactions together with their weights (if such weights occur in

the model). Let IAB denote the total number of interactions that an

A individual has with B individuals. Our main result is that the

structure coefficient, s, can be written as

s~SIAANBT0SIABNBT0: ð3Þ

The notation S:T0 means that the quantity is averaged over all

states of the stochastic process under neutral drift, w~0; each term

of the average is weighted by the frequency of the corresponding

state in the stationary distribution. Intuitively, s captures how

much more likely it is, on average, for an individual to play with

Author Summary

At the center of any evolutionary process is a population
of reproducing individuals. The structure of this population
can greatly affect the outcome of evolution. If the fitness
of an individual is determined by its interactions with
others, then we are in the world of evolutionary game
theory. The population structure specifies who interacts
with whom. We derive a simple formula that holds for a
wide class of such evolutionary processes. This formula
provides an efficient computational method for studying
evolutionary dynamics in structured populations.

Calculating Evol Dynamics in Structured Population
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his own kind rather than with the other kind. An illustration of this

formula is shown in Figure 1.

This formula suggests a simple numerical algorithm for

calculating the s-factor for any spatial process with global

updating. We let the process run for a very long time assuming

that all individuals have the same fitness. Thus, we simulate

mutation and neutral drift on a spatial structure. For each state we

evaluate NB, IAA, and IAB. We add up all IAANB terms to get the

numerator in eq (3). We add up all IABNB terms to get the

denominator. The resulting s can be used for any game given by

the payoff matrix (1) to determine if strategy A is more frequent

than strategy B in the limit of weak selection.

The rigorous proof of eq (3) is given in Appendix A; here we

provide an intuition for it. For symmetry reasons, at neutrality, we

have the following identities SIAANBT0~SIBBNAT0 and

SIABNBT0~SIBANAT0. Using these symmetries together with

our formula (3), we rewrite condition (2) as

aSIAANBT0zbSIABNBT0wcSIBANAT0zdSIBBNAT0: ð4Þ

Denoting by HXY ~IXY=NX the average number of interactions

of X individuals with Y individuals, we can further rewrite eq. (4)

as

SxA(1{xA)(pA{pB)T0w0: ð5Þ

Here xA is the frequency of A individuals, pA is the average payoff

of an A-individual and pB is the average payoff of a B-individual.

These are pA~aHAAzbHAB and pB~cHBAzdHBB.

A standard replicator equation for deterministic evolutionary

game dynamics of two strategies in a well-mixed population can

be written as _xxA~wxA(1{xA)(pA{pB) where _xxA is the time

derivative of the change due to selection and pA~axAzb(1{xA)
and pB~cxAzd(1{xA) denote the average payoffs for A and B
if the frequency of A is xA. This equation describes how selection

alone changes the frequency of strategy A over time. Hence, the

condition that strategy A is favored by selection is S _xxATw0 where

the average is now taken over all states of the mutation-selection

process, in the presence of game (w=0). In the limit of weak

selection, one can write the first-order Taylor expansion of this

inequality to obtain S _xxAT~S _xxAT0zwS L
Lw

_xxAT0w0. Since at

neutrality the average change in the frequency of A is zero, our

condition for strategy A to be favored over strategy B becomes

S L
Lw

_xxAT0w0 which is precisely inequality (5). Therefore inequality

(5) has a very intuitive interpretation.

Evolution of cooperation
As a particular game we can study the evolution of cooperation.

Consider the simplified Prisoner’s Dilemma payoff matrix:

C D

C

D

b{c {c

b 0

 !
ð6Þ

This means cooperators, C, pay a cost c for others to receive a

benefit, b. Defectors, D, pay no cost and distribute no benefits.

The game is a Prisoner’s Dilemma if bwcw0.

As shown in [41], if we use equation (2) we can always write the

critical benefit-to-cost ratio as

b

c

� ��
~

sz1

s{1
ð7Þ

provided sw1. If the benefit-to-cost ratio exceeds this critical

value, then cooperators are more abundant than defectors in the

mutation-selection equilibrium of the stochastic process for weak

selection. A higher s corresponds to a lower benefit-to-cost ratio

and is thus better for the evolution of cooperation.

From eqs (3) and (7) we can write

b

c

� ��
~

S(ICCzICD)NDT0

S(ICC{ICD)NDT0

: ð8Þ

This formula is very useful for finding the critical benefit-to-cost

ratio numerically. Moreover, we can rewrite the critical benefit-to-

cost ratio in terms of average number of interactions rather than

total number of interactions as

b

c

� ��
~

SxC(1{xC)(HCCzHCD)T0

SxC(1{xC)(HCC{HCD)T0

: ð9Þ

These equations provide intuitive formulations of the critical

benefit-to-cost ratio for processes with global updating.

Computational example: Evolutionary dynamics on sets
Our new formula for s (eq. 3) gives a simple numerical

algorithm for calculating this quantity in any spatial process with

global updating and constant birth or death rate. We simulate this

Figure 1. Calculation of s for a very simple example with
population size N~~3. Suppose there is a ‘spatial’ process which has
two mixed states. These two states must have the same frequency in
the stationary distribution at neutrality, because the process cannot
introduce asymmetries between A and B at neutrality. Each mixed state
can be described by a weighted, directed graph: in a state with i A
players, let pi be the probability that an A plays with another A and let
qi be the probability that an A plays with a B. These probabilities are
enough since for the calculation of s we only need the AA edges and
the AB edges. Note also that the pure states, all-A and all-B, do not
contribute to the calculation. We obtain s~p2=(2q1zq2).
doi:10.1371/journal.pcbi.1000615.g001

Calculating Evol Dynamics in Structured Population

PLoS Computational Biology | www.ploscompbiol.org 3 December 2009 | Volume 5 | Issue 12 | e1000615



process under neutral drift for many generations. For each state we

evaluate NB, IAA, and IAB. We add up all NBIAA products to get

the numerator in eq (3), and then we add up all NBIAB products to

get the denominator. The resulting s can be used for any game

given by the payoff matrix (1) to determine if strategy A is more

frequent than strategy B in the limit of weak selection.

In this section we use the simple numerical algorithm suggested

by our formula (3) to find s for evolutionary dynamics on sets [40].

In that paper, the authors compute an exact analytic formula for s
that depends on the parameters of their model. We compare our

simulated estimates for s with their theoretical values and find

perfect agreement (Figure 2). Furthermore, we use our computa-

tional method to calculate s in an extension of the original model.

An analytic solution for this extended model has not yet been

found. Thus our simulated estimates constitute the first ‘‘solution’’

of this extended model (Figure 3).

The original set-structured model describes a population of N

individuals distributed over M sets. Individuals interact with

others who belong to the same set. Two individuals interact as

many times as they have sets in common, and these interactions

lead to payoffs from a game as described in general in Section 2.

Reproductive updating follows a Wright-Fisher process, where N

individuals are selected with replacement to seed the next

generation. The more fit an individual, the more likely it is to

be chosen as a parent. An offspring adopts the parent’s strategy

with probability 1{u, as described in Section 2. The offspring

adopts the parent’s set memberships, but this inheritance is also

subject to mutation; with probability v, an offspring adopts a

random list of set memberships. This updating process can be

thought of as imitation-based dynamics where both strategies and

set memberships are subject to selection [40].

To obtain exact analytical calculations, it is assumed that each

individual belongs to exactly KƒM sets. In Figure 2, we pick

values for N,M,K , and u and plot s as a function of the set

mutation rate, v. The continuous curves are based on the analytic

formula for s derived in [40]. The new numerical algorithm

generates the data points. There is perfect agreement between

these two methods.

In Figure 3, we consider a variant of this model. Instead of

belonging to exactly K sets, individuals now belong to at most K
sets. With probability v, an offspring adopts a random list of at most

K memberships, the length of which is uniformly random. So far

there exists no analytical solution for this model but we can use eq.

Figure 2. Agreement of simulations with analytic results. We
test our simulation procedure against the analytic results of the set
model of [40]. Parameters used are N~100 and M~10. K~1,2 or 3 is
the number of sets an individual is in, u is the strategy mutation, and v is
the set mutation. We run simulations for 107 generations. We use a low
strategy mutation (u~0:2) in (A) and a high strategy mutation
(u~0:002) in (B).
doi:10.1371/journal.pcbi.1000615.g002

Figure 3. Simulated results for model with variable number of
set memberships. An individual can be in 1, 2, or 3 sets; when he
mutates set membership, the number of sets he joins is drawn with
uniform probability. Parameter values are N~100, M~10; u is the
strategy mutation rate and v is the set mutation rate. We run the
simulation using the method of eq. (3) for 107 generations. Dots
indicate simulated results, which are interpolated with a smooth curve.
This variable set membership model has not yet been solved
analytically. (A) The interpolated curve for small strategy mutation
(u~0:002) compared to the analytical result for K~1,2 or 3. (B) The
interpolated curve for high strategy mutation rate (u~0:2) compared
to the analytical result for K~1,2 or 3.
doi:10.1371/journal.pcbi.1000615.g003

Calculating Evol Dynamics in Structured Population
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(3) to compute s numerically. We interpolate the numerical results

with smooth curves. We observe that for low mutation, Fig. 3(A),

the case Kƒ3 gives a s which is smaller than the K~3 case.

Hence, for low mutation, allowing people to be in at most K sets

turns out to be worse for cooperation than restricting them to be in

exactly K sets. However, for high strategy mutation, Fig. 3(B), the s
for Kƒ3 is greater than the one for K~3. Hence, for high

strategy mutation, allowing individuals to be in at most K sets seems

to be better for cooperation than restricting them to be in exactly K
sets. This suggests that there exists an intermediate strategy

mutation rate where the two cases are similar.

Discussion

It has been shown that evolutionary dynamics in a structured

population can be described by a single parameter, s, if we are

merely interested in the question, which of the two competing

strategies, A or B, is more abundant in the limit of weak selection

[41]. Payoff matrix (1) describes the interaction between the two

strategies A and B and the inequality sazbwczsd specifies that

A is more abundant than B in the mutation-selection equilibrium.

In general the parameter s can depend on the population

structure (which specifies who interacts with whom for accumu-

lating payoff and for evolutionary updating), the population size

and the mutation rates; but it does not depend on the entries of the

payoff matrix. The s parameter has been explicitly calculated for a

number of models including games on graphs, games in phenotype

space, games in set structured populations and a simple model of

multi-level selection [42].

Here we provide a general formula for the s factor, which holds

for the case of global updating. Global updating means that all

members of the population compete globally (as opposed to

locally) for reproduction. For example, global updating arises in

the following way: one individual reproduces and another random

individual dies (in order to maintain constant population size); the

offspring of the first individual might inherit (up to mutation) the

strategy and the ‘location’ of the parent. Global updating is a

feature of models for games in phenotype space [36] and for games

on sets [40].

Our main result, eq (3), provides both an intuitive description of

what the s factor is and an efficient way for numerical

computation.

Materials and Methods

Here we give the proof of equation (3). It is based on the

following three claims which we prove in the next subsection:

Claim 1. First, we show that for structures and update rules

with either constant death rate or constant birth rate the condition

SxATw

1

2
ð10Þ

for strategy A to be favored over strategy B is equivalent to

SbirthA{deathATw0 ð11Þ

where birthA and deathA are the total birth and death rates of A
players and SbirthA{deathAT~

P
S (birthA{deathA)SpS is the

change due to selection averaged over all states of the system,

weighted by the probability pS that the system is in each state. The

change due to selection in the frequency of A in each state is

the difference between the number of A’s that are born and the

number of A’s that die.

Claim 2. We show that for global updating, condition (11) is

equivalent to

S
L

Lw

����
w~0

(birthA{deathA)T0w0: ð12Þ

Here S:T0 denotes the average over the stationary distribution in

the neutral process, w~0.

Claim 3. Finally we claim that, in the limit of weak selection,

for structures satisfying global updating and constant death or

birth, the difference between the birth rate and death rate of an

individual i in state S can be written in terms of the payoff of

individual i as:

birthi{deathi!w(pi{ptot=N) ð13Þ

where ptot is the total payoff of players in the given state S.

Combining the three claims, we conclude that condition (10) is

equivalent to

Sptot
A {xAptotT0w0: ð14Þ

Using the weighted number of interactions between players, we

can rewrite the total payoffs in any given state as

ptot
A ~aIAAzbIAB

ptot~aIAAzbIABzcIBAzdIBB

Thus, condition (14) is equivalent to

aSIAA(1{xA)T0zbSIAB(1{xA)T0wcSIBAxAT0zdSIBBxAT0: ð16Þ

However, since 1{xA~xB, by symmetry at neutrality we have

that SIAAxBT0~SIBBxAT0 and SIABxBT0~SIBAxAT0. Hence

(16) is equivalent to

sazbwczsd ð17Þ

where

s~
SxBIAAT0

SxBIABT0

: ð18Þ

This concludes the proof of the main result. Below we give the

proofs for the three claims made above.

Proofs of Claims
Proof of Claim 1. By assumption, either birth or death has a

fixed rate; assume without loss of generality that death is constant

with rate d . In a given state, the expected change in the frequency

of A individuals is

DxA~ 1{
u

2

� �
birthAz

u

2
birthB{deathA: ð19Þ

We simplify this equation using the following three relations:

birthAzbirthB~deathAzdeathB since the population size is

fixed; deathA~dxA and deathB~dxB since the death rate is

constant and, finally xB~1{xA. Moreover, we know that on

average selection and mutation balance each other, so the average

Calculating Evol Dynamics in Structured Population
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total change in the frequency of A individuals is zero, i.e.

SDxAT~0. Using all these into (19) we conclude that

SxAT~
1

2
z

1{u

ud
SbirthA{deathAT: ð20Þ

This proves the claim. Note that this claim holds for any intensity

of selection.
Proof of Claim 2. As in [41], we are assuming that the

transition probabilities are differentiable functions of w at w~0.

Then, in the limit of weak selection, we can write the first-order

Taylor expansion of SbirthA{deathAT at w~0

SbirthA{deathAT~SbirthA{deathAT0z

w
L

Lw

����
w~0

SbirthA{deathAT:
ð21Þ

For global updating, the average change due to selection in the

neutral process is zero, i.e. SbirthA{deathAT0~0. Moreover,

using the product rule, we write:

L
Lw

����
w~0

SbirthA{deathAT~
X

S

(birthA{deathA)Sjw~0

LpS

Lw

����
w~0

z

z
X

S

pS jw~0

L(birthA{deathA)S

Lw

����
w~0

~

~
L birthA{deathAð Þ

Lw

����
w~0 0

:

ð22Þ

Here we used the fact that for neutrality, under global updating in
a fixed population size, individuals have equal birth and death
rates; hence, (birthA{deathA)Sjw~0~0 for all states S. This gives

the desired result.
Proof of Claim 3. Again, we assume without loss of

generality that the death rate is constant, equal to d . In

neutrality, all individuals have effective payoff 1. As noted in the

proof of Claim 2, an individual has equal birth and death rates at

neutrality, w~0. Thus, in the limit of weak selection, we can write

the first-order Taylor expansion at w~0 and obtain

birthi~dzw
Lbirthi

Lw

����
w~0

: ð23Þ

When w=0, the birth rate of each individual depends on the

effective payoff of any other individual, which itself is a function of

w: fj~1zwpj . Hence (23) can be rewritten using the chain rule as

birthi~dzw
X

j

Lbirthi

Lfj

����
w~0

pj : ð24Þ

Because the population size is fixed, we haveP
i birthi~

P
i deathi~d. Hence, summing (24) we obtain

X
i,j

Lbirthi

Lfj

����
w~0

pj~0: ð25Þ

When w~0 all individuals have the same fitness. Therefore,

by the symmetry imposed by global updating, we have:

Lbirthi=Lfijw~0~Lbirthj=Lfj jw~0 for all i and j and

Lbirthi=Lfj jw~0~Lbirthk=Lfl jw~0 for all i=j and k=l. It thus

follows from (25) that for each j=i

Lbirthi

Lfi

����
w~0

~{(N{1)
Lbirthi

Lfj

����
w~0

: ð26Þ

Thus, we can rewrite (24) as

birthi~dzw
N

N{1

Lbirthi

Lfi

����
w~0

(pi{
1

N

X
j

pj)

which gives the desired result.
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