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Abstract

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates charac-

teristic of Sphagnum-rich peatlands (“bogs”) are not fully understood, despite decades of

research on this topic. Soluble phenolic compounds have been invoked as potentially signifi-

cant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism

and cell growth. Despite this potentially significant role, the effects of soluble phenolic com-

pounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulat-

ing the concentration of free soluble phenolics in anaerobic bog and fen peat incubations

using water-soluble polyvinylpyrrolidone (“PVP”), a compound that binds with and inacti-

vates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates

(end-products of anaerobic C mineralization) generally correlated positively with PVP con-

centration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters,

we estimated that the extent to which phenolics inhibit anaerobic CO2 production was signifi-

cantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found to

be more substantial with regards to methane production—wherein phenolic inhibition for the

bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consis-

tent with this habitat difference, we observed significantly higher soluble phenolic content in

bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could con-

tribute to bogs’ extraordinary recalcitrance and high (relative to other peatland habitats)

CO2:CH4 production ratios.

Introduction

Due to the enormous quantity of carbon (C) contained in peatlands—current estimates rang-

ing from ~530–1,175 Pg globally (equivalent to ~60% - 134% of current atmospheric C stores)
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[1–3]—shifts in peatland C cycling have potentially significant impacts on the global climate.

Most peatlands are CO2 sinks and CH4 sources [4–6]. The former process is cooling to the cli-

mate, while the latter has a warming effect. While peatland C deposition has had a significant

cooling effect on the climate through much of the Holocene, this effect has diminished over

the last ~150 years. Estimates of present climatic impacts range from slightly cooling (-0.7 W x

m-2; instantaneous box-model estimate) [7] to slightly warming (+0.6 Pg CO2-equiv y–1; field

flux estimate) [5].

This regime shift is the result of climate change-induced disruptions to the peatland system

including water table shifts, permafrost thaw, and increased frequency of fire and drought [8–

10]. Acute anthropogenic disturbances (e.g., drainage and burning) have also created signifi-

cant C balance disruptions and will likely continue to do so without political intervention [5].

Together, these disruptions may speed up rates of CO2 and CH4 production via decomposi-

tion, thereby shifting peatlands into significant drivers of warming. It is thus imperative that

we incorporate an accurate assessment of peatland-climate dynamics into global climate mod-

els. To do so, we must understand the underlying biogeochemical processes responsible for

peat C mineralization.

Due to the extent of water saturation typically observed in peatlands, most of the peat col-

umn decomposes anaerobically [11]. The resulting anoxia precludes oxic respiration and the

generally nutrient-depleted conditions characteristic of peatlands hinder respiration via inor-

ganic terminal electron acceptors (“TEAs”) [11]. As such, anaerobic decomposition is limited

primarily to three low energy-yielding processes (1) hydrolysis (breakdown of complex

organic compounds into simple compounds), (2) fermentation, and (3) methanogenesis.

Though slow, anaerobic decay has the potential to significantly impact the climate due to the

production of methane (which has a global warming potential of 45 times that of CO2 on a

100-year timescale [12]. This study will, therefore, focus on the mechanisms controlling anaer-

obic decomposition in peatlands which, for the sake of brevity, will be henceforth referred to

as “decomposition” or “C mineralization”.

Peatland permafrost thaw results in a mosaic of habitat types with differing hydrological

and pH regimes that have significant effects on decomposition rates [13–17]. Of particular sig-

nificance is the shift from Sphagnum-rich (“bog”) to sedge-dominated (“fen”) habitats—the

former being known for extraordinarily slow decomposition rates and high CO2:CH4 produc-

tion ratios—and the latter characterized by relatively quicker decomposition and lower CO2:

CH4 ratios [16, 18]. Certain abiotic factors partially explain the slower decomposition rates

typically observed in bogs, such as lower pH (~4.5 in bogs, 7–8 in fens; [19]) and availability of

TEAs. However, they do not fully account for the much slower decomposition rates observed

in bogs [11, 20, 21].

Soluble phenolics have been invoked as potentially significant inhibitors of bog decomposi-

tion due to (1) the abundance of bog dissolved organic matter (“DOM”) with high (relative to

fen) aromaticity, molecular weight, and O/C ratios—indicative of high soluble phenolic con-

tent [22] and (2) the propensity of soluble phenolics to suppress microbial metabolism and

inhibit cell growth [22–27]. Metabolic disruptions are attributed to phenolic-enzyme interac-

tions (bonding and/or adsorption), which limit enzyme activity [28–33]. Disruptions to cell

growth and function are attributed to phenolic-membrane interactions, which can cause

membrane injury and increased permeability [34]. The latter is associated with increased

influx of extracellular compounds—some of which can be toxic to micro-organisms—and

increased efflux of intracellular components that are necessary for cell growth, such as pro-

teins, potassium, and phosphates [34–38].

Though the inhibitory effects of soluble phenolics are generally accepted, the extent to

which they inhibit C mineralization in bogs remains unclear [9, 24, 25, 39, 40]. Studies to date
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have focused heavily on the potential for soluble phenolics to inhibit enzymatic hydrolysis.

These studies have yielded conflicting results, ranging from inconsequential [39, 40] to sig-

nificant inhibition of hydrolysis [9, 24, 25]. To clarify the impacts of soluble phenolics on

bog C mineralization, it is necessary to consider all three stages of bog decomposition

(hydrolysis, fermentation, and methanogenesis). There are three reasons for this need: (1)

inhibition of fermentation and methanogenesis by soluble phenolics has been observed [27,

35, 41, 42]; (2) evidence of simple sugar buildup in bog peat indicates that C mineralization

rates are sometimes not limited by hydrolysis (which produces simple sugars), but rather fer-

mentation and/or methanogenesis (which collectively consume simple sugars) [43]; and (3)

there is not always a significant relationship between respiration rates and hydrolytic enzyme

activities [44].

Studies that consider the impacts of soluble phenolics on all three stages of bog decomposi-

tion are scant. Suppression of CO2 and CH4 production—end-products to all three stages—

has been observed in incubated peat amended with phenolic-rich DOM [45]. Though it is fea-

sible that soluble phenolics caused this inhibition, the presence of other potentially inhibitory

DOM compounds precludes definitive affirmation of this effect [45]. Suppression of aerobic

respiration by soluble phenolics has been observed in an aerobic incubation experiment [9],

but only after the addition of respiration substrates (C and nutrients). This finding suggests

that the potentially inhibitory impacts of soluble phenolics are inconsequential in substrate-

limited settings. Given that substrate supply varies in response to site-specific factors—such as

vegetation and climate—it is necessary to broaden assessments regarding the impact of soluble

phenolics on C mineralization to more sites. Moreover, given the climatically significant role

of anaerobic decomposition, [11], it is necessary to apply these assessments to anaerobic

conditions.

We analyzed the relationship between in situ soluble phenolic content and anaerobic C

mineralization rates in a bog and fen site within a Swedish permafrost peatland (Stordalen

Mire). We used the cumulative production of CO2 and CH4 (the end-products of C minerali-

zation in anaerobic bog environments) to determine C mineralization rates. Using the meth-

ods of [46], we manipulated the concentration of free soluble phenolics using water-soluble

polyvinylpyrrolidone (“PVP”). This synthetic polymer “inactivates” soluble phenolics via bind-

ing and precipitation, preventing phenolic-enzyme interactions from occurring [47]. To maxi-

mize this inactivation, we sought to saturate our incubations with PVP. As the concentration

necessary to achieve saturation in our incubations was unknown, additions were undertaken

across a wide concentration range.

We hypothesized that increasing PVP concentration would increase C mineralization rates

in the bog without the addition of respiration substrates because substantial buildup of simple

sugars has been observed in bog pore-water from our study site [43]. We hypothesized that the

bog would contain higher soluble phenolic content than the fen, given prior observations that

bogs possess higher O/C ratios, greater aromaticity, and higher molecular weights—suggesting

higher (potentially inhibitory) phenolic content [22]. We hypothesized that higher soluble

phenolic content would cause a stronger inhibitory effect on bog vs. fen C mineralization.

We hypothesized that the relationship between PVP concentration and C mineralization

rates would follow a Michaelis-Menten saturation function (Fig 1). By examining the effects of

PVP saturation on C mineralization, we sought to quantify the extent to which soluble pheno-

lics inhibit bog and fen C mineralization. We expect these to be minimum estimates given that

(1) even in PVP-saturated conditions, a minute portion of free soluble phenolics likely persist

[47] and (2) of these persisting soluble phenolics, some could feasibly continue interacting

with enzymes, leading to continued inhibition of C mineralization.
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Site description

Stordalen Mire is a subarctic peatland approximately 10 km east of Abisko, Sweden (68.35˚,

19.05˚E). Located within the discontinuous permafrost zone, it is comprised of three dominant

habitats—palsas, bogs, and fens—reflecting various stages of thaw with different hydrologic

regimes. For an in-depth description of these habitats, see [22, 48, 49].

Palsas are characterized by raised topography situated above permafrost peat. This creates

dry, ombrotrophic conditions. Vegetation is dominated by Ericaceous and woody shrubs,

Eriophorum vaginatum, and lichens. Decay rates in these environments are slower than photo-

synthetic uptake, constituting a C sink [48]. Methane emissions are generally lowest in this

habitat as their dry conditions limit anoxic decomposition [50].

Bogs are considered the product of slow thawing of the upper permafrost layer. They are

perched above the regional water table separated by a layer of permafrost. As such, water

inputs are limited to rainfall (“ombrotrophic”). Vegetation is dominated by mosses (mainly

Sphagnum spp.), with some sedges (e.g. Eriophorum vaginatum, Carex rotundata). The pH in

bogs typically ranges from 4–5, with an average value of 4.1 in Stordalen [19]. Decay rates are

significantly lower than photosynthetic uptake, resulting in a significant C sink [16, 48]. While

bogs are net CH4 sources, their CO2:CH4 production ratios are >> 1 [18, 51] which limits

their net radiative forcing [16, 18, 50, 51].

Fens are devoid of intact permafrost. Land subsidence causes the water table to rise above

the soil surface allowing for lake-water and/or groundwater input. Vegetation is dominated by

sedges such as E. angustifolium and Carex rostrata. Sphagnum spp. is less abundant than in

bogs. Fens at Stordalen are distinct from previously studied subarctic mires in that they con-

tain more Sphagnum spp. and have lower pH values (~5.1 at Stordalen, 7–8 for previously

studied sites; [19]). Decay rates are faster than in bogs but still slower than photosynthetic C

uptake, constituting a weak C sink [48]. This cooling effect is typically offset by the relative

Fig 1. Hypothesized relationship between polyvinylpyrrolidone (PVP) concentration vs. C mineralization. C

mineralization rate (measured by CO2 and CH4 production) corresponds to the primary y axis (solid black line).

Assumed active soluble phenol content corresponds to the secondary y axis (dotted grey line). Addition of PVP was

hypothesized to positively impact CO2 and CH4 production rates by inactivating soluble phenolics which would

otherwise inhibit C decomposition. This relationship was expected to follow a Michaelis-Menten saturation curve.

After reaching a point of PVP saturation (red line), further increases in PVP concentration were expected to yield no

significant changes in C mineralization rates.

https://doi.org/10.1371/journal.pone.0252743.g001
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high production of methane (CO2:CH4 ratios generally closer to 1), resulting in higher warm-

ing potential relative to bogs [16, 50, 52].

Methods

Under the IsoGenie Project, our team maintains field permits with the Abisko Scientific

Research Station and its parent organization, the Swedish Polar Research Secretariat, to collect

samples from Stordalen Mire.

Field collection

Peat for the laboratory incubation experiments was obtained from two sites: one bog

(19.04923˚N, 68.35559˚W) and one fen (19.04620˚N, 68.35443˚W). These sites were selected

because they were (1) determined to be representative of the plant community and hydrologic

conditions of their respective habitats and (2) within 50 m of one another. Each core was col-

lected in July 2018 using an Eijelkamp perforated stainless steel corer (Eijelkamp, The Nether-

lands) as described in [53]. Specific core locations were selected at random, and attention was

paid carefully not to sample in previously cored sites. The lengths of the bog and fen cores were

27 and 24 cm, respectively, with whole-core diameters of 5 cm. Each core was sectioned using a

razor blade and a subsection from 9–19 cm depth was set aside for incubation analysis. This

depth range was selected because at this depth peat is generally below the water table, facilitating

anaerobic decomposition (which is the focus of this study). The 9–19 cm sub-section weights for

bog and fen were 933.7 and 651.2 g, respectively. The peat was stored at -20˚C from the point of

collection up until the experiment start date—20 and 29 months for bog and fen, respectively.

Pore-water for soluble phenolic analysis was obtained from four sites within Stordalen

Mire: two bog (site 1: 19.04758˚N, 68.35330˚W, site 2: 19.04923˚N, 68.35559˚W) and two fen

(site 1: 19.04658˚N, 68.35337˚W, site 2: 19.04620˚N, 68.35443˚W). Pore-water was obtained

by pushing stainless steel piezometers to the desired depth interval and extracting the water

with an airtight syringe. At each site, three pore-water profiles were obtained, each of which

included extractions from up to four depth intervals (depending on water table levels and com-

paction of peat, which can prevent retrieval through manual suction when too high). These

depth intervals were: 1–5, 10–14, 20–24, 30–34, and 40–44 cm below ground surface. After

extraction, the samples were filtered to 0.7-μm and stored at -20˚C until analysis.

Experimental design

We prepared replicate incubation experiments on bog and fen peat. For each habitat, we pre-

pared six treatments. Each had three replicates, totaling 18 vials. Treatment 1 was an untreated

control. Treatments 2–6 spanned a polyvinylpyrrolidone (PVP) concentration range of 0.001–

0.064 g/mL (Table 1), which extended above and below concentrations shown to stimulate

enzymatic hydrolysis in DOM-rich arctic river water (0.005 and 0.010 g/mL) [46].

Table 1. PVP Concentration by treatment number.

Treatment # PVP Conc. (g/mL)

1 0

2 0.001

3 0.004

4 0.016

5 0.032

6 0.064

https://doi.org/10.1371/journal.pone.0252743.t001
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We thawed and homogenized the peat by de-clumping it with gloved hands and forceps

using the method developed by [54]. We aliquoted 40 g of homogenized peat and 30 mL

deionized (DI) water into each 160-mL clear borosilicate vial. We then capped the vials with

rubber septa and sealed them with aluminum crimps. To create anoxic conditions, we vigor-

ously shook the vials and flushed the headspace with N2 gas. We repeated this process until

headspace CO2 concentrations measured less than 0.1% (see “Gas Analysis”), which was two

magnitudes lower than the CO2 production measured during the experiment. The above-

gauge headspace pressure was ~3.5 psi immediately following headspace flushing. We stored

the vials in total darkness at room temperature (20–22˚C) and allowed them to sit for a 25-day

pre-incubation phase. The purpose of this step was two-fold. First, it has been shown to facili-

tate consumption of molecular O2 and reduction of oxidized chemical species [48, 49]. Second,

it offers a re-acclimation period for the microbial community [55]. We reference all time

points relative to the end of this pre-incubation period such that day 1 corresponds to the first

day following the 25-day pre-incubation phase.

Two experiments were conducted—one bog, one fen—using shallow (9–19 cm) peat that

was held in dark, anoxic conditions. For each experiment, six treatments were applied, with

respective concentrations included above. Each treatment was conducted in triplicate, totaling

18 vials per experiment.

On day 1, water-soluble polyvinylpyrrolidone PVP was added (Sigma Aldrich, CAS #:

9003-39-8, average molecular weight: 40,000). Using a stock solution of PVP at 0.256 g/mL in

DI water, we performed serial dilutions to obtain the final PVP concentrations detailed in

Table 1, except for the control (treatment 1), which was composed entirely of DI water. We

injected 10 mL of the relevant PVP solution (except for Treatment 1, which contained only DI

water) into each vial to achieve the final concentrations indicated in Table 1. The final ratio of

grams wet peat: mL solution was 1:1, which was enough to fully saturate the peat. The pH at

the beginning and end of the experiment was 4.5 and 5.5 for bog and fen peat, respectively. As

these values were consistent with the field, pH alteration was not necessary.

After addition of the PVP solution, we re-flushed the headspace with N2 gas and shook the

vials until we once again measured headspace CO2 concentrations less than 0.1%. At this time,

the above-gauge headspace pressure was once again ~3.5 psi. We periodically measured head-

space pressure to ensure that it did not fall below 0.5 psi (to prevent air infiltration). Since the

volume extracted for gas analysis (� 250 μl) was a small fraction of the total headspace volume

(80 mL), gas replacement was not necessary to maintain >0.5 psi headspace pressures. We col-

lected headspace samples for analysis of CO2 and CH4 concentrations every 3–10 days

throughout the duration of the experiment (56 days; consistent with [16]). At the end of the

experiment, we removed the vial caps and dried the samples at a constant 68˚C. Once the sam-

ple weights stabilized, we obtained final dry weights, which we used to calculate CO2 and CH4

production per g dry peat (see “Statistical Analysis”).

Gas analysis

We performed all CO2 and CH4 concentration analyses via Flame-Ionization-Detector Gas

Chromatography (GC-FID) equipped with a methanizer using methods established by [22]. We

used a gas-tight syringe for injection of all samples and standards. The GC flow rate was 30 mL/

min, and the temperatures were 140, 160, and 380˚C for the column, detector, and methanizer,

respectively. On each sampling day, we created a linear calibration curve for both CO2 and CH4

using standards of known concentrations. Before sample analyses, we shook the vials vigorously

to liberate gases trapped in the peat pore-spaces. We also recorded headspace pressures to calcu-

late partial pressures of CO2 and CH4 (which were essential for statistical analysis).
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Soluble phenolic analysis

We used the Folin-Ciolcateu (FC) method to quantify total soluble phenolic abundance, as

described by [56]. Briefly, we added 0.15 mL of pore-water to 0.5 mL of 0.27M FC reagent

(diluted from starting concentration of 2M, obtained from VWR, cat# IC19518690). We

mixed this solution and allowed it to sit for 5 minutes before adding 0.5 mL of 93.6 g/L

Na2CO3 solution (VWR, cat# 97061–296). The samples were once again mixed and allowed to

sit for 2–3 hours. Their absorbance was then measured at 765 nm using a UV/Vis absorption

spectrophotometer (BioTek Synergy HTX Multi-Mode Reader). We used a standard calibra-

tion curve of gallic acid using seven concentrations ranging from 0.27 to 6.6 g/mL. Absorbance

values were all blank-corrected and concentrations were adjusted based on the dilution

imposed by reagent addition. The detection limit for this methodology was 2.5 μM.

Statistical analysis

Soluble phenolic content. To estimate the impact of three factors upon soluble phenolic

abundance—(1) habitat, (2) depth, and (3) site—we performed a 3-factor ordinary least-

squares regression analysis using the ols function within the formula.api package from

Python’s statsmodel library. This function had two inputs: (1) formula, and (2) dataset. The

formula was as follows: soluble phenolic content = a�habitat + b�depth + c�site, where a, b,

and c represent coefficients determined by the ols function. (The dataset for the bog and fen

are included in the S1 File).

Gas production rates. We calculated average production rates (μmoles × g dry peat-1 ×
day-1) for CO2 and CH4 using the steps outlined below. We determined total C mineralization

rates (“Ctot”) by taking the sum of CO2 and CH4 production rates.

To calculate gas production rates, we first determined the quantity of gas injected into the

GC—ngas(inj)—by inputting sample peak amplitudes into our standard calibration curve (Eq

1). We used the ideal gas law to determine the total moles injected—ntot(inj) (Eq 2). We calcu-

lated the gas fraction—Fgas—using Eq 3, which we used to calculate headspace partial pres-

sures—Pgas (Eq 4). We then applied this value to the ideal gas law to quantify the headspace

moles—ngas(HS) (Eq 5). Using Henry’s Law (Eq 6), we calculated the dissolved gas concentra-

tion—Cgas(aq.)—which we used to determine the moles in the aqueous phase—ngas(aq) (Eq 7).

For CO2 the higher pH in the fen resulted in an appreciable quantity of the dissolved inorganic

C as bicarbonate requiring us to calculate the total DIC from equilibria equations. Once the

total moles of CO2 and CH4 in the aqueous phase were calculated, we determined the moles

per vial—ngas × vial-1—using Eq 8. Our final daily production values—ngas × g-1—were

obtained by Eq 9 (where g = dry peat weight).

ðngasðinjÞ ¼ ðm � amplitudegasÞ þ b ð1Þ

ntotðinjÞ ¼
P � V
R � T

ð2Þ

Fgas ¼
molesgas� injected
molestotal� inject

ð3Þ

Pgas ¼ Fgas � Ptot ð4Þ
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ngasðHSÞ ¼
ðPgas � VHSÞ

ðR � TvialÞ
ð5Þ

Cgasðaq:Þ ¼ KH � Pgas ð6Þ

ngasðaq:Þ ¼ Cgasaq
� Vaq ð7Þ

ngas

vial
¼ ngasðaqÞ � ngasðHSÞ ð8Þ

ngas

g
¼

ngas

vial
�

g
vial

� �� 1

ð9Þ

Production rate time series were best approximated using linear regression equations. We

determined average production rates (ngas × g-1 × d-1) using the slopes of these equations. We

calculated respective R2 values using the Microsoft Excel RSQ function. To assess the signifi-

cance of PVP concentration on production rates, we used the Microsoft Excel 2-tailed T-test

(T.test) function.

Modeled response to PVP addition

The relationship between gas production rate and PVP concentration was best approximated

using Michaelis-Menten equations. Since production rates were expected to be nonzero in

controls (where PVP = 0 g × mL-1) we appended a y-intercept to the Michaelis-Menten equa-

tion (resulting in Eq 10). The y-intercept—"Prod0”—was equivalent to the average production

rate of controls (n = 3).

y ¼
ðvmax � xÞ
ðkm þ xÞ

þ Prod0 ð10Þ

We used the curve_fit function from the Optimize package within Python’s SciPy library to

determine the values of Michaelis-Menten constants vmax and km. We determined the production

rates in PVP-saturated peat—Prodsat—by summing the y-intercept (Prod0) and vmax using Eq (11).

Prodsat ¼ vmax þ Prod0 ð11Þ

We used non-parametric bootstrapping (1,000 simulations) to calculate the standard deviation

(95% confidence interval) for calculated vmax and km values. In addition to the Optimize package

(referenced above), these simulations were programmed using the Numpy and Pandas Python

data packages. To determine the fraction of observed variance explained by the Michaelis-Menten

model, we calculated the R2 value for measured vs. modeled production rates. Outliers were identi-

fied when the squared residual for measured production rates (representing one incubation vial at

one PVP concentration) deviated from modeled values by more than two standard deviations.

After outliers were determined, Michaelis-Menten parameters (and associated standard deviations)

were re-calculated using non-outliers.

Results

When production rates of all three of CO2, CH4, and Ctot (CO2+CH4) follow similar trends,

we will refer to them collectively as “GHGc” production. GHGc production rates generally
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increased with PVP concentration (with the exception of CH4 production from fen peat; Fig

2). GHGc production was linear with time for all incubations (R2�0.810). CO2:CH4 produc-

tion ratios were significantly (p<0.001) elevated relative to median values between days 1–10

—a phenomenon that we attributed primarily to increasing CH4 production rates (discussed

in [18]). After this period, CO2:CH4 production ratios stabilized (as did CH4 production

rates). We include only data collected after the stabilization period ended (day 10) in our calcu-

lations of average CO2:CH4 production ratios.

Bog incubations

Amended Michaelis-Menten models relating PVP concentration to GHGc production (Eq 10,

Methods) accounted for 83%, 62%, and 83% of the observed variance in bog CO2, CH4, and

Ctot production, respectively (95% confidence interval, Fig 2A–2C, Michaelis-Menten parame-

ters detailed in Table 2). One outlier was identified (see Methods, Modeled Response to PVP

Addition), representing the GHGc production rate from one vial at PVP = 0.064 g/mL. PVP-

saturated production rates (“Prodsat”; calculated using Eq 11, Methods) were significantly

(p<0.001) higher than control production rates (“Prod0”; calculated by averaging control pro-

duction rates), amounting to a 2.8, 2.6, and 2.8-fold increase in CO2, CH4, and Ctot production,

respectively. CO2:CH4 production ratios ranged from 2.3–4.0 across all PVP concentrations

studied, with control ratios averaging 3.3 ± 0.4. We approximated the relationship between

CO2:CH4 vs. PVP concentration using a linear regression fit and found no significant correla-

tion (R2 = 0.414, p = 0.65) between these factors.

Fen incubations

Michaelis Menten saturation functions approximating PVP vs. CO2 and Ctot production rates

accounted for 88% and 80% of the observed variance in fen CO2 and Ctot production, respec-

tively (95% confidence interval, Fig 2, Table 2). One outlier was identified, representing the

GHGc production rate from one vial at PVP = 0.004 g/mL. Michaelis-Menten equations could

not be approximated for PVP vs. CH4 production rates in fen incubation. No other function

relating these two parameters was found to yield a significant relationship.

While PVP-saturated production rates for CO2 and Ctot (Prodsat; calculated using Eq 11,

Methods) were significantly (p<0.001) higher than control production rates (Prod0; calculat-

ing by averaging control production rates), the extent of increase from PVP saturation was sig-

nificantly (p<0.001) lower than in the bog, amounting to 1.2 and 1.1-fold increases following

saturation, respectively. CO2:CH4 production ratios ranged from 2.7–4.4 across all PVP con-

centrations studied, with control ratios averaging 2.72 ± 0.04. We approximated the relation-

ship between CO2:CH4 vs. PVP concentration using a linear regression fit and found that,

though this fit explained only 28.4% of observed variance in CO2:CH4 ratios, there was a sig-

nificant positive correlation between these factors.

Quantifying phenolic inhibition of C mineralization

We calculated the extent to which phenolics apparently inhibited GHGc production in incu-

bated bog and fen peat using the following equation:

Phenolic Inhibition ¼ 100 �
Prodsat� Prod0

Prodsat

� �

ð12Þ

The reasoning behind this equation was as follows. PVP saturation is considered a method for

decreasing soluble phenolic effectiveness. As such, GHGc production in PVP-saturated peat
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(Prodsat) should theoretically approximate peat that is free of active soluble phenolics, except

for the minute portion that persists in solution following equilibration with PVP. The %Phe-

nolic Inhibition by phenolics should thus be measured by a comparison between PVP-satu-

rated (Prodsat) and control (Prod0) peat. As it is feasible that persisting soluble phenolics could

continue to react with enzymes [47], this equation offers a minimum estimate of %Phenolic

Inhibition.

In bog incubations, phenolics significantly (p<0.001) inhibited Ctot, CO2, and CH4 produc-

tion by 61 ± 12, 62 ± 16, and 54 ± 19%, respectively (Table 3; standard error calculating by

propagating error from Prod0 and Prodsat). In incubated fen, phenolics significantly (p<0.001)

Fig 2. Observed and modeled impacts of polyvinylpyrrolidone (PVP) on C mineralization. PVP concentration (g

mL-1) vs. gas production in incubated bog (a-d) and fen (e-h) peat. a‘CO2’ (panels a,d), ‘CH4’ (panels b,f), and ‘Ctot’

(CO2+CH4; panels c,g) refer to production rates (μmoles× g dry weight-1 × d-1) while ‘CO2:CH4’ (panels d and h) are

unitless ratios. Measured and modeled values are displayed as filled circles and solid lines, respectively. Modeled values

were calculated using an amended Michaelis-Menten function (Eq 10, Methods) for panels a-c and e-g (R2 values

provided in Table 2). Modeled values were calculated using best-fit linear regression curve for panels d (R2 = 0.414

p = 0.65) and h (R2 = 0.284 p<0.001). “Prodsat”—the estimated production rate for PVP-saturated peat (Eq 11,

Methods)—and “Prod0”—the average control production rate—are displayed as dashed and dotted lines, respectively

(panels a-c and e-g). Standard deviations for Prod0 and Prodsat are depicted with gray shading.

https://doi.org/10.1371/journal.pone.0252743.g002
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inhibited Ctot and CO2 production, though to a lesser extent—10 ± 4 and 14 ± 4%, respectively.

No apparent inhibition of CH4 production in fen incubations was observed, as PVP concentra-

tion had no significant impact on CH4 production rates.

Pore-water analysis from field samples

Soluble phenolic content, presented in Table 4, was significantly influenced by habitat, depth,

and site (p<0.001). The ordinary least-squares regression model obtained using habitat and

depth accounted for 78.6% of all observed variance in soluble phenolic content. Habitat had

the strongest influence on soluble phenolic content (t = 9.83, coefficient = 4.77) with bog sam-

ples exhibiting 2.9 to>15 x higher soluble phenolic content than fen samples (Table 4). Depth

had the next strongest influence (t = 3.76, coefficient = 0.07) with greater depths exhibiting

generally higher soluble phenolic content. Site had the smallest impact (t = 2.39, coeffi-

cient = 1.10), with slightly higher phenolic content observed at site 2 (for both habitats).

Discussion

We hypothesized that increasing PVP concentration would yield increasing GHGc production

rates and that this relationship would follow an amended Michaelis-Menten (saturation) func-

tion (Fig 1). We hypothesized that this relationship would be more pronounced in bog vs. fen

Table 2. Michaelis-Menten parameters for CO2, CH4, and Ctot (Fig 2: Panels a-d and e-g).

Habitat Gas km vm Prod0
a Prodsat

b R2

Bog CO2 0.008 ± 0.004 0.08 ± 0.01 0.046 ± 0.004 0.13 ± 0.01 0.829

CH4 0.003 ± 0.002 0.02 ± 0.003 0.014 ± 0.003 0.037 ± 0.004 0.617

Ctot 0.008 ± 0.003 0.11 ± 0.01 0.06 ± 0.006 0.17 ± 0.01 0.835

Fen CO2 0.001 ± 0.002 0.17 ± 0.03 1.01 ± 0.02 1.18 ± 0.04 0.884

CH4 N/Ac N/Ac N/Ac N/Ac N/Ac

Ctot 0.001 ± 0.001 0.15 ± 0.04 1.38 ± 0.03 1.53 ± 0.05 0.808

Michaelis-Menten equations relate PVP concentration (g × mL-1) to CO2, CH4, and Ctot production rate (in μmoles × g-1 × d-1). km and vmax were calculated using the

Python-based SciPy library with the Optimize package and the curve_fit function. The standard deviation for these constants was determined via non-parametric

bootstrapping (1,000 simulations). R2 values reference the fit between modeled and measured values.
aProd0 (μmoles × g-1 × d-1) refers to the average control production rate (where PVP = 0 g �mL-1) and is equivalent to the y-intercept for the Michaelis-Menten curves.
bProdsat (vmax+Prod0) is an estimation of the production rate in PVP-saturated peat.
cMichaelis Menten parameters could not be determined for the relationship between PVP concentration and fen CH4 production, as no significant relationship between

these factors was identified.

https://doi.org/10.1371/journal.pone.0252743.t002

Table 3. Percent phenolic inhibition of Ctot, CO2, and CH4 production rates.

Gas Analyzed Minimum %Phenolic Inhibitiona

Bog Fen

Ctot
b 61 ± 12 10 ± 4

CO2 62 ± 16 14 ± 4

CH4 54 ± 19 N/Ac

a%Phenolic Inhibition estimates were calculated via Eq12.
bCtot represents the sum of CO2 and CH4 production rates.
cAs PVP concentration had no significant impact on CH4 production in fen peat, %Inhibition could not be

determined.

https://doi.org/10.1371/journal.pone.0252743.t003
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incubations, as prior pore-water analysis of our study site (Stordalen Mire) has revealed greater

prevalence of compounds with high O/C, molecular weight, and aromaticity in the bog (indic-

ative of higher phenolic content; [22]).

Evaluating hypotheses

The correlation between PVP concentration and bog GHGc production was positive and

robustly approximated using Michaelis-Menten curves. This held true for CO2 and Ctot pro-

duction from fen peat. These findings are consistent with our hypothesis and can be reason-

ably attributed to PVP-phenolic interactions, which alleviate phenolic inhibition of microbial

processes [27, 28, 46, 47]. Counter to our first hypothesis, we observed no significant relation-

ship between PVP and fen CH4 production, which, combined with the significant CO2 respon-

sivity, resulted in a significant positive correlation between PVP and CO2:CH4 production

ratios. This observation suggests that soluble phenolics did not significantly inhibit CH4 pro-

duction in these incubations.

Also consistent with our hypothesis, we observed significantly higher soluble phenolic con-

tent and %phenolic inhibition of GHGc production in bog vs. fen peat. The difference in phe-

nolic inhibition among habitats was particularly striking for methane production, given the

lack of responsivity to PVP addition in the fen.

Exploring habitat differences

The generally higher %Phenolic Inhibition observed in bog peat can likely be attributed to its

higher soluble phenolic abundance, which would have allowed for more enzyme-phenolic

interactions to occur.

There are three possible explanations for the unique lack of methane responsivity to pheno-

lic removal in the fen: (1) methanogenic enzymes in the fen could have a limited affinity to

bind with soluble phenolics; (2) bog peat could contain specific phenolic compounds that are

particularly effective at binding to methanogenic enzymes; (3) a certain threshold for soluble

Table 4. Soluble phenolic content by site, depth, and habitat.

Site Numbera Depth Range (cm) Soluble Phenolics (μM)b

Bog Fen

1 1–5 n/ac < 2.5d

10–14 39 ± 0 < 2.5d

20–24 31 ± 16 10 ± 5

30–34 52 ± 7 n/ac

40–44 52 ± 1 n/ac

2 1–5 n/ac 5 ± 5

10–14 44 ± 15 13 ± 9

20–24 45 ± 17 13 ± 11

30–34 62 ± 13 14 ± 14

40–44 53 ± 24 18 ± 14

aCoordinates for site 1 are 19.04758˚N, 68.35330˚W and 19.04658˚N, 68.35337˚W for bog and fen, respectively.

Coordinates for site 2 are 19.04923˚N, 68.35559˚W and 19.04620˚N, 68.35443˚W for bog and fen, respectively.
bSoluble phenolics are calculated in gallic acid equivalents.
cSamples could not be collected at this depth/site/habitat combination.
dIndicates values below detection limit.

https://doi.org/10.1371/journal.pone.0252743.t004
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phenolic content could be necessary for interactions between methanogenic enzymes and phe-

nolics to occur, and our fen incubations were below this threshold.

Methanogen community structure differs significantly among peatland habitats [53–55,

57]. One could argue that this observation supports explanation 1 (that methanogenic enzymes

in the fen could have a limited affinity to bind with soluble phenolics)—as it is feasible that dif-

fering methanogenic community structures lead to differing enzyme speciation. However, sig-

nificantly higher diversity among the methanogen community within fens has been observed

relative to bogs [53–55], rendering the possibility that fens do not possess any significant pool

of methanogenic enzymes capable of binding to soluble phenolics unlikely.

A diverse pool of soluble phenolics have been detected in bioreactors containing living

Sphagnum spp. [58, 59]. While this implicates explanation 2 (that bog peat could contain spe-

cific phenolic compounds that are particularly effective at binding to methanogenic enzymes)

as feasible, a more detailed analysis of soluble phenolic speciation across peatland permafrost

thaw gradients is necessary to fully assess the impact of phenolic speciation on the regulation

of peat decay. Further research, potentially involving phenolic addition to fen, is also necessary

for investigating possibility 3 (that a certain threshold for soluble phenolic content could be

necessary for interactions between methanogenic enzymes and phenolics to occur).

Incubation-field comparison

Incubations are imperfect representations of in situ phenomena, as perturbations imposed by

their sampling, setup, and implementation are inevitable. Thorough analyses—conducted

using field and incubation data taken from our study site—have thus been undertaken as a

means of quantifying these perturbations [55, 60]. Findings demonstrate that the incubations

methods employed herein yield C mineralization rates and CO2:CH4 production ratios that

are largely consistent with in situ observations [60]. They also indicate that, with respect to

microbial communities and carbon cycle geochemistry, these incubation largely reproduce

field results, indicating functional consistency [55].

Crucial to this consistency is the implementation of a 25-day pre-incubation period (which

was incorporated in this study). This period has been shown to significantly lessen perturba-

tions imposed upon the microbial community immediately following setup [55]. This observa-

tion, combined with the consistency in greenhouse gas production rates between the field and

incubations (observed after pre-incubation) [60], indicates that any enzymes degraded during

freezer storage (-20˚C; [61]) are likely replenished during this pre-incubation period. Further

supporting this supposition is the observation that CO2 and CH4 are produced rapidly follow-

ing permafrost thaw in Finnish permafrost peat [62]—as this could not be accomplished with-

out enzymatic rebound.

Geographic variation

Different locations of the same habitat (bog or fen) within Stordalen Mire exhibited significant

differences in soluble phenolic content, indicating that the extent of inhibition imposed by sol-

uble phenolics likely differs with landscape heterogeneity. To ascertain the extent of variability

in phenolic regulation within and between habitats, it is necessary to broaden assessments to

numerous sites within the Mire. Such assessments would ideally incorporate both soluble phe-

nolic content measurements and % Phenolic Inhibition estimates.

To capture the effects of soluble phenolics on wider geographic scales, it is necessary to dis-

entangle the relative impact of biotic (vegetation, humification indices, microbial community

dynamics) and abiotic (temperature, pH) factors upon enzyme-phenol interactions. To do so,

a combination of field-based (incorporating samples from multiple sites, with numerous
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replicate cores, at differing thaw progression stages) and incubation-based assessments is

necessary.

When considering the role of vegetation, it is recommended that plant species distribution

be considered. This recommendation is based on the observation that exogenous concentra-

tions of several phenolic compounds (including trans-Sphagnum acid, cis-Sphagnum acid,

trans-sphagnum acid ethyl ester, hydroxybutenolide, p-hydroxybenzoic acid, p-coumaric acid,

and trans-cinnamic acid) were consistently (3–14.5 x) higher in bioreactors containing S. cus-
pidatum than S. fallax [63]. As this suggests significant variation in the affinity for different

Sphagnum species to release certain soluble phenolics, it is possible the abundance of hydric

species at our study site—e.g. S. balticum [49]—could have significantly influenced the extent

of phenolic regulation observed.

Climate implications

If applicable to wide geographic scales, our results indicate that soluble phenolics could con-

tribute to two characteristic attributes of peat bogs: (1) their extraordinary recalcitrance [20,

21]—evidenced by their greater responsivity to soluble phenolic removal—and (2) their gener-

ally elevated CO2:CH4 ratios—evidenced by the significant phenolic regulation of methano-

genesis in bog but not fen peat.

These effects have important implications for the climate. Numerous studies indicate that

the introduction of molecular oxygen can stimulate phenol oxidase, which degrades phenolics,

causing enhanced decay of organic matter [9, 24, 25, 64]. This effect is thought to be exacer-

bated by (1) the onset of oxic respiration and (2) increased diversity and abundance of bacte-

rial species capable of catabolizing phenolics—both of which have been observed following

drainage of Sphagnum-rich peat [65]. These findings are the foundation of an assertion that

rapid peat decay could occur following drainage (via anthropogenic disturbances) or exposure

to drought (from rising temperatures) [9, 24, 25].

The positive correlation we observed between depth and soluble phenolic abundance is

consistent with oxygen infiltration significantly lowering phenolic content, as oxygen infiltra-

tion occurs more regularly at shallow depths [11]. However, inconsequential effects of oxygen

introduction on phenolic abundance have been observed in some peatland sites [40, 66–68]. It

has been suggested that peat bogs are particularly resilient to the effects of drainage, given that

comparatively lower microbial community shifts following long-term drainage have been

observed in bogs relative to fens [68]. Further research on this subject is needed before we can

assess the implications of our phenolic inhibition estimates on C mineralization shifts follow-

ing water-table fluctuations.

Furthermore, the significant differences in phenolic abundance observed between bog and

fen peat indicate that habitat transitions due to thaw could significantly impact soluble pheno-

lic content. Satellite studies have revealed widespread expansion of northern peatland shrubs

over multidecadal timeframes [48, 69], while warming experiments have induced significant

loss of Sphagnum [70]. If the stronger influence of phenolics on C mineralization observed in

bogs applies to wide geographic scales, the cumulative inhibition of peatland C mineralization

by phenolics could be significantly offset by habitat transition.

Conclusions

We employed anaerobic incubation experiments of bog and fen peat (collected from Stordalen

Mire, Sweden) inoculated with varying concentrations of PVP—a compound known to

decrease phenolic effectiveness—as a means of investigating the impact of phenolics on C min-

eralization. We estimated that the extent to which phenolics inhibit CO2 production is
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significantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found

to be more substantial with regards to methane production—wherein phenolic inhibition for

the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Soluble

in situ phenolic content was significant higher (2.9 to>15 x) in bog vs. fen samples, indicating

that the difference in inhibitory effects could be due, in part, to soluble phenolic availability. If

applicable across different peatland sites, these findings suggest that soluble phenolics could

contribute to peat bogs’ extraordinary recalcitrance [11, 20, 21], and generally high CO2:CH4

ratios [16, 18].

Supporting information

S1 File. Incubated bog and fen production rates for CH4, CO2, and Ctot (CO2+CH4). Two

experiments were conducted, using bog and fen peat (column ID = “Habitat”). Each experi-

ment had 18 samples (column ID = “Samp. #”), each with one of six possible PVP concentra-

tions, ranging from 0–0.064 g/mL (column ID = “PVP Conc.”). Slope and R2 values reference

linear regression fits for gas production timeseries (Day vs. CO2, CH4, or Ctot production),

with final production rates in μmoles × g dry wt-1 × d-1). Outliers were determined when the

production rates of any of CO2, CH4, or Ctot differed from modeled values by >2 standard

deviations (Methods, Statistical Analysis).
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