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Abstract: The theme of this essay is that the time of dominance of Newton’s world view in science is
drawing to a close. The harbinger of its demise was the work of Poincaré on the three-body problem
and its culmination into what is now called chaos theory. The signature of chaos is the sensitive
dependence on initial conditions resulting in the unpredictability of single particle trajectories.
Classical determinism has become increasingly rare with the advent of chaos, being replaced by erratic
stochastic processes. However, even the probability calculus could not withstand the non-Newtonian
assault from the social and life sciences. The ordinary partial differential equations that traditionally
determined the evolution of probability density functions (PDFs) in phase space are replaced with
their fractional counterparts. Allometry relation is proven to result from a system’s complexity using
exact solutions for the PDF of the Fractional Kinetic Theory (FKT). Complexity theory is shown to be
incompatible with Newton’s unquestioning reliance on an absolute space and time upon which he
built his discrete calculus.
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1. Introduction

Three centuries ago, Newton transformed Natural Philosophy into today’s Science by focusing
on change and mathematical quantification and he did so in a way that resonated with the scientific
community of his day. His arguments appeared to be geometric in character, and nowhere in the
Principia do you find explicit reference to fluxions, or to differentials. What Newton did was reveal the
entailments of the calculus and convince generations of scientists of the value of their focusing on how
physical objects change their location in time. Some contemporary mathematicians of his generation
recognized what he had done, but their number can be counted on one hand, and their comments are
primarily of historical interest.

Fast forward to today, where modern science, from Anatomy to Zoology, is seen to have absorbed
the transformational effect of Newton’s contribution to how we quantitatively and qualitatively
understand the world, the fundamental importance of motion. However, it has occurred to a number
of the more philosophically attuned contemporary scientists that we are now at another point of
transition, where the implications of complexity, memory, and uncertainty have revealed themselves
to be barriers to our future understanding of our technological society. The fractional calculus (FC) has
emerged from the shadows as a way of taming these three disrupters with a methodology capable of
analytically smoothing their singular natures.

If Sir Isaac Newton were reincarnated into the modern world would he again achieve scientific
greatness using his prodigious intellect? Of course we cannot know the answer to this counterfactual,
but what we can determine is whether his fundamental assumptions upon which the physical laws
of analytic mechanics are based remain valid in the today’s world of complexity science. Whether or
not Newton would remain a stranger in this strange land of today’s science is the question we seek
to answer in this essay. Not literally, of course, but more to the point whether the fundamental
assumptions on which his mechanics is based can be sufficiently modified to be compatible with the
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mathematics found necessary to describe today’s complex phenomena, without being distorted to the
point of being abandoned. Can Newton’s view of the world be made compatible with the FC?

The FC moldered in the mathematical backwaters for over 300 years. Since the time of Newton
it was mostly ignored by the social, physical, and life scientists, intermittently emerging from the
shadows of formalism with an application. Historically, the community of international physical
scientists saw no need for a new calculus, or if occasionally seeing the need thought it not worthy
of acknowledgment. The community agreed that the ordinary differential calculus of Newton and
Leibniz, along with the analytic functions entailed by solving the equations resulting from Newton’s
force law, are all that is required to provide a scientific description of the macroscopic physical world.

In his Mathematical Principles of Natural Philosophy [1], Newton introduced mathematics into the
study of Natural Philosophy. He argued the need for quantification of scientific knowledge through
the introduction of mathematics in the form of fluxions and thereby changed the historical goal of
natural philosophy from that of wisdom to that of knowledge. This new term fluxion does not appear
anywhere in the Principles, but scholars have found numerous geometric arguments, which, in fact,
were in all probability based on limits in which Newton, no doubt, had differentials in the back of his
mind. The Marquis de l’Hôpital commented that Newton’s magnum opus was “a book dense with the
theory and application of the infinitesimal calculus”; an observation also made in modern times by
Whiteside [2].

Along with mathematics, Newton also introduced a number of definitions that determined how
scientists were to understand his vision of the physical world for the next few hundred years. We do
not quote his definitions of such well-known things as inertia and force here, but instead we record
the notions of space and time that he believed were the accepted understanding of their meanings as
explained in his first scholium (A scholium is a marginal note or explanatory comment made by a
scholar), which are [1] as follows.

I Absolute, time, and mathematical time, of itself, and from its own nature, flows equably without
relation to anything external, and by another name is called duration: relative, apparent,
and common time, is some sensible and external (whether accurate or unequable) measure
of duration by the means of motion, which is commonly used instead of true time; such as an
hour, a day, a month, a year.

II Absolute space, in its own nature, without relation to anything external, remains always similar
and immovable. Relative space is some movable dimension or measure of the absolute space;
which our senses determine by its position to bodies; and which is commonly taken for immovable
space; such is the dimension of subterraneous, an aerial, or celestial space, determined by its
position in respect of the earth. Absolute and relative space are the same in figure and magnitude;
but they do not remain always numerically the same. For if the earth, for instance, moves, a space
of our air, which relatively and in respect of the earth remains always the same, will at one time
be one part of the absolute space into which the air passes; at another time it will be another part
of the same, and so, absolutely understood, it will be continually changed.

Newton’s understanding of these two notions of the absolute are what enabled him to invent
fluxions and introduce motion as the basis for his new physics. Of course, the mathematically awkward
discrete notation of fluxions was subsequently elbowed out of history by the user-friendly notation of
Leibniz, which became known as the differential calculus. The differential calculus enabled subsequent
generations of scientists to describe the motion of particles in terms of continuous single particle
trajectories in space and time. The differential calculus fills literally thousands of mathematics/physics
text books; all assuming that I and II codify the real world and are taught to eager students and
novitiate scientists throughout the world. Herein, we argue for a mathematics that provides a logical
framework for understanding the more complex world of the Information Age, in which I and II must
be applied with extreme caution, if at all.
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The increase in sensitivity of diagnostic tools, advances in data processing techniques,
and expanding computational capabilities have all contributed to the broadening of science in ways
that have brought many phenomena from borderline interest to center stage. These curious complex
processes are now cataloged under the heading of non-integer scaling phenomena. An understanding
of the fundamental dynamics underlying such scaling requires a new mathematical perspective,
such as that obtained using the dynamics described by non-integer (fractional) operators and such
descriptions ushered in the sunset for much of what remains of Newton’s world view.

Much of what is written in this Introduction will be familiar to those with a background in
physics, even if the organization of the material is not. However the reasons why classical physics fails
to explain a given complex phenomena remains a mystery to those without such a background as well
as to many who do. Therefore, we express the purpose of this paper in the form of a hypothesis and
present arguments in support of the Complexity Hypothesis (CH):

Complex phenomena entailing description by chaos theory, fractional Kinetic Theory, or the
fractional calculus in general, are incompatible with the ordinary calculus and consequently
are incompatible with Newtonian Physics.

1.1. The Demise of Newton’s World View?

The evidence is all around us that the domain of application of Newton’s view of the physical
world is contracting dramatically. His view was reluctantly contracted with the introduction of
quantum mechanics along with relativity over a century ago. However, physicists took consolation in
the fact that the dynamic predictions of the very fast, the very large, and the very small, all reduce to
those of Newton in the appropriate limits. For special relativity, the dramatic changes in time occur
as the speed of light is approached [3]; for general relativity, space curves in the neighborhood of a
large mass [4]; and for quantum phenomena, the correspondence principle associated with the size of
Planck’s constant insures the quantized nature of energy is lost at large quantum numbers and energy
is continuous on the scale we live our lives [5]. However, the more recent constrictions produced by
chaotic dynamics is different; so much so that once made, there is no limit in which the view of Newton
can reemerge. This requires more explanation, as the inappropriate application of the differential
calculus to describe the dynamics of strongly nonlinear phenomena often yields misleading results.
In the author’s view, one such misinterpretation arose in support of the political interpretation of
climate change.

It should be evident that the rubric climate change provides an example of such a misapplication
of the nonlinear hydrodynamic partial differential equations that purport to describe the internal
motion of the earth’s atmosphere involving the multiple interactions with the earth’s temperature field,
solar radiation, cloud cover, and all the rest. Climate change is not just a problem in Newtonian physics,
because if it were we would have the answer to the problem in hand, which some few scientists believe
we do. I say this with full appreciation for the criticism such a statement will draw, from both the
believers in climate change and the sceptics who do not. Let me be absolutely clear in stating that
I believe in climate change, but belief is the wrong word. Climate change is a scientific fact not a
matter of faith or belief. What I am skeptical about concerns the quasi-scientific arguments used in the
political arena that assign causality of that change to human activity followed by the assertion that
climate change can be significantly influenced by political action.

I came to this conclusion, not through a “eureka” moment, or flash of insight, but more through
the weight of evidence drawn from my own scientific research. I even coauthored a book about it [6]
with a colleague who was then a post-doctoral researcher of mine. Our book addressed climate change
as a problem in physics and was greeted with a yawn from the scientific community. It was the last
scientific contribution I made to that debate and the science has not moved significantly since its
publication. My epiphany was that those who successfully communicate technically difficult ideas
tell a story. Thus, I have decided to populate this essay with a sequence of technically-based stories.
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Each one lending additional support to the CH. The first story concerns chaos theory and some of
what that entails.

1.2. Chaos Theory

The chaos story begins in the middle nineteenth century with Oscar II, the King of Sweden and
Norway, and his concern over how long the Earth will survive. More pointedly, he wondered whether
the solar system was stable. Could one expect the moon to spiral out of its orbit and crash into the
Earth? Would the Earth break from its timeless trajectory and collide with the Sun? Let me stop here
and say this is the beginning of the somewhat romanticized historical account of how chaos came
into being that I learned when I was first introduced to the “three-body problem” as a freshly mined
minted physics PhD in 1970. The actual historical account is a bit more banal, but not much.

Oscar II had done well in mathematics while a university student and had grown into an active
patron of the subject [7], so his sponsorship of a prize in mathematics, unrelated to any particular
institution was not surprising. Mittag-Leffler, who was then the editor of the Swedish journal Acta,
made the original announcement of the King’s mathematics competition, in the science magazine
Nature. In that announcement Mittag-Leffler listed four categories to which international scientists
could submit contributions. The category concerning the stability of the solar system was written in
the following arcane way [7].

(1) A system being given of a number whatever of particles attracting one another mutually
according to Newton’s law, it is proposed, on the assumption that there never takes place
an impact of two particles to expand the coordinates of each particle in a series proceeding
according to some known functions of time and converging uniformly for any space of time.

The committee that evaluated the submissions to the competition consisted of, along with
Mittag-Leffler, two other giants of nineteenth century mathematics, Hermite and Weierstrass. To avoid
any possibility of bias the entrants and their submissions remained anonymous until the winner
was selected, at which time the name was to be published in Acta. Out of a field of 12 entrants,
the committee selected Henri Poincaré, who had responded to question (1). He extended the analysis
of the solvable two-body problem to the addition of one additional body, which was much less massive
than the other two. Poincaré proved that the solution to Newton’s dynamic equations for his restricted
three-body problem could not have a simple analytic form. His published proof entailed the invention
of new mathematics, the implications of which have kept the best mathematician in the world actively
engaged for over a century.

In reviewing the prize-winning memoire for publication in Acta, a referee pointed out an error in
the manuscript. Part of the drama associated with publishing the final version of the paper concerned
the secrecy surrounding that error. Correcting this error entailed a major rewrite, which took Poincaré
nearly a year to complete. In composing the revision, he conceived of and implemented in the
manuscript the idea of a homoclinic point [7], which is the basis of our understanding of what today
goes by the popular name of chaos theory. In short, he introduced the Three-Body Problem to the
scientific community as being of fundamental importance and proved that the elliptic orbits of the
two-body problem were replaced by orbits in the restricted three-body problem that resembled nothing
so much as a plate of spaghetti. A single strand of entangled spaghetti was the convoluted trajectory
of the third body and the asymptotic position of the body along that trajectory at any time was
unpredictable. Today we call such trajectories fractals [8].

Sir James Lighthill, on the three-hundred-year anniversary of the communication of Newton’s
Principia to the Royal Society, and while he was president of the International Union of Theoretical
and Applied Mechanics, published the paper The recently recognized failure of predictability in Newtonian
dynamics [9]. In this paper, Lighthill traces the history of mechanics from Tycho Brahe collecting
astronomical data as a court astronomer, through Poincaré’s proof of the limited predictability horizon
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of Newton’s law of the dynamics of mechanical systems. To put this in a proper perspective let us use
Lighthill’s words:

We are all deeply conscious today that the enthusiasm of our forebears for the marvelous
achievements of Newtonian mechanics led them to make generalizations in this area of
predictability which, indeed, we may have generally tended to believe before 1960, but which
we now recognize were false. We collectively wish to apologize for having misled the general
educated public by spreading ideas about determinism of systems satisfying Newton’s laws
of motion that, after 1960, were to be proved incorrect. . .

This reluctant indictment of the Newtonian system of nonlinear partial differential equations
that describe how the radiation from the sun is absorbed by the earth’s atmosphere and redistributed
around the globe has to the best of my knowledge never been explicitly refuted. This is not unexpected
as Sir James was the scientific leader in the area of applied mathematics involving those same equations
for over thirty years. If the unpredictability of coupled systems of nonlinear differential equation
were expressed as a theorem, then one can draw a corollary regarding the nature of the computer
simulations based on those same equations. The reader is free to infer from these remarks if Newton’s
view is truly dead or whether it is just confined to an ever decreasing domain of analytic application.

What we can conclude with certainty is that Newton’s force law typically breaks down when
the system being analyzed is not linear and the equations of motion are nonlinear. Such equations
typically do not have analytic solutions, their solutions are generically chaotic [10,11]. As scientists,
this loss of predictability, which is the foundation of the physical sciences, ought to be our greatest
concern, or at least the mathematical foundation of all our physical models, the differential calculus,
ought to be the focus of our concern.

It is worth mentioning that in his philosophical writings Poincaré recognized that his mathematical
analysis entailed the loss of predictability and the existence of a new kind of chance [12]:

A very slight cause, which escapes us, determines a considerable effect which we can not
help seeing, and then we say this effect is due to chance. If we could know exactly the
laws of nature and the situation of the universe at the initial instant, we should be able to
predict exactly the situation of this same universe at a subsequent instant. But even when
the natural laws should have no further secret for us, we could know the initial situation
only approximately. If that permits us to foresee the subsequent situation with the same degree
of approximation, this is all we require, we say the phenomenon has been predicted, that it is
ruled by laws. But this is not always the case: it may happen that slight differences in the
initial conditions produce very great differences in the final phenomena: a slight error in the
former would make an enormous error in the latter. Predication become impossible and we
have the fortuitous phenomenon.

For over a century, some of the world’s leading mathematicians have been working on what on
what might be a proper replacement for, or extension of, Newton’s physics. They typically begin with
the notion that a conservative nonlinear dynamical system with three or more degrees-of-freedom is
chaotic [13], which means that its dependence on initial conditions is so sensitive that an infinitesimal
change in the initial state will produce a trajectory that exponentially diverges from the trajectory
predicted by the original state. Such an exponential separation of trajectories means that the perturbed
state is unstable in the sense that its asymptotic location cannot be predicted from the initial state.

The work that Lighthill was alluding to in his remarks quoted earlier were those of the
meteorologist Ed Lorenz, whose ground breaking paper opened the world of fluid dynamics to
the importance of chaos [14], and ended dreams of long-term weather forecasting. Those that have
considered chaos as a possible obstacle to climate forecasting as well, treat it in much the same way
that the nineteen century physicists Maxwell and Boltzmann treated many-body effects to produce
Kinetic Theory. Only now the modern climate physicist examines large-scale computer simulations of
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the earth’s atmosphere as having random fluctuations around the average dynamical behavior of the
atmosphere’s velocity field and temperature. The established procedure is to carry out a large number
of computer simulations, all starting from the “same state”, and from them construct an ensemble of
atmospheres with which to calculate the average dynamics of the interesting physical quantities.

The general impression in the meteorology community is that such ensemble averages ought to be
sufficient to smooth out the influence of chaotic trajectories and thereby provide the appropriate phase
space probability density function in the kinetic theory sense. The problem with the approach is when
one actually attempts to average over an ensemble of chaotic trajectories the integer moments diverge
leaving the coefficients ill-defined in the kinetic theory of Maxwell and Boltzmann. Here again we
find a need for a new kind of mathematics and the fractional calculus comes to the rescue, providing a
fractional Kinetic Theory (FKT).

In Section 2, we generalize the traditional phase space partial differential equations for the
probability density function (PDF) to the fractional calculus. This is done by averaging over an
ensemble of chaotic trajectories, and following the mathematical arguments of Zaslavsky [15] create a
FKT. The solution to a simple fractional diffusion equation is shown to have a generic analytic form.

1.3. Allometry Relations

Scientists believed that phenomena whose dynamic description is the result of using non-integer
operators, such as fractional derivatives, were interesting curiosities, but lay outside the mainstream
of science. Even such empirical laws as allometry relations (ARs), in which the functionality of a
system is related to a non-integer power of the system’s size, were thought to have causal relations,
with traditional differential dynamic descriptions [16–18]. Perhaps the most famous allometry relation
is that between the average metabolic rates of mammals and their average total body masses (TBMs)
as depicted by the “mouse-to-elephant” curve in Figure 1. In this figure, the solid curve is a fit to data
by a power-law relation of the form

〈Y〉 = a 〈X〉b , (1)

which is a straight line on log-log graph paper with slope b :

log 〈Y〉 = log a + b log 〈X〉 . (2)

The functionality of the system Y, here the average metabolic rate is denoted by 〈Y〉 and the size of the
system X, here the average TBM is denoted by 〈X〉. Note that the brackets here denote the empirical
averaging process.

Historically such ARs were explained using biophysical arguments, for example, Sarrus and
Rameaux [17,18] used simple geometrical arguments for heat transfer. They assumed the heat
generated by a body is proportional to its volume and the heat is lost at the body’s surface and
is proportional to surface area. The balance between the two suggested that the allometry parameter
is given by the ratio of dimensions to be 2/3, which does not fit the data very well. The empirical
value of the allometry parameter is b ≈ 0.74, which was subsequently accounted for by using fractal
scaling arguments [19]. A statistical technique based on the fractional calculus was developed in [20]
to explain the averaging brackets in Equation (1), which in due course we use herein as an exemplar of
complexity in the fractal statistics of physiological phenomena.

In Section 3, selected applications of the FC are presented with the intent of persuading
the reader that as systems become more complex the value of the ordinary differential calculus
to describe their behavior increasingly diminishes, until it is eventually nearly lost altogether.
The analytic PDF that solves the simple FKT problem is shown to explain the empirical AR using a
complexity-based arguments.
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Figure 1. The mouse-to-elephant curve. The average metabolic rates of mammals and birds are plotted
versus the average body weight (TBM) on log-log graph paper covering five orders of magnitude
in size. The solid line segment is the best linear regression to the data from Schmidt-Neilson [18]
with permission.

1.4. Another Time

The willingness of his contemporaries to accept Newton’s view of time flowing as an
uninterrupted featureless stream is understandable. However, the reluctance of physicists to directly
challenge Newton’s view of time outside extreme conditions in the physical sciences is unclear.
This reluctance is not evident in psychology where everything we see, smell, taste and otherwise
experience is in a continuous state of change. Consequently, the changes in the physical world are not
experienced uniformly, which is another way of saying that there is an objective time associated with
the physical and a subjective time associated with the psychological world. The physical scientists
dismissed subjective time out of hand, prior to Einstein, but even after relatively the experiential time
they accepted was considered to be a local physical time.

Here, we follow the discussion of Turalska and West [21]. The idea of different clocks telling
different times arises naturally in physics; the linear transformation of Lorentz in relativistic physics
being a familiar example. However, we are interested in the notion of multiple clocks in the biological
and social sciences wherein they have begun distinguishing between cell-specific and organ-specific
clocks in biology and person-specific and group-specific clocks in sociology [22]. Of course, the distinction
between subjective and objective time dates back to the empirical Weber–Fechner Law [23] in the latter
half of the nineteenth century.

While the global behavior of an organ, say the heart, might be characterized by apparently periodic
cycles, the activity of single neurons demonstrate burstiness and noise. In a similar way people in a
social group operate according to their individual schedules, not always performing particular actions
in the same global time frame. Consequently, because of the stochastic behavior of one or both clocks,
a probabilistic transformation between times is often necessary. An example of such a transformation
is given by the subordination procedure.

Insight into the subordination procedure is provided if we begin by defining two clocks that
operationalize time in two distinct ways. The ticking of the first clock records a subjective or operational
discrete time n, which measures an individual’s time T(n). The ticking of the second clock records
the objective or chronological time t, which measures the social time T(t) upon which a society of
individuals agree. If each tick of the discrete clock n is considered to be an event, the relation between
operational and chronological time is given by the waiting time PDF of those events in chronological



Entropy 2020, 22, 1204 8 of 24

time ψ(t). Assuming a renewal property for events, as given by a chain condition (convolution) from
renewal theory in Section 2.1, one can relate operational to chronological time [21]:

〈T(t)〉 =
∞

∑
n=0

t∫
0

Ψ
(
t− t′

)
ψn
(
t′
)

T(n)dt′ (3)

Every tick of the operational clock is an event, which in the chronological time occurs at time intervals
drawn from the renewal waitin -time PDF. This randomness entails the sum over all events and the
result is an average over many realizations of the transformation. The last of the n events occurs at
time t′ and the survival probability Ψ (t− t′) insures that no further event occurs before the time t.

For example, consider the behavior of a two-state operational clock, whose evolution is depicted
in Figure 2, where the clock switches back and forth (tick tock) between its two states at equal time
intervals. However, in chronological time this regular behavior is significantly distorted as seen in the
figure. The time transformation was taken to be an inverse power law (IPL) waiting time PDF ψ (t).
Thus, a single time step in the operational time corresponds to a random time interval being drawn
from ψ(t) in chronological time. The tail of the IPL PDF leads to especially strong distortions of the
operational time trajectory, as there exist a non-zero probability of drawing very large time intervals
between events. However, as the transformation between the operational and chronological time scales
involves a random process, one needs to consider infinitely many trajectories in the chronological time,
which leads to the average behavior of the clock in the chronological time denoted in Equation (3)
by brackets.

Figure 2. The upper curve is the regular transition between the two states of the individual in
operational time. The lower curve is the subordination of the transition times to an IPL PDF to obtain
chronological time.

Newton’s view of homogeneous isotropic time is shown to be incompatible with multiple
phenomena in the social and life sciences in Section 3.2 using subordination theory. In that section
the disciplines of biophysics, psychophysics, and sociophysics, to the degree they have adopted the
Newtonian viewpoint, are shown to be misleading. The complexity of these disciplines require a new
calculus to describe their dynamics.

In Section 3.2, we establish a direct link between subordination theory and the FC. This has been
done in the literature in a number of different ways. In Section 2, we show how the probability calculus
can be generalized to the FC in order to include temporal memory and spatial heterogeneity with
probability theory.

What is entailed by the results presented herein is discussed in Section 5 and some conclusions
are drawn.
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2. Fractional Kinetic Theory

Zaslavsky [24] considered chaotic dynamics, as a physical phenomenon, to be a bridge spanning
the gap between deterministic and stochastic dynamic systems. The dynamic states in the first case
are described by regular functions and in the second by kinetic or other probabilistic equations.
He developed the mathematics for the fractional kinetics corresponding to chaotic dynamics that is
intermediate between completely regular (integrable) and completely random cases. The kinetics
become “strange” because some moments of the PDF are infinite and the Onsager Principle is violated
in that it takes infinitely long for fluctuations to relax back to the equilibrium state. An alternative to
the derivation of the fractional kinetic equation (FKE) given by Zaslavsky [24] is presented by West
and Grigolini [25]. In this section we present the overlapping highlights of these two derivations in
schematic form, emphasizing the physical interpretation.

2.1. Generalizing Kinetic Theory

We sketch Zaslavsky’s arguments leading to the FKT resulting from the underlying dynamics
being chaotic and consequently the dynamic trajectories being fractal. We begin with the chain
condition of Bachelier, Smoluchowsky, Chapman, and Kolmogorov (BSCK) [26]:

P(x, t |x0, t0 ) =
∫

P(x, t
∣∣x′, t′ )P(x′, t′ |x0, t0 )dy, (4)

where P(x, t |x′, t′ ) is the probability density of having a particle at position x at time t if at time t′ ≤ t
the particle was at the point x′. We make the assumption that the PDF is stationary such that

P(x, t |x0, t0 ) = P(x, x0; t− t0), (5)

corresponding to the regular scheme for the kinetic derivation [26] and with ∆t ≡ t− t0 we have for
the initial condition

lim
∆t→0

P(x, x0; ∆t) = δ (x− x0) . (6)

The first generalization of the historical kinetic theory argument is made by taking into account
the fractal nature of the set generated by the ensemble of chaotic trajectories initiated by an underlying
non-integrable Hamiltonian. Inserting the time limit for a fractional time differential into the BSCK
chain condition enables us to write

∂α
t [P(x, t)] = lim

∆t→0

1
∆tα

∫
dyP(x, y; ∆t)− δ (x− y)]P (y; t) . (7)

This expression can be simplified using a second generalization, that being introducing the generalized
Taylor expansion

P(x, y; ∆t) = δ (x− y) + A1(y; ∆t)δ(β) (x− y) + A2(y; ∆t)δ(β+1) (x− y) , (8)

for a set characterized by the fractal dimension 0 < β ≤ 1. Inserting this expansion into Equation (7)
simplifies the generalized BSCK chain condition by introducing the quantities

A(x) ≡ lim
∆t→0

A1(x; ∆t)
∆tα

= lim
∆t→0

∫
dy
|x− y|β

∆tα
P(x, y; ∆t), (9)

B(x) ≡ lim
∆t→0

A2(x; ∆t)
∆tα

= lim
∆t→0

∫
dy
|x− y|β+1

∆tα
P(x, y; ∆t). (10)

Zaslavsky [15] explained that the limit in these two expressions are the result of the fractal
dimensionality of the space-time set along which the state of the system is meandering in the
∆t→ 0 limit.
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We do not reproduce the mathematical details from the open literature and instead jump to
the result for the one-dimensional Fractional Kinetic equation (FKE) [15,25] and write the fractional
Fokker–Planck equation (FFPE):

∂α
t [P(x, t)] = ∂

β

|x| [A(x)P(x, t)] + ∂
β+1
|x| [B(x)P(x, t)] . (11)

The FFPE has fractional indices in the domain 0 < α, β ≤ 1, the fractional time derivative is of the
Caputo form, and the fractional spatial derivative is of the symmetric Reisz–Feller form.

So how different are the solutions to the above FFPE from those of the ordinary FPE even when
β = 1?

2.2. Solution to a Simple FKE

One of the simplest dynamical processes described by the FFPE having far-reaching implications
has a constant fractional diffusion coefficient and a vanishing fractional velocity:

A(x) = 0 and B(x) = Kβ, (12)

thereby reducing Equation (11) to

∂α
t [P(x, t)] = Kβ∂

β+1
|x| [P(x, t)] . (13)

This is one of the simplest form of anomalous diffusion, first discussed in terms of the continuous time
random walk (CTRW) by Montroll and Scher [27].

The solution to this fractional diffusion equation is readily obtained by taking its combined
Fourier–Laplace transform and introducing the notation

F
{

∂
β+1
|x| [ f (x)] ; k

}
= − |k|β+1 f̃ (k), (14)

where f̃ (k) is the Fourier transform of f (x) and correspondingly

L {∂α
t [g(t)] ; u} = uα ĝ (u)− uα−1g(0) (15)

where ĝ (u) is the Laplace transform of g(t). Note that in Equation (14) we used the Fourier transform
of the Reisz–Feller derivative in space and in Equation (15) we used the Laplace transform of the
Caputo derivative in time. Consequently we obtain from the Fourier–Laplace transform of the FFPE:

uαP∗(k, u)− uα−1P̃(k, t = 0) = −Kβ |k|β+1 P∗(k, u), (16)

where the asterisk denotes the double transform of the PDF and the indices lie in the interval 0 <

α, β ≤ 1. This equation is simplified for the initial value problem:

P(x, t = 0) = δ (x) =⇒ P̃(k, t = 0) = 1, (17)

to the form

P∗(k, u) =
uα−1

uα + Kβ |k|β+1 . (18)

The inverse Fourier–Laplace transform of this expression yields the solution to the initial value problem
for the PDF.

Metzler and Klafter [28] derived the FFPE using the CTRW formalism of Montroll and Weiss [29]
and reviewed the potential functions for various combinations of indices. It has also been derived
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using subordination theory by West [30]. The inverse Laplace transform of P∗(k, u) yields the
characteristic function

P̃(k, t) = Eα

(
−Kβ |k|β+1 tα

)
(19)

expressed in terms of the Mittag–Leffler function (MLF):

Eα (z) =
∞

∑
n=0

znα

Γ (nα + 1)
. (20)

The inverse Fourier transform of the characteristic function yields the PDF solution

P(x, t) = F−1
[

Eα

(
−Kβ |k|β+1 tα

)
; x
]

. (21)

The simple substitution k′ = ktδ into Equation (21), with δ = α
β+1 , after some algebra reduces the

formal solution to
P(x, t) =

1
tδ
F−1

[
Eα

(
−Kβ

∣∣k′∣∣β+1
)

;
x
tδ

]
, (22)

or in a more familiar scaling form:

P(x, t) =
1
tδ

F
( x

tδ

)
, (23)

where the new function is defined:
F
( x

tδ

)
≡ P

( x
tδ

, 1
)

. (24)

The function F(·) is analytic in the scaled variable x/tδ, is properly normalized and can therefore
be treated as a PDF. For a standard diffusion process, α = 1, in which case the MLF becomes an
exponential so that for β = 1 the Fourier transform can be carried out and this function becomes a
Gaussian with δ = 1/2. when α = 1 6= β the result is a stable Lévy process [26,31] with the Lévy index
given by 0 < 1/δ ≤ 2. However, for general chaotic systems there is a broad class of distributions for
which the functional form is neither Gaussian nor Lévy.

Mainardi et al. [32] obtained a variety of other solutions to the FKE in terms of the properties of the
MLF for 0 < α < 1. The inverse Fourier transform of the scaled PDF solution for β = 1 asymptotically
relaxes as the IPL t−α/2.

2.3. Self-Similar Random Walks

Zaslavsky et al. [33] worked to visualize the underlying landscape produced by averaging over
chaotic trajectories and to describe the formal structure uncovered by extensive numerical calculations.
They discuss the notion of a “stochastic web” to characterize the chaotic dynamics generated by
Hamiltionian systems in which “weak” chaotic orbits are concentrated on small measure domains of
phase space thereby constituting a “web”. They note that transport through stochastic webs could
produce non-Gaussian, i.e., intrinsically anomalous, diffusion.

The nexus points of the web constitute traps were homoclinic points have dissolved into a spray
of local points that locally entrap trajectories for IPL lengths of time. Exiting a trap the orbit undergoes
a long–range flight having self-similar properties. The process can be realized as passing through
the turnstiles of “cantori” [34]. This argument is realized by replacing the complete simulation of
the Hamiltonian dynamics with a random walk (RW) containing the appropriate qualitative features.
They do this by way of example whereby they construct a RW determined by a Weierstrass (W)
function [35]. Consider the discrete probability described by the stepping PDF for the Weierstrass
random walk (WRW) on a one-dimensional lattice with sites indexed by x [35]:

p(x) =
a− 1

2a

∞

∑
n=0

1
an [δx,bn + δx,−bn ] , (25)
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where a and b are dimensionless constants greater than one. and δij is the Kronecker delta function:
δij = 1 for i = j and δij = 0 for i 6= j. We follow the analysis of this discrete process given by West and
Grigolini [6]. The first notable property of the PDF generated by the WRW is that the second moment
of this RW process diverges: 〈

x2
〉
=

a− 1
a

∞

∑
n=0

(
b2

a

)n

, (26)

for b2 > a as the series is infinite. The discrete Fourier transform of the PDF given by Equation (25)
yields the discrete characteristic function

p̂ (k) =
a− 1

a

∞

∑
n=0

1
an cos [bnk] . (27)

This series was introduced by Weierstrass in 1872 in response to Cantor, a former student and
subsequent colleague, who challenged him to construct an analytic function that is continuous
everywhere but is nowhere differentiable. Thanks to Mandelbrot [8] we now know that this was the
first consciously constructed fractal function and the divergence of the second moment is a consequence
of its non-analytic properties.

As the WRW process unfolds the set of sites visited mimics the influence of localized chaotic
islands, interspersed by gaps, nested within clusters of clumps over ever-larger spatial scales. The WRW
generates a hierarchy of traps that are statistically self-similar, as suggested by Figure 3. The parameter
a determines the number of subclusters within a cluster and the parameter b determines the scale size
between clusters.

Figure 3. The landing sites for the WRW are depicted and the islands of clusters discussed in the text
are readily seen.

The Weierstrass form of the characteristic function allows for a renormalization group (RG)
solution [36] from which we can determine the scaling properties of the WRW. Scaling the argument of
the characteristic function by b and reordering terms in the series allows us to write [33,36]

p̂ (bk) = ap̂ (k)− a− 1
a

cos k. (28)

The RG solution to Equation (28) can be separated into a homogeneous part and a singular part:

p̂ (k) = p̂s (k) + p̂h (k) , (29)
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where p̂h (k) is analytic in the neighborhood k = 0 and p̂s (k) is singular in this neighborhood.
The singular part p̂s (k) is obtained by solving the scaling equation:

p̂s (bk) = ap̂s (k) , (30)

where we assume the formal solution:

p̂s (k) = A(k)kδ. (31)

Inserting this form of the singular solution into Equation (30) yields

A(bk)bδkδ = aA(k)kδ, (32)

providing the distinct equalities

bδ = a, (33)

A(bk) = A(k). (34)

The first equality yields for the power index in terms of the series parameters δ = ln a/ ln b. The second
equality implies that A(k) is periodic in the logarithm of k with period ln b. Consequently, the singular
part of the RG solution is written

p̂s (k) =
∞

∑
n=−∞

An |k|Hn , (35)

with the complex power–law index:

Hn = δ + in
2π

ln b
=

ln a
ln b

+ in
2π

ln b
. (36)

The analytic forms of the Fourier coefficients in Equation (35) are given in [35].
Hughes et al. [35] prove that the dominant behavior of the WRW is determined by the lowest-order

term in the singular part of the solution for the discrete characteristic function, but we do not show
that here. Instead we assume that the dominant behavior is given by the n = 0 term in the series:

p̂s (k) ≈ A0 |k|δ , (37)

whose inverse Fourier transform is determined by a Tauberian theorem to be the IPL:

p(x) =
K(µ)

|x|δ+1 , (38)

and K(δ) is a known function of δ. Thus, the singular part of the WRW has an IPL stepping PDF and
this dominant behavior intuitively justifies ignoring all the other terms in the series.

We now write for the asymptotic time-dependent form of the discrete PDF resulting from
the WRW:

P(x, n + 1) = ∑
x′

p(x− x′)P(x′, n)

= ∑
x′

K (µ)

|x− x′|δ+1 P(x′, n), (39)

where we assume that each step n in WRW process occurs at equal time intervals. Equation (39)
was analyzed in 1970 by Gillis and Weiss [37], who determined that its solution is a Lévy PDF,
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thereby connecting the RG solution of the WRW to our discussion of the fractional diffusion equation
given earlier.

Stable Lévy processes can therefore arise from the “weak” chaotic nature of the phase space
trajectories. This is, in part, a consequence of the asymptotic behavior k → 0 corresponding to the
asymptotic x → ∞ , which is of significance in determining the transport behavior of the anomalous
diffusion process.

3. Patterns and Complexity

In the Introduction we identified one of those patterns that is not restricted to a particular
discipline, but pops up in every discipline from anatomy to zoology, and that pattern is an allometry
relation (AR). However, what distinguishes such patterns from, for example, simple periodic
motion? Of course, the existence of such regularity, the pattern of reproducibility in space and
time, is what motivated the first investigators to seek common causes to associate with those patterns.
Periodic motions, such as vibrations, motivated Hook to introduce his law using Newton’s mechanical
force for its explanation. The amazing success of such laws reinforced the idea that other phenomena
including the beating of the heart, walking, and the propagation of light could all be described by
adopting a similar modeling strategy. However, the luminiferous aether is now a quaint historical myth
concerning the assumed need for a medium with remarkable properties to support the propagation of
electromagnetic waves. In addition, the normal sinus rhythm of the heart is a medical myth as heartbeats
are not sinusoidal. The more complex the phenomenon being considered the less well the patterns are
reproduced using Newton’s view of science.

Much of the present discussion stems from the need to replace Newton’s atavistic characterization
of space and time, because they fail to capture the rich structure of the complexity of the modern
world. The failure to systematically reexamine these fundamental assumptions have restricted the
utility of the modeling techniques of modern physics in the study of the psychology, sociology and
the life sciences. The experience of space and time differs between those of the claustrophobic or
agoraphobic, from the performer on the stage or the surgeon operating on the brain, from the warrior
on the battlefield to the physician on the critical care ward. We require a mathematics that can capture
all of this and so much more. The conclusions drawn herein were anticipated a couple of years ago [38]:

What is becoming increasingly clear ... is that the technical intensity of the world has become
so dense that the mathematical language initiated by Newton is no longer adequate for
its understanding. In fact we now find that we have been looking at the world through a
lens that often suppresses the most important aspects of phenomena, most of which are
not “simple”. These are characteristics of the phenomena that cannot be described using
differential equations and we refer to them as complex.

3.1. Allometry through Complexity

We have argued elsewhere [20,39] that the empirical AR given by Equation (1) is a consequence
of the imbalance between the complexity associated with the system functionality and the complexity
associated with the system size, both being measured by Shannon information. We refer to this as the
allometry/information hypothesis (A/I–H) [40] and postulate that in a complex network, composed of
two or more interacting subnetworks, the flow of information is driven by the complexity gradient
between the subnetworks, transported from that with the greater to that with the lesser complexity.

Implicit in the A/I–H is the assumed existence of dependencies of both system size and system
functionality on complexity. Such dependencies have been observed in the positive feedback between
social complexity and the size of human social groups [41,42], as well as in ant colony size [43], and the
increase in biological complexity with ecosystem size [44]. Other relations have been observed in
multiple disciplines, including the increase of prey refuge from predators with habitat complexity [45],
computational complexity increasing with program size [46], and gene functionality depending on
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system complexity [47]. We abstract from these observations that the complexity of a phenomenon
increases with system size and that the system functionality increases with system complexity.

The argument presented in this section follows that given recently by West et al. [48] in their
discussion of the evolution of military technology over the past millennium. It is intuitively understood,
but not often explicitly stated, that size and complexity grow together and are inextricably intertwined
through criticality. Moreover, although tied together, their changes are not in direct proportion
to one another. A similar connection exists between complexity and system functionality [38].
These interconnections are represented through homogeneous scaling relations, as shown below.
West argued that as a system increases in size it provides increasing opportunity for variability,
which is necessary in order to maintain stability. Scaling provides a measure of complexity in dynamic
systems, indicating that the system’s observables can simultaneously fluctuate over many time and/or
space scales. An observable Z(t) scales if for a constant λ it satisfies the homogeneous relation

Z(λt) = λµz Z(t) (40)

with the scaling index given by µz. Note that if we consider the AR given by Equation (1), but without
the averaging brackets, the size and functionality depend on a parameter t, and scale in the manner
indicated by Equation (40), each with a distinct power law index, then b = µY/µX in order for the AR
to be satisfied.

The hallmarks of fractal statistics are spatial (z) inhomogeneity and temporal (t) intermittency
and the phase space trajectory (z; t) replaces the dynamic variable Z(t). In phase space, the scaling of
the dynamic variable is replaced by a scaling of the PDF P(z; t):

P(z; t) =
1

tµz
Fz

( z
tµz

)
(41)

as given by Equation (23) for general complex phenomena. There is a broad class of PDFs for which
the functional form of Fz(·) is left unspecified.

It is straightforward to calculate the average value of Z(t) using the PDF given by Equation (41):

〈Z(t)〉 =
∫

zP(z, t)dz = qztµz , (42)

and the overall constant is determined by the scaling variable q = z/tµz averaged over the PDF F(q):

qz ≡
∫

qFz (q) dq. (43)

Interpreting Z(t) as the system’s TBM X(t) Equation (42) describes the growth in the overall average
size of a complex system with the time t, due to the intrinsic dynamics generating increasing complexity.
A similar observation can be made interpreting the dynamic variable with a functionality of the system
Y(t). Consequently, the same functional form results for both Y(t) and X(t), each with its own index.
This is not entirely unexpected since both the functionality and size of the system grow with complexity,
but at different rates.

Notice that using the scaling PDF that the average of the dynamic variable now has the
scaling property:

〈Z(λt)〉 = λµz 〈Z(t)〉 . (44)

If both the size and functionality of the system can be characterized in terms of the system’s complexity
by the same form of scaling PDF we obtain two equations in t for the averages. Setting the scaling
parameter to λ = 1/t, after some algebra we obtain the equalities

t =
(
〈Y(t)〉
〈Y(1)〉

) 1
µY

=

(
〈X(t)〉
〈X(1)〉

) 1
µX

, (45)
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which can rewritten in the form of the empirical AR given by Equation (1):

〈Y〉 = a 〈X〉b , (46)

with the allometry parameters:

a =
〈Y(1)〉
〈X(1)〉b

=
qY

qb
X

and b =
µY
µX

. (47)

Here, we have used Equation (42) to obtain the second equality for the allometry coefficient. Thus,
demonstrating that the empirical AR is the result of the self-similar behavior of the PDF.

Note that the allometry index b is expressed as the ratio of µ = α/ (β + 1) for the system
functionality to that for the system size. In general, this ratio is less than one for both the system size
and functionality. It is also the case that for physiological systems b < 1. The more the index for the
fractional time derivative deviates downward from one, the greater influence the complexity history
has on the present behavior of the independent variable, whether functionality or size. The more the
index of the fractional variate derivative deviates downward from two, the greater is the nonlocal
coupling of the independent variables (functionality or size) across scales. However, these two
mechanisms do not independently determine the scaled PDF. It is their ratio that determines the
balancing of effects in the functionality and size separately, and then through their ratio to obtain b.

It is this coupling across scales in size as well as in physiologic time that entails the temporal AR
with b < 1, as well as, the positive growth of entropy in approaching the steady state asymptotically.
The results of these brief arguments are encapsulated in the Principle of Complexity Management
(PCM), which establishes that in the interaction between two complex networks, information flows
from the more complex to the less complex network. Information transfer is maximum when the
complexities of the two networks are matched [38]. In the time-size application of this section, the PCM
takes the form The origin of natural patterns manifest by temporal ARs is the imbalance between the complexity
associated with a system’s measure of time and the complexity associated with a system’s size. In both networks
the complexity is measured by the Wiener/Shannon entropy.

3.2. Its about Time

The fundamental question addressed in this section is whether time outside the physical sciences,
say the time for a scurrying mouse at the lower left of Figure 1 is the same as that of the lumbering
elephant at the upper right of the metabolic AR curve. Newton would assert that they are identical
and we would agree that the time shared by the two animals is the same when referenced to an
external mechanical clock. However, are the two times the same when referenced to their individual
physiological clocks? This question arises because the lifespans of the two creatures are essentially
the same when their lifetimes are measured using the product of the number of heartbeats times the
average time interval between beats. This is very different from the comparison of their separate
lifespans when referenced to an external clock in which case the two differ by years. This change
of reference of time measures, from the ticking of a clock to the beating of a heart, suggests that
physiological time may be a monotonically decreasing function of physical time [49].

This difference in the meaning of time has lead to such concepts as biological time [50],
physiologic time [51], and metabolic time [52], all in an effort to highlight the distinction between time
in living and in inanimate systems. The intrinsic time in a living process was first called biological time
by Hill [53], who reasoned that since so many properties of an organism change with size that time
itself ought to scale with TBM. Natural scientists have subsequently hypothesized that physiologic
time differs from the time measured by the ticking of a mechanical clock, or Newtonian time, in that
the former changes with the size of the animal [17,18], whereas the latter does not [54].
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Lindstedt and Calder [55] developed the concept of biological time further and determined
experimentally that biological time, such as species longevity, satisfies a temporal AR with the
functionality of the system being the physiologic time Y = τ and X the TBM M [56]:

〈τ〉 = a 〈M〉b (48)

which describes the average duration of biological events. In Figure 4, we record the average heart
rate R = 1/ 〈τ〉 for sixteen animals [57] covering six orders of magnitude in average TBM. The solid
line segment is the fit to the data with empirical values to the allometry parameters given by a = 205
and b = 0.248, with a quality of fit measured by r2 = 0.96. Other, more exhaustive, fits to larger data
sets, made by other investigators, support the notion that physiologic time is extensive and may be
found in many other places [17,18], but the results are equivalent.

Figure 4. The average heart rate in beats per minute for 16 animals from the fastest, hamsters, to the
slowest, large whales, with humans being in the middle of a fitting curve. The data were obtained
from [57] and the solid line segment is fitted to the temporal AR. From the work in [49] with permission.

In an allometry context, one version of the FKE, would be given by Equation (13) where the phase
space variables (z, t) are here given by (m, τ) [30] and P(m, τ)dm is the probability that the dynamic
mass variable M(τ) lies in the interval (m, m + dm) at time τ. M(τ) represents the TBM of a mature
individual species member, within an ensemble of realizations, at the physiological time τ. The exact
solution to the FKE has been obtained as the inverse Fourier transform of the characteristic function,
expressed in terms of the Mittag–Leffler function given by Equation (21) with the variables properly
defined. The allometry coefficient in this temporal AR has a theoretical value expressed in terms of the
average of the scaled variable q = m/τδ. Consequently, the complexity of the underlying physiology
of an animal entails the physiologic time through the scaling statistics.

The dependence of the empirical AR on the overall state of the system is captured by the entropy.
The Wiener/Shannon information entropy associated with the system manifesting temporal allometry
has the value

S(τ) = −
∫

P(m, τ) log2 P(m, τ)dm (49)

which when the scaled PDF given by Equation (41) is inserted into the integral yields

S(τ) = S0 + δ log2 τ (50)

where S0 is the entropy referenced to the PDF F(·).
Consequently, as we mentioned earlier, given a monotonic function relating physical and

physiologic time t = g(τ), such that
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dg(τ)
dτ

≡ ·
g ≥ 0 (51)

we have for the physical time derivative of the entropy Equation (50):

dS(τ)
dt

=
δ

τ

1
·
g
≥ 0 (52)

Consequently, the entropy generation in physical time for the physiologic process entailing the
temporal AR is positive semidefinite. Thus, the rate of entropy generation in Newtonian time is
consistent with the dynamics of living systems having their own physiological time.

It is worth pointing out that empirical ARs are not necessarily restricted to living systems, but also
arise in social systems as well. This is not entirely unexpected, sa the average mass in an empirical AR
is actually a surrogate for the living system’s complexity. Proceeding by analogy, one might anticipate
that such an AR should appear in a social context, where the average TBM is replaced with the average
population or population density. This does, in fact, occur in the form of ARs where the functionality is
expressed in terms of the rate at which an event occurs. An exemplar is Farr’s Law, which dates back to
the nineteenth century, and quantifies the “evil effects of crowding”, relating a population’s mortality
rate to an institution’s patient population density in the form of a rate AR [38,58]. Other examples
of social ARs include an increasing urban crime rates, the more rapid spread of infectious diseases,
and a speedup in pedestrian walking, all with increasing city size, as quantitatively confirmed by
Bettencourt et al. [59]. Unlike the biological case, in the social rate ARs the allometry index has a value
greater than one, b > 1, confirming that cities have, at all times and in all places, throughout history,
entailed increased rates in human activity, for good or ill.

4. Subordination

The Montroll–Weiss (MW) perspective of CTRW [29] has been used to support the assumption
that there are at least two distinct, but related, interpretations of time associated with a system’s
dynamics. As noted in the Introduction, the first is the external time associated with an objective
observer who records the behavior of the system. This is Newton’s assumption of what constitutes
time: it is experimental or clock time. The second kind of time is the local time associated with the
internal dynamics of the system, called subjective or operational time. In a psychological experiment
the latter time is what is experienced by the participant. The experimental observation, carried out
in the clock time t, is subordinated to a process occurring in the operational time n. For simplicity,
we assume the operational time n to be an integer number so large as to become indistinguishable
from a continuous variable. In the operational time n the evolution of the PDF describing the process
is described by the ordinary diffusion equation

∂P(x, n)
∂n

= D
∂2P(x, n)

∂x2 = LP(x, n), (53)

where L ≡ D ∂2

∂x2 is the diffusion operator.
The dynamics generating the diffusion process is the simple Langevin equation

dX(n)
dn

= η (n) , (54)

where X(n) is the space coordinate at time n and η (n) is the fluctuating velocity. If the velocity is
a stochastic process with delta correlated fluctuations, this equation yields a diffusion process with
scaling index δ = 1/2. If δ 6= 1/2 the diffusion is anomalous and is the result of memory influencing
the fluctuations. In the present representation η(n) of Equation (54) is totally random, i.e., it has no
memory. However, in the clock time, the event η(n) occurs at time t(n) and the independent event
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η(n + 1) at time t(n + 1) with the time distance τ(n) = t(n + 1)− t(n) derived from a waiting time
PDF ψ(τ). We are interested in the case where the waiting time PDF has the hyperbolic form:

ψ (τ) = (µ− 1)
Tµ−1

(T + τ)µ (55)

We use this hyperbolic form to define the concept of crucial event.
Crucial events are defined by the time interval separating the occurrence of consecutive events.

The time intervals between crucial events are determined by a waiting time PDF with the same time
asymptotic behavior as Equation (55), with the condition 1 < µ < 3. In clock time we use the theoretical
MW prescription [29] to obtain

P(x, t) =
∞

∑
n=0

t∫
0

dt′ψn
(
t′
)

Ψ
(
t− t′

)
enLP(x, 0). (56)

Note that ψn (t′) is the PDF that n events have occurred and that the last event took place at time t′.
For the formula given by Equation (56) to hold with n going to ∞, we must assume that for the

random walker to travel the distance x in a time t a virtual infinitely large number of events may occur,
thereby implying the diffusion coefficient D is extremely small. In the case µ < 2, the mean waiting
time 〈τ〉 diverges, thereby providing an additional reason for the experimental observation time t to
be large.

It is possible to prove, using the arguments developed by Allegrini et al. [60] with a minor
notational change, that Equation (56) is equivalent to the integro-differential phase space equation:

∂P(x, t)
∂t

=

t∫
0

dt′Φ
(
t− t′

)
LP(x, t′), (57)

where Φ(t) is the MW memory kernel related to the waiting–time PDF and ψ(t) = ψn=1(t). In the
Laplace transform representation where f̂ (u) denotes the Laplace transform of f (t), this latter
relation is

Φ̂ (u) =
uψ̂ (u)

1− ψ̂ (u)
. (58)

In the case where the index for the hyperbolic PDF, which asymptotically is the IPL index, is in the
interval 1 < µ < 2, using Equation (58) it is shown [61] that asymptotically u→ 0:

Φ̂ (u) ≈ u1−α. (59)

Inserting this asymptotic expression into the Laplace transform of Equation (57) and taking the inverse
Laplace transform yields the fractional diffusion equation (FDE):

∂αP(x, t)
∂tα

= LP(x, t) (60)

Here, the fractional time derivative is of the Caputo form with α = µ− 1 < 1. We note here that the
analytic solution to Equation (60) is given by the scaling PDF Equation (23) when β = 1 and δ = α/2.

Culbreth et al. [62] stress certain subtleties of these formal results to provide a context with
which to appreciate their contribution to the field of cognition and to the fractional calculus. First,
they notice that we can use psychological arguments to interpret the connection between operational
time and clock time, as done in [63]. The operational time is subjective in this psychological context
with a logarithmic connection with the clock time t, which changes an exponential waiting time
PDF into the hyperbolic structure of Equation (55). This property provides the rationale for why
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they [62] consider the CTRW formalism to be closely connected to the issue of cognition. As they point
out, earlier work [60] analyzed a series of events using the hyperbolic waiting time PDF using the
Kolmogorov–Sinai definition of complexity and determined that the signal becomes computationally
compressible for 2 < µ < 3. This is equivalent to assessing that the time series hosts messages that can
be decoded.

On the other hand, the Kolmogorov–Sinai entropy vanishes for µ < 2 and has been recently
generalized to take into account the rare crucial events [64] of this region. These crucial events are
conjectured to be the signal of swarm intelligence [65], while the observation of the dynamics of the
brain leads to the conclusion that µ = 2 is a proper signature of the brain of an awake subject [66].
In summary, the events characterized by the inter-event or hyperbolic waiting time PDF are considered
to be a signature of cognition and are known to be responsible for the transport of information from one
intelligent system to another [67,68]. The term crucial events is a proper nomenclature to acknowledge
the importance of these rare events.

5. Discussion and Conclusions

We began this essay with the stated intent of supporting the Complexity Hypothesis by
demonstrating to the reader why Newton’s dynamic view of physical objects is not just inappropriate
for living and social systems but its domain of application within the physical sciences is shrinking
dramatically as well. The unexamined assumptions regarding the nature of space and time, with which
Newton opened his Principles, make his force law invalid for the study of complex phenomena. Yet,
these are the phenomena of interest to scientists in the 21st century, whether such phenomena reside in
the physical, social, or life sciences.

As mentioned, Newton’s equations have been shown to require changes when particles are
moving very fast (approaching the speed of light), when the spatial scales are very large (cosmological)
and when they are very small (quantum mechanical). In each of these domains the dynamic laws
follow a correspondence principle in that they converge on Newton’s laws by changing a parameter
value to replicate the world of our five senses. Herein we have shown that in this world of experience
we continually encounter deviations from Newton’s laws at normal speeds and spatial scales, due to
chaos. Chaotic dynamics led to replacement of the probability calculus of Kinetic Theory with that
of FKT, as well as to operational time. One way to measure the degree of complexity generated by
chaotic attractors is by using the entropy of the behavior.

Crutchfield et al. [69] interpreted the entropy of a dynamic process as the average rate of
information generation by a chaotic process in that the more precisely an initial state of a system
is specified, the more information one has available. The amount of information contained in
the initial state is inversely proportional to the state space volume Vi localized by measurement.
Trajectories initiated in a local volume of a regular attractor remain close to one another as the system
evolves, and therefore no new information is generated, while the initial information is preserved in
time. Consequently, the initial information can be used to predict the system’s final state.

On the other hand, on a chaotic attractor the initial volume gets smeared out, consequently, as the
system evolves the initial information is destroyed and replaced by newly created information. Thus,
the volume in the specification of the initial system is eventually spread over the entire attractor and all
predictive power is lost since the probability of being anywhere on the attractor is the same. All causal
connection between the present state of the system and its future or final state is lost. This is referred
to as the sensitive dependence on initial conditions.

Let us denote the final region of phase space the system occupies by Vf so that the change in the
observable information ∆I is determined by the volume change from the initial to final state [70,71]:

∆I = log2

(Vf

Vi

)
. (61)
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The time rate of information change (creation or dissipation) is therefore

dI
dt

=
1
V

dV
dt

, (62)

where the time-dependent volume V over which the initial conditions are spread determines the
ultimate fate of the initial information. In regular, which is to say non-chaotic, systems the sensitivity of
the flow in the initial conditions grows with time no more rapidly than a polynomial. Let Ω(t) be the
number of states at time t that can be distinguished such that if the greatest polynomial index is n such
that Ω (t) ∝ tn. The ratio of the final to initial volume in such a system is equal to the relative number

of states independently of the time
Vf
Vi

=
Ω f
Ωi

, so that for the rate at which information changes [71]:

dI
dt
∼ n

t
. (63)

Thus, the rate of generation of new information decreases with time and converges to zero as t→ ∞.
As in Poincaré’s quote in the Introduction, the final state is approximately predictable from the
approximate initial information.

On the other hand, in chaotic systems two trajectories separate exponentially and therefore the
number of distinguishable states grows exponentially with time Ω (t) ∝ exp (λt), where λ is the
Liapunov coefficient. In this case, the rate at which information is generated is constant:

dI
dt
∼ λ. (64)

In this latter system, information is continuously generated by the attractor independently of the
initial state. Nicolis and Tsuda [70] used this property of chaotic dynamic systems in the early
modeling of cognitive systems using nonlinear dynamics and subsequently for information processing
in neurophysiology, cognitive psychology, and perception [72].

Thus, Newton’s statements about the absolute nature of space is contradicted by the chaotic
trajectories entailed by his own force law when applied to complex systems. Subsequently, even Kinetic
Theory and the introduction of stochastic differential equations, which were early attempts to make
the differential calculus and complex phenomena compatible, could only be salvaged by means of the
FC. In a similar way, Newton’s statements regarding the absolute nature of time have been shown to
have little place, if any, outside restricted domains of the physical sciences.
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