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Abstract. Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology
that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA
is an �-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic
nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate
with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While
our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and
combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique
proteinopathy is the deposition of aberrant �-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and
neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination,
the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded
�-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a “prion-like” manner, oxidative stress, proteaso-
mal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and
energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a
multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, address-
ing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently
available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious
processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently
needed.

Keywords: �-synuclein, diagnostic criteria, glio-neuronal degeneration, multiple system atrophy, oligodendroglial proteinopa-
thy, pathogenesis, prion-like seeding

INTRODUCTION

Multiple system atrophy (MSA) is a rare, rapidly
progressing, fatal neurodegenerative disorder of
uncertain etiology that is clinically characterized by
a variable combination of parkinsonism, cerebel-
lar impairment, autonomic and motor dysfunctions

1Dedicated to the memory of Professor Dr. Franz Gerstenbrand
(deceased on June 30, 2017), one of my oldest friends.
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[1]. The term MSA was coined 1969 to pool
previously described neurological entities: olivo-
pontocerebellar atrophy (OPCA), the Shy-Drager
syndrome, and striatonigral degeneration (SND) [2].
Together with Parkinson’s disease (PD) and demen-
tia with Lewy bodies (DLB), MSA belongs to the
group of �-synucleinopathies, which are morpho-
logically characterized by abnormal accumulation
of fibrillary �-synuclein (�S) [3–6]. �S inclusions
in oligodendroglia are the recognized neuropatho-
logic hallmarks of MSA [7] and may even represent
a primary pathologic event [8]. Degeneration of
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multiple neuronal pathways over the course of
the disease causes a multifaceted clinical picture.
Depending on the predominant clinical phenotype,
the disease is sub-classified into a parkinsonian vari-
ant (MSA-P) associated with SND, a cerebellar
(MSA-C) variant with OPCA with predominant cere-
bellar features, and a combination of both forms,
referred to as “mixed” MSA [9, 10]. The underly-
ing molecular mechanisms are poorly understood,
but converging evidence suggests a “prion-like”
spreading of misfolded �S to represent a key
event in the pathogenic cascade leading to systemic
neurodegeneration of this oligodendroglioneuronal
proteinopathy [8, 11–16]. Due to overlapping clini-
cal presentations, the distinction between early stage
MSA, PD, and atypical parkinsonian disorders (pure
autonomic failure or adult-onset cerebellar ataxia)
may be difficult [17–22].

Although symptomatic therapies are available for
parkinsonism and autonomic failures, their response
is often poor if not absent, and no effective
disease-modifying therapies are currently available.
However, due to remarkable progress in our under-
standing of the etiopathogenesis of MSA, novel
therapeutic targets have emerged from preclinical
studies and interventional trials [23]. The focus of
the present review is the current knowledge on the
neuropathology and etiopathogenesis of MSA.

EPIDEMIOLOGY AND NATURAL
HISTORY

MSA is an orphan disease with an estimated inci-
dence of 0.6–0.7 cases per 100,000 person-years,
with a range of 0.1 to 3.0 cases per 100,000 person-
years [24], whereas studies from Russia and Northern
Sweden reported incidences of 0.1 and 2.4 per
100,000 person-years, respectively [25, 26]. Preva-
lence estimates range from 1.9 to 4.9 [27, 28] and
may reach up to 7.8 after the age of 40 [29]. The
incidence increases with age up to 12/100,000 above
70 years [30]. In the Western hemisphere, MSA-
P involves about 70 to 80% [31], whereas MSA-C
is more frequent in Asian populations accounting
for about 67–84%, mixed phenotypes being more
common [32–35], probably due to genetic or envi-
ronmental factors [1, 6]. The motor symptom onset
is 56 ± 9 years, with both sexes equally affected [36].
However, like PD, 20 to 75% of MSA cases have a
prodromal/preclinical phase with non-motor symp-
toms including cardiovascular autonomic failure,

urogenital and sexual dysfunction, orthostatic
hypotension, REM sleep behavior disorder, and res-
piratory disorders, which may precede the motor
presentation by months to years [9, 37, 38]. Aver-
age age of onset is earlier in MSA-C compared to
MSA-P [39, 40], the latter showing a trend to reach
more disability [41]. The duration after clinical diag-
nosis is usually 6 to 10 (mean 9.5) years [23, 31,
42, 43], with few patients surviving more than 15
years [44, 45]. Mean survival is usually similar for
both phenotypes [39, 45–47]. Others reported a mean
survival time of 7.9 years for MSA-P, with a 5-year
survival of 78% [48] or a 43% death rate during
3 years of follow-up [49]. A Pan-American multi-
center study revealed that 68% of the participants
presented with MSA-P, with an age at onset of 61.5
years and the others with MSA-C at 57.4 years [50].
A prospective cohort study in the US reported a
median survival from symptom onset of 9.8 (95%
CI 8.8–10.7) years [51]. A Japanese group found
that patients with initial cerebellar ataxia had a bet-
ter prognosis than those with initial parkinsonism or
autonomic failure [40]. Early development of severe
autonomic failure more than tripled the risk of shorter
survival [52, 53]. A recent meta-analysis identified
the following variables as unfavorable predictors of
survival: severe dysautonomia, early development of
combined autonomic and motor features, and early
falls; conversely, MSA phenotypes and sex did not
predict survival [54]. Among clinically diagnosed
synucleinopathies with parkinsonism, MSA-P had
the highest risk of death compared with reference
patients [55].

ETIOLOGY AND GENETICS

The causes of MSA are unknown; however, as
for other neurodegenerative diseases, a complex
interaction of genetic and environmental mecha-
nisms seems likely [56]. MSA is a predominantly
sporadic disease and a family history of parkin-
sonism or ataxia is defined as a non-supporting
feature in the current diagnostic criteria [9]. How-
ever, familial aggregation of parkinsonism has been
observed in MSA [57, 58], and autopsy-proven
familial cases have been reported. In a few pedi-
grees, the disease has been transmitted in an
autosomal dominant or recessive inheritance pattern
[44, 59–62]. Unlike PD, no single gene mutation
linked to familial forms and no definite risk fac-
tors have been identified. A loss-of-function mutation
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in the COQ2 gene, encoding the coenzyme Q10
(COQ10)-synthesizing enzyme (4-hydroxybenzoate-
polyprenyl transferase), was reported in Japanese
familial and sporadic cases [63–66], the associa-
tion being particularly strong for MSA-C [67–69].
A case of familial MSA was associated with com-
pound heterocygous nonsense (R387X) and missense
(V393A) mutations in COQ2 [70]. However, the link
between COQ2 gene and MSA risk was not con-
firmed in other patient populations [64, 66, 71–74].
The COQ2 V393A polymorphism is associated with
MSA in other Asian populations than Japanese [68,
75]. This implies that COQ2 polymorphisms are
region-specific and do not represent common genetic
factors for MSA. Decreased levels of COQ10 in
plasma and cerebellum of MSA patients regardless of
the COQ2 phenotype indicate impaired COQ biosyn-
thesis which may contribute to the pathogenesis of
MSA [76–79] through decreased electron transport
in mitochondria and increased vulnerability to oxida-
tive stress [65]. Changes of sequence TMEM230 gene
have been reported in MSA patients in southwest
China [80], while no differences were found in the
genotype distribution and allele frequency of poly-
morphisms in VMAT2 and TMEM106B between
MSA and controls [81]. A discordant loss of copy
numbers of SHC 2 was found in monozygotic twins
and Japanese patients with sporadic MSA, but not
in the US [71, 82]. SNCA polymorphism (encod-
ing �S and other loci), suggested to be associated
with increased risks for MSA [83–85], was not con-
firmed in different patient cohorts [73, 83, 86–89].
Other studies showed that some SNCA polymor-
phisms are not likely a common cause of MSA in
the Chinese population [90]. Two single-nucleotide
polymorphisms of the SNCA locus showed a signifi-
cant association with MSA in European patients [84],
while no SNCA multiplications were seen in a series
of 58 pathologically confirmed MSA cases [91]. A
recent genome-wide association study did not detect
any genome-wide significant association between
tagged single nucleotide polymorphisms and MSA
risk [87]. �S mRNA levels were comparable between
MSA and controls, suggesting that �S expression is
not the fundamental cause of MSA. A G51D SNCA
mutation in British families was associated with auto-
somal dominant parkinsonism and neuropathologic
findings comparable to both PD and MSA [92, 93],
and a similar pathology was reported in a Finnish
family with a novel �S mutation A53E [94]. The
occurrence of glial cytoplasmic inclusion (GCI)-like
oligodendroglial inclusions in familial PD due to

SNCA mutations also suggests that both disorders
form a continuum of �S pathology with related etiolo-
gies [95]. The same risk variants of the SNCA gene
are also associated with risks for PD [96, 97], which
indicates shared pathogenic mechanisms between
these two synucleinopathies. On the other hand, there
is little genetic evidence linking SNCA to MSA [98].
No SNCA mutations have been identified in true
sporadic MSA, and no protein-changing Mendelian
gene mutations have been identified in rare fami-
lies [99]. Screening for PD causal genes (MAPT,
PDYN, Parkin, PINK1, LRRK2) did not reveal any
association with MSA [100–103], although MAPT
H1 variation has been suggested to be associated
with risk of MSA [104]. Contribution of LRRK2
exonic variants to susceptibility are under discussion
[105, 106]. Gaucher-disease-associated glucocere-
brosidase (GBA) variants were associated with MSA
[107], but whether the GBA gene L444P mutation
modifies the risk for MSA deserves further studies
[108]. Among 108 autopsy-confirmed British MSA
cases, one heterozygous GBA mutation (0.92%)
versus 1.17% in controls was observed [109]. No
association between other GBA mutations [110] nor
with C9ORF expansions have been found [111, 112].
Mutations in the gene encoding the F-box only
protein 7 (FBXO7) that immunochemically were
detected in large proportions of �S positive inclu-
sions (Lewy bodies (LBs), GCIs) were suggested to
play a role in the pathogenesis of synucleinopathies
[113], but no pathogenic mutations in FBXO7 among
PD and MSA patients of Japanese or other ethnic-
ities were observed [114]. Tumor necrosis factor
(TNF-1031C) gene polymorphism was increased
significantly in Japanese MSA patients compared
with controls [115]. Other nucleotide polymorphisms
(FBXO47, ELOVL7, and EDN1) were suggested
as gene products, but none of the single polymor-
phisms reached genome-wide significance [116].
While rs75932628 triggering TREM2 was shown to
increase the risk for AD, no association with the
risk for MSA was observed [117]. A meta-analysis
suggested that polymorphisms of the LINGO1 and
LINGO2 (Nogo receptor-interacting protein-1 and
–2) decrease the risk of PD but not of MSA [118].

Other genes coding for apolipoprotein E,
dopamine �-hydroxylase, ubiquitin, and leucine-rich
kinase 2 showed no association with MSA [119],
whereas polymorphism of several genes involved in
inflammatory processes have been associated with
elevated MSA risk, e.g., there was a fivefold risk to
develop MSA with homozygosity for interleukin-1A
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allele, and the �-1-antichymotrypsin AA genotype
(ACT-AA) is associated with an earlier onset and
faster disease progression [120]. Another study
showed association of MSA with polymorphisms of
genes involved in oxidative stress [121]. A recent
genome-wide study of a large MSA cohort and
population-matched controls found an estimated
heritability at 2.09–6.65%, which could be due to
the presence of misdiagnosed cases in the cohorts
and questions a common genetic background of
MSA [87].

RNA analyses of MSA brain tissue have revealed
alterations in a number of genes including �- and
�-immunoglobuline [122], dysregulation of micro-
RNAs (miRNA) resulting in downregulation of the
carrier family SLC1A1 and SLC6, and dysregula-
tion of miR-202 and miR-96 [123, 124]. miRNAs are
small non-coding RNAs that regulate gene expres-
sion. miRNA expression profiles from formalin-fixed
paraffin-embedded tissue revealed downregulation
of miR-129-2-3p and miR-129-5p in the pons and
cerebellum that was confirmed in frozen tissue
from MSA patients [125]. Circulating miRNAs were
differentially expressed [126]. Strand-specific RNA-
sequencing analysis of MSA brain transcriptome
showed disruption of long intervening non-coding
RNAs (incRNAs) in the frontal cortex along with
protein coding genes related to iron metabolism and
immune response regulation indicating another level
of complexity in transcriptional pathology of MSA
[127, 128]. Analysis of the prion protein (PRNP) gene
in MSA showed that the homozygous state of position
129 is not a risk factor for MSA and no other vari-
ants of the PRNP gene were associated with increased
risk for MSA [100]. PRNP M129V homozygosity in
MSA [129] was obviously not confirmed. However,
other recent studies with MSA-derived �S aggre-
gates have shown that they have a similar ability to
undergo template-directed propagation, like PrP pri-
ons, and evidence is now emerging that �S aggregates
can have different protein conformations, referred as
strains, similar to what has been shown in prion dis-
ease [130]. These data suggest that �S becomes a
prion in MSA, which supports its recent classifica-
tion as a prion disease [13, 98], although there are
challenges to the hypothesis that MSA is a prion
disease.

A few epidemiological studies support the notion
that epigenetic factors or environmental toxins may
be associated with the risk of developing MSA [131,
132]. Due to limitations of environmental studies,
there are no convincing data to correlate increased

risk of MSA with occupational and daily habits such
as exposure to solvents, pesticides, or other toxins
like mercury or cyanide [133, 134]. An occupational
story of farming related to higher MSA risk [134]
could not be replicated [135–137]. Herbal medica-
tions have been shown to constitute an MSA risk
factor for the Korean population [136]. A history of
smoking was less frequent in MSA patients [138].
The association of alcohol consumption with MSA
is under discussion [137]. Overall, no single occupa-
tional or environmental factor was shown to modify
the disease risk.

In conclusion, all studies on the etiology of MSA
suffer from limited numbers of cases as the dis-
ease is rare and frequently underdiagnosed, and
differentiation from other parkinsonian syndromes
is difficult, particularly in early disease stages. The
definite diagnosis of MSA can only be made at post-
mortem examination, which, however, is missing in
the majority of cases involved in genetic or epidemi-
ological studies, contributing to their inconclusive
results.

NEUROPATHOLOGY

Macroscopy

Naked eye inspection of the MSA brain may show
mild diffuse cortical atrophy in the frontal lobes and
significant atrophy of the cerebellum and pontine
base. A few cases with severe frontal or temporal
atrophy [139–141], and one case with asymmetri-
cal temporal atrophy were reported [142]. Slicing the
brain reveals atrophy and dark brownish discoloration
of the posterolateral putamen due to deposition of
lipofuscin, neuromelanin, and increased iron content
in this area [143]. Pallor of substantia nigra (SN) and
locus ceruleus (LC) are common, but without mid-
brain atrophy. MSA-C presents with various degrees
of paleo- and neocerebellar atrophy, narrowing of the
cerebellar folia, decrease and brown discoloration
of the cerebellar white matter, the degeneration of
which is more severe than of the cerebellar cortices
[144]. The superior cerebellar peduncle and deep
cerebellar nuclei are preserved. Severe atrophy of the
pontine basis and middle cerebellar peduncle may
be associated with reduction in size of the inferior
olivary nucleus. The macroscopic changes in MSA-
C cases may occasionally be difficult to distinguish
from some spinocerebellar atrophias (SCA), espe-
cially SCA1 [145, 146].
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Histopathology

The histological core features of MSA encompass
four major types of different severity: (1) Specific
�S immunoreactive inclusion pathology with four
types of inclusions, i.e., GCIs within oligodendro-
cytes, also referred to as Papp-Lantos bodies [147],
the presence of which is required for the postmortem
diagnosis of definite MSA [7]. Less frequent are
glial nuclear (GNI), neuronal cyotoplasmic (NCI),
and neuronal nuclear inclusions (NNI), astroglial
cytoplasmic inclusions and neuronal threads, also
composed of �S [148]; (2) selective neuronal loss
and axonal degeneration involving multiple regions
of the nervous system with brunt on the striatoni-
gral and OPC systems; (3) myelin degeneration with
pallor and reduction in myelin basic protein (MBP),
with accompanying astrogliosis; and (4) microglial
activation [149]. GCIs and the resulting neurodegen-
eration occur in typical multisystemic distribution
involving not only the striatonigral and OPC sys-
tems, but also autonomic nuclei of the brainstem
(LC, nucleus raphe, dorsal vagal nuclei, etc.), spinal
cord, sacral visceral pathways [132, 150, 151], and
the peripheral nervous system [49, 152, 153], char-
acterizing MSA as a multi-system/-organ disorder
[86, 154, 155].

The degree of neuronal loss and cellular inclu-
sions in different brain areas is related to the MSA
motor subtype of SND and OPCA [156, 157]. Quan-
titative analyses of neuronal loss and GCI density
showed a positive correlation between both lesions
and an increase with disease duration [156, 158–160].
Region-specific astrogliosis is positively correlated
with �S pathology in MSA in contrast to PD [161].
In general, the degree of astrogliosis parallels the
severity of neurodegeneration [156]. Microglial acti-
vation in degenerating regions accompanies GCI
pathology and is more abundant in white matter
areas with mild to moderate demyelination [162].
In MSA-C, the cerebellar subcortical white matter
and cerebellar brainstem projections are the earliest
foci of �S pathology, followed by an involvement
of other central nervous system (CNS) regions.
The severity of GCIs correlated with demyelination,
and loss of Purkinje cells increased with disease
duration [163].

Inclusion pathology

The ultrastructure and biochemical composition
of GCIs and other inclusions have been reviewed

[4, 147, 149, 164–166]. Ultrastructurally, the GCIs
are non-membrane bound cytoplasmic aggregates
composed of loosely packed and coated or straight
filaments 15–40 nm in diameter consisting of poly-
merized �S and filaments associated with granulated
material related to cytoplasmic organelles such as
mitochondria and secretory vesicles [167, 168]. NCIs
consist of a meshwork of randomly arranged loosely
packed granule-associated 18–28 nm filaments, sim-
ilar to GCIs [167], while NNIs are composed of
densely packed fibrillary structures forming bundles.
Immuno-electron microscopy showed �S labelling of
both granular and filamentous structures [169]. GCIs
are characterized by aggregation of phosphorylated
(Ser129) �S similar to LBs, forming the central core
of the inclusion [147, 170]. In addition, they con-
tain ubiquitin, and a number of other proteins such as
tau, tubulin, heat shock, aggresomal and microtubule-
associated proteins [171], synphilin, p25� (tubulin
polymerization-promoting protein/TPPP, an OLG-
specific phosphoprotein), oligodendroglial markers,
p62 kinases, AMBRA1 (autophagy/beclin 1 regula-
tor 1), MT-III metallothionein, etc. (see Table 1a,b).
GCIs of MSA are both Campbell-Switzer- and
Gallyas-Braak-positive, whereas LBs are negative for
Gallyas-Braak stain [204]. Purification of �S contain-
ing inclusions revealed that GCIs consist of 11.9%
�S, 2.8% �-�-crystallin, and 1.7% 14-3-3 protein
compared to 8.5, 2.0 and 1.5% in LBs [205]. In early
disease stages, diffuse �S staining in neuronal nuclei
and cytoplasm occurs in many gray matter areas, sug-
gesting that primary aggregation of nonfibrillary �S
occurs in neurons [141]. In surviving striatal neu-
rons as well as in GCI-containing oligodendrocytes
of MSA patients, IRS-1pS312 staining was signif-
icantly increased, indicating their insulin resistance
[206].

Distribution of lesions

GCIs occur in an anatomically selective man-
ner and are widely distributed in cerebral gray
and white matter, with highest densities in deeper
laminae of motor cortex, dorsolateral putamen,
globus pallidus, subthalamus, SNpc, pontine basal
nuclei, motor nuclei of V, VII, and XII cranial
nerves, pontomedullary reticular nuclei, cerebellum,
intermediolateral column of the spinal cord, and pre-
ganglionic autonomic nerve structures [147]. In white
matter, they are most numerous beneath the motor
cortex, in external and internal capsule, corpus callo-
sum, corticospinal tracts, and cerebellar white matter
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Table 1a
List of protein constituents and their major functions identified in glial cytoplasmic inclusions (GCIs)

from human multiple system atrophy brain. Modified from [4] and [172]

Protein identified by routine immunohistochemistry or mass spectrometry
(MS+)

Main function / Cellular process Reference

�-Synuclein (MS+) (Syn 202, 205, 215 > SNL-4 > LB509 > Syn 208),
(S129-P, S87-P)

Presynaptic vesicle release [173, 174]

�-Tubulin (MS+), �-Tubulin (MS+)b Microtubule nucleation [171]
HDAC6 (histone deacetylase 6)b Tubulin degradation
20S proteasome subunitsb

p62/SQSTM1 (26 kDa protein/sequestosome 1)b Autophagy
14-3-3 protein (in subset of GCIs) Signal transduction [175]
Elk1 Transcription factor [176]
Bcl-2 (MS+) Apoptosis
P39 CDK5-activator [177]
Carbonic anhydrase isoenzyme IIa (MS+)
cdk-5 (cyclin-dependent kinase 5) (MS+) Cell cycle regulation [178]
Midkinea Neurotrophic factor [179]
τ2 (reversible on exposure to detergent) Microtubule-associated [180, 181]
Isoform of 4-repeat tau protein (hypo-phosphorylated) (MS+) Microtubule-associated
DARPP32 Regulation of signal transduction [182]
Dorfin Protein degradation [183]
Heat shock proteins Hsc70, Hsp70b Hsp90b (MS+) Protein folding
DJ-1
LRRK2 [184]
Rab5, Rabaptin-5 Endocytosis regulation [185]
Parkin [184]
Mitogen-activated protein kinase (MAPK) Signal transduction [178]
NEDD-8 (MS+) Protein degradation
Other microtubule-associated proteins (MAPs): MAP-1A and -1B; MAP-2

isoform 1, and isoform 4 (all MS+)
Phosphoinositide 3-kinase (P13K) (MS+)
p25�/TPPP (MS+) (tubulin polymerization-promoting protein)
Septin-2, –3, –5, –6 and –9
Synphilin-1 �S interaction protein (SNCAIP) [186]
Transferrina

HtrA2/Omi Apoptosis [187]
Ubiquitin (MS+) SUMO-1 (small ubiquitin modifier 1) Protein degradation
Leu-7a [188]
p62-co-localization with �-Syn (inconsistent) [189]
AMBRA1 Autophagy regulation
NBR1 - autophagic adapter protein Autophagy [190]
Metallothionein-III (MT-III) Metal binding [191]
�-�-Crystallin Protein folding [192]
NUB-1 (negative regulator of ubiquitin-like protein 1) Negative regulation of NEDD8 [193, 194]
Parkin co-regulated gene (PACRG) Regulation of cell death [195]
Protein disulfide isomerase (PDI) Protein folding [196, 197]
F-box only protein 7 (FBXO7) Ubiquitination [198]
XIAP (x-linked inhibitor of apoptosis protein) regulation of apoptosis [199]

MS+ polypeptides identified by mass spectrometry following affinity purification of glial cytoplasmic inclusion body purification
as described in [199–201]. aknown oligodendroglial markers, baggresomal protein [170].

Table 1b
Candidate proteins that have so far eluded detection by routine immunohistochemistry

Actin, �-1, and �-2 propeptides (MS+)
Amyloid-� precursor protein (MS+)
�-Synuclein (MS+)
Cytokeratin
Desmin
Glial fibrillary acidic protein (GFAP) (MS+)
Myelin basic protein (MBP)-3, –4, –5 (MS+)
Myelin oligodendrocyte glycoprotein (MOG), �- and �-isoforms (MS+)
Myosin (9 distinct isoforms) (MS+)
Neurofilaments (NF-3, NF-HC, NF-LC) (MS+)
Vimentin



K.A. Jellinger / Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy 1147

[207–209]. Accumulation of phosphorylated �S also
occurs in subpial and periventricular astrocytes after
long disease duration [210]. However, since �S-
positive astrocytes in these regions also occur in LB
disease, they may not be a specific feature of MSA
[211]. Positive correlation between neuronal loss and
the density of GCIs highlights their pivotal role for
neuronal death [119, 166], while in the SN severe
neuronal loss is associated with relatively low den-
sity of GCIs, indicating that certain areas are affected
earlier in the disease course and have been burnt out
[86]. Much less frequent are GNIs showing a similar
distribution as GCIs, while the density of NCIs and
NNIs is unrelated to that of GCIs [212]. NCIs seem
to be more widespread than previously assumed and
show a hierarchical pattern related with the duration
of the disease, but independent of the pattern of neu-
ronal destruction, suggesting that other factors may
induce the subtype-dependent neuronal loss related
to cognitive dysfunction [154].

Based on semiquantitative assessment of GCI den-
sity, neuronal loss, and gliosis, the striatonigral and
OPC lesions were graded into four degrees of sever-
ity indicated by an SND+ OPCA score and related
to both clinical key features and disease duration
[213] (see Fig. 1). While this grading scale revealed
a low correlation between both systems and the nat-
ural history of the disorder, a similar system showed
an overlap between them [158]. Stereological studies
of the basal ganglia in MSA revealed a substantial
loss of neurons in SN, putamen, and globus pal-
lidus (p < 0.01) and to a lesser extent in caudate
nucleus (p < 0.03). A lower number of oligodendro-
cytes was only observed in putamen (p < 0.04) and
globus pallidus (p < 0.01), whereas the number of
astrocytes was higher in putamen (p < 0.04) and cau-
date nucleus (p < 0.01). Higher numbers of microglia
were found in all examined regions with greatest
difference in the otherwise unaffected red nucleus
(p < 0.01). These data support the region-specific pat-
terns of pathological changes in MSA [214]. Another
neuropathological study showed that the striatonigral
region was most severely affected in 34%, the OPC
in 17%, while in almost half the cases both regions
were equally affected [156]. These data differ from
Japanese studies, where OPC pathology was greatest
in up to 40% and 18% showed predominant stria-
tonigral damage, reflecting the different phenotypical
presentations among populations [32, 215]. In view
of the frequent overlap and mixed forms, the value of
grading systems to determine the evolution of MSA
is under discussion [86, 96].

Neurodegeneration with cell loss and gliosis in
MSA not only involves the striatonigral and OPC
systems, but affects many other parts of the central,
autonomic, and peripheral nervous system underpin-
ning the multisystem character of the disease [4,
86, 149, 154]. Consistently and severely affected
areas are putamen, caudate nuclei, SN, pontine
and medullary tegmental nuclei, inferior olive, and
cerebellar white matter; moderately affected are
motor cortex and globus pallidus; and mild lesions
occur in cingulate cortex, hypothalamus, nucleus
basalis Meynert, thalamus, subthalamus, and pontine
tegmentum [216]. The posterior putamen is involved
in early disease stages [217].

Although cortical involvement in MSA was con-
sidered rare in earlier studies, more robust methods
showed around 20% reduction of neurons in motor
and supplementary motor cortex [218]. Early degen-
eration of the basal ganglia drives late onset cortical
atrophy [219]. Betz cell loss and astrocytosis in cere-
bral cortex have been described in proven MSA
cases [220–223], degeneration of frontal and tem-
poral neocortices affects more lower laminae than
upper ones [224]. Stereological studies found signif-
icantly fewer neurons in frontal and parietal cortex
of MSA brains compared with controls and sig-
nificantly more astrocytes and microglia in frontal,
parietal, and temporal cortex, whereas no change in
the total number of oligodendrocytes was seen in any
of the neocortical regions [225]. This indicates that
the involvement of the neocortex is more widespread
than previously thought. Neocortical neuronal loss
was significantly more severe in MSA patients with
impaired executive function and cognitive impair-
ment [225–228], while recent MRI studies, although
showing widespread cortical, subcortical, and white
matter alterations, suggested only a marginal con-
tribution of cortical pathology to cognitive deficits
but more impact of focal fronto-striatal degenera-
tion [229]. The presence of LB-like inclusions in
neocortex [154], of frequent globular NCIs in the
medial temporal region [230, 381] and in the perirhi-
nal cortex without hippocampal involvement [231]
were associated with cognitive or behavioral impair-
ment, while others found no pathological differences
between MSA cases with and without cognitive
changes [232]. Although volumetric MRI analysis
suggested hippocampal atrophy in MSA, little infor-
mation on neuronal loss in hippocampus is available.
Recent studies suggested that a greater burden of
NCIs in the limbic regions is associated with CI in
MSA [233].
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Reduced neuronal numbers in the anterior olfac-
tory nucleus and intrabulbar part of the primary
olfactory (pyriform) cortex may underlay olfac-
tory dysfunction in MSA [234], although this is
less pronounced than in PD. Progressive retinal
ganglion cell loss has been observed in MSA,
both in vivo and by neuropathologic assessment
[235–237]. More relative preservation of the tem-
poral sector of the retinal nerve fiber layer and less
severe atrophy of the macular ganglion cell layer
complex, due to damaged large myelinated optic
nerve fibers, differ from that in PD [238]. Retinal thin-
ning worsens with disease progression and severity
[235].

Demyelination and gliosis

Demyelination with variable intensity is frequent
in MSA and mainly involves the striatonigral and
OPC region, the external capsule and cerebellar white
matter [162], in MSA-C the frontal and occipital
white matter [239]. These changes are detected dur-
ing lifetime by diffusion tensor imaging (DTI) MRI
[240, 241], specifically in putamen and middle cere-
bellar peduncle [242–245], but no portion of the
nervous system appears to be spared [144]. Demyeli-
nation is associated with reduction in myelin proteins
including sphingomyelin, sulfatide, and galactoce-
ramide by about 50% [246]. Whether myelin loss

(a)
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(b)

Fig. 1. Schematic distribution of various combination types of SND and OPCA in 42 autopsy-proven cases of MSA (22 MS-P, 20 MS-C),
showing different severity of morphological lesions (from [213]).

is a secondary event attributable to neuronal loss
or a primary lesion, which in turn leads to neu-
ronal and axonal loss, is unknown, but it also may
be related to oligodendroglial dysfunction. Loss of
oligodendroglial TPPP/p25� immunoreactivity cor-
related significantly with the degree of microglial
reaction and loss of MBP density as a marker of tract
degeneration [15]. White matter degeneration causes
destruction of neuronal loops, leading to dysfunction
of the whole-brain network [247], and may be related
to disorders of cerebral autoregulation [248].

Gliosis is invariably described in the degenerating
areas of MSA brain [156, 249]. In general, the degree
of region-specific astrogliosis parallels the severity of
neurodegeneration and correlates positively with �S
pathology in MSA [162, 250] in contrast to PD [251].
Significantly increased monoaminoxidase B (MAO-
B), a biomarker of astrogliosis, in degenerating
putamen (+83%), was associated with astrogliosis,
and positive correlation with �S accumulation, while
less severe increase of MAO-B in SN (+10%) was
positively related with that of membrane-bound �S.
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MAO-A decreased moderately only in atrophic MSA
putamen (–27%) and was not changed in SN in PD,
thus distinguishing astrocyte behavior in these disor-
ders [252].

Microglial activation, accompanying �S pathology
and phagocytosing degenerating myelin, is promi-
nent in degenerating regions (putamen, pallidum,
SN, pons, and prefrontal cortex) [253], in particu-
lar in white matter tracts that provide input to the
cerebellum and extrapyramidal system [162, 254].
It can be visualized both histologically [254] and
by in vivo PET imaging [255]. Activation of TRL4
and myeloperoxidase, a key enzyme for the pro-
duction of reactive oxygen species in phagocytic
cells, has been reported in activated MSA microglia
[256–258]. A trend of increased M1 compared to
M2 activation, identified by co-localization of TSPO
with CD68 immunoreactivity [259], suggests that
microglial activation is at least in part determined by
oligodendroglial GCIs in affected areas. Stereologi-
cal studies in the white matter revealed a significant
increase of microglia (∼100%) without concomitant
astrogliosis and absence of significant oligoden-
droglial degeneration [260]. In summary, there is
evidence that microglia cells play an important role in
the initiation of progression of MSA like in other neu-
rodegenerative diseases [261, 262]. This is supported
by transgenic mouse models indicating an active con-
tribution of microglial activation to pathogenesis of
the disease [263] by triggering neuroinflammatory
responses in the MSA brain [264].

Lesions of the autonomic and peripheral
neuronal system

Degenerative involvement of preganglionic auto-
nomic neurons of the brainstem and spinal cord
underlies the multidomain autonomic failure in
MSA [49, 151, 265, 266]. The supraspinal lesion
sites include the cholinergic neurons of the ven-
trolateral nucleus ambiguus [267, 268], pedunculo-
pontine/laterodorsal tegmental nuclei [269], ventral
periaqueductal DAergic neurons, which may con-
tribute to excessive daytime sleepiness [270], the
medullary arcuate nucleus [271], the noradrenergic
LC [157], the serotonergic medullary groups (nucleus
raphe magnus, obscurus, and pallidus) and ventrolat-
eral medulla [53, 272], ventromedullary neurokinin-1
(NK-1) receptor immunoreactive neurons [273], the
caudal raphe neurons with sparing of the rostral part
[274, 275], the catecholaminergic neurons of the
rostral ventrolateral medulla (C1 group), and nora-

drenergic neurons of the caudal ventrolateral medulla
(A1 group) [267, 276]. Loss of A5 noradrenergic
neurons was comparable to that in LC and pontine
tegmentum [277]. The medullary catecholaminer-
gic and serotonergic systems are involved even in
the early stages of MSA, and dysfunction of the
medullary serotonergic system could be responsible
for sudden death [278]. Further involved areas are the
dorsal vagal nucleus [267], the periaqueductal gray
[150, 279], the Edinger-Westphal nucleus and poste-
rior hypothalamus [280] including the histaminergic
tuberomamillary neurons [281], the tuberomammil-
lary nucleus [280, 282], and suprachiasmatic nucleus
[267]. Affected is also the ponto-medullary reticular
formation [160, 283], while the branchimotor neu-
rons of the nucleus ambiguus are preserved [284].
Adrenergic neurons are more susceptible than sero-
tonergic neurons. The density of �S did not correlate
with neuronal loss (ranging from 47 to 70%) in
any of these medullary areas and there was no cor-
relation between �S burden and disease duration
for any regions of interest, indicating that loss of
monoaminergic neurons may progress independently
from �S accumulation [285]. Mild degeneration
of cardiac sympathetic nerves can occur in MSA,
which accounts for mild to moderate decrease in
the numbers of tyrosine hydroxylase but not of
neurofilament-immunoreactive nerve fibers in the
epicardium and for the slight decrease in cardiac
uptake of 123Imetaiodobenzylguanidine (123IMIBG)
by SPECT assessing postganglionic presynaptic
nerve endings. However, depletion of cardiac sym-
pathetic nerve is closely related to the presence
of �S pathology in the sympathetic ganglia of the
CNS [208, 286]. At lower levels of the autonomous
nervous system lesions involve sympathetic pregan-
glionic neurons in the intermediolateral cell column
of the thoracolumbar spinal cord [157, 287], sym-
pathetic ganglia, and Schwann cells in autonomic
nerves [211]. Spinal cord pathology is further charac-
terized by neuronal loss in the Onuf’s nucleus in the
lumbosacral region [157, 288], and minor or rarely
severe loss of upper and lower motor neurons [289,
290], while the involvement of anterior horn cells is
under discussion [157, 291].

Involvement of the peripheral nervous system in
MSA includes �S aggregates in sympathetic gan-
glia, skin nerve fibers [292, 293], and Schwann
cells [293a], contrasting with axonal predominance
of �S pathology in DLB [293b] which have also
been described in MSA models but without func-
tional deficits [153]. However, others showed lack of
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phosphorylated �S immunoreactivity in dermal fibers
in contrast to PD [293, 294]. Filamentous aggrega-
tions of �S were found in the cytoplasm of Schwann
cells in cranial, spinal, and autonomic nerves in MSA
[49, 211, 295], and reduced sudomotor nerve density
suggests pre- and postganglionic denervation [296,
296a].

�S pathology has been reported in the enteric ner-
vous system [297].

Iron in MSA

Iron depositions in the putamen of MSA patients
are a hallmark of the disease [298]. Unfortunately,
there is unsatisfactory data about alterations of iron
metabolism in MSA and the relevance of iron in
the pathogenesis of this disorder. However, there is
recent evidence of iron deficiency due to iron dysreg-
ulation in MSA indicating a deficit in bioavailable
iron in MSA [299], whereas iron accumulation in
MSA-P may be an epiphenomenon of the degener-
ative process [300]. To the best of our knowledge,
no proteomic study of light chain ferritin levels have
been performed in MSA, as in corticobasal degenera-
tion and progressive supranuclear palsy (PSP) [301].
Iron can convert native �S into a �-sheet conforma-
tion and promotes/accelerates its aggregation either
directly or via increasing levels of oxidative stress.
Interestingly, �S has been identified to have a fer-
rireductase activity and an iron-regulated element on
mRNA level, implying a direct interaction between
iron and �S [302].

Postmortem analyses have revealed increased iron
content and associated neuronal loss particularly in
the putamen of MSA, while others observed it also
in the SN, globus pallidus, and caudate nucleus of
MSA patients [298, 303–306]. Although severe neu-
ronal loss in LC was described, alterations in iron
concentration have not been documented there [307].
There is evidence that iron content (Fe3+) in globus
pallidus and SN is more pronounced in MSA than
in PD, DLB, and controls, being similar to the levels
found in PSP [257, 307].

However, reduction in bioavailable iron was shown
recently in MSA by a detailed postmortem analy-
ses of human brain tissue (MSA, PD, and control)
assessing iron, ferritin, transferrin receptor (TfR) and
ferroportin distribution in pons, putamen, and SN
[299]. In MSA, there are increased ferritin levels in
pons (2.5-fold) and putamen (4.5-fold), an increase
in iron stored within ferritin (2-fold) in pons and acti-
vated microglial cells with intense ferritin staining in

SN and pons. Interestingly, the transporter ferroportin
was decreased in MSA pons and putamen (0.75) in
contrast to upregulation of ferroportin in SN in PD.
Co-localization analyses of pons revealed selective
expression of ferroportin in neurons and the Golgi
apparatus which was observed in a filiform manner
around the nucleus in PD and controls, while in MSA
pons the ferroportin signal was weaker and more dif-
fusely distributed—a pattern which is also seen in
SN of PD patients. TfR expression was unchanged
in pons and SN in PD, MSA, and controls, while
putamen showed decreased TfR expression in PD
compared to controls and MSA. The results of this
study suggest that neurodegeneration is accompanied
by region-specific differences in iron dysregulation
which might be regarded as disease specific patterns
in MSA, where limited iron export coupled with
an increase in ferritin iron load results in decreased
bioavailability of iron in MSA pons [302]. A dys-
regulation of iron export coupled with an increase
in ferritin iron was detected to a lesser extent also
in putamen. Although it is still unclear whether iron
accumulation is rather a consequence and secondary
event in the cascade of neuronal degeneration than
a primary cause. Correlating the severity of puta-
men atrophy and iron accumulation suggests that iron
accumulation is a secondary effect of neurodegener-
ation as significantly increased iron in the putamen is
associated with advanced atrophy compared to mod-
erate iron accumulation in globus pallidus along with
less severe atrophy [302].

Subtypes of MSA

Pathological and clinical studies have shown that
MSA has a wider range of presentations than previ-
ously thought, which expands the list of differential
diagnoses. Several subtypes of MSA do not fit into
the current classification [308]:

“Minimal change” MSA-P is a rare aggres-
sive form with GCIs and neurodegeneration almost
restricted to SN and putamen, thus representing
“pure” SND [309–312], suggesting that GCI forma-
tion is an early event and may be responsible for
some of the clinical symptoms of MSA. One patient
with “minimal” MSA-C showed widespread GCIs
with NCIs and NNIs restricted to pontine basis, cere-
bellar vermis and inferior olivary nuclei, associated
with neuronal loss indicating a common link between
both lesions in early stages of the disease [313]. Co-
existence of “minimal changes” MSA with sporadic
Creutzfeldt-Jakob disease was reported in a 64-year-
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old Spanish woman [314]. Postmortem detection of
MSA pathology in neurologically normal individu-
als (prodromal/preclinical MSA) with GCIs limited
to the pons and inferior olivary nuclei and mild neu-
ronal loss restricted to SN is extremely rare [315,
316], suggesting that this region may be afflicted
first in MSA-P. The presence of GCIs may rep-
resent an age-related phenomenon not necessarily
processing to overt clinical disease, classifying these
cases as “incidental MSA” similar to incidental Lewy
body disease [317]. The other extreme are “benign”
MSA cases with prolonged survival up to 15 years
or more in 2-3% of MSA patients [43, 318]. Most
of them showed a slowly progressing parkinsonism
resembling PD in the first 10 years of disease with
subsequent rapid deterioration after development of
autonomic failure, before which correct diagnosis
was difficult. Late onset of both cardiovascular auto-
nomic and urinary voiding disorders were suggested
to be responsible for prolonged survival in MSA irre-
spective of its subtype [319]. Many of these patients
developed motor fluctuations and levodopa-induced
choreiform dyskinesias, which would have indicated
deep brain stimulation, not recommended for MSA
patients [320, 321]. These rare long surviving patients
with MSA-P were considered “benign” forms [43],
whereas other cases with clinical course of 18 years
revealed extensive distribution of GCIs in CNS [322].
A non-motor variant of pathologically confirmed
MSA showed neither parkinsonism nor cerebellar
symptoms [323]. Overlapping and distinguishing fea-
tures of MSA and PD are summarized in Fig. 2.

An atypical form of MSA with abundant �S
inclusions was identified as frontotemporal lobe
degeneration with �S (FTLD-synuclein) in the pres-
ence of SND and variable OPC degeneration, but
in the absence of autonomic dysfunction [324, 325].
Another case of an MSA-P phenotype due to FTLD-
TDP type A with severe striatal degeneration and
mild cerebellar involvement was described recently
[326]. Rare cases with pathologic hexanucleotide
repeat expansion in C9ORF72, a gene linked to amy-
otrophic lateral sclerosis and FTLD, demonstrated
clinical and neuroimaging features indistinguishable
from MSA [327]. A rare cerebello-brainstem-
dominant form of x-linked adrenoleukodystrophy
should also be considered in the differential diagnosis
of MSA [328]. These and other subtypes should be
considered in establishing a correct diagnosis early
in the course of MSA, which has implications for
prognosis, selection of treatment and counseling of
patients and their families.

Concomitant pathologies

Like other neurodegenerative disorders, many of
which occurring in advanced age, various diseases
are occasionally associated with MSA. The presence
of LBs, the hallmark of PD and DLB, in MSA ranged
from 10 to 23% [86, 329], whereas in Japanese MSA
cases no concomitant Lewy pathology was found
[215]. Extremely rare association of early stage MSA
(striatonigral degeneration) with widespread LBs,
referred to as “transitional variant” of PD and MSA
[330], is of unknown significance. A synucleinopathy
with features of both MSA and DLB was described
[331]. Concomitant Alzheimer-like lesions in MSA
are less frequent than in age-matched controls, mainly
observed in old age [329], although recently MSA
was reported in a male aged 69 years with pre-existing
AD [332]. Studies of 139 MSA cases revealed
chronic traumatic encephalopathy (CTE) pathology
in 6% and aging-related tau astrogliopathy pathology
[332a] in 8%. Since seven of 8 MSA/CTE cases had
low Braak NFT stages (≤ III), age-related tau pathol-
ogy would not be expected to make CTE pathology,
and a small subset of these individuals had no his-
tory of contact sports or head trauma [333]. TDP-43
pathology, frequently observed in old brains, AD, cer-
tain forms of FTLD, and motor neuron disease [158],
is generally rare in MSA, predominantly located
in medio-temporal lobe and subcortical brain areas,
suggested to represent an age-related “incidental”
phenomenon [6], and no fused in sarcoma lesions
were found in MSA brain [334]. An infantile MSA
case linked to neuronal intranuclear myelin inclusion
disease [335] appears questionable. Co-occurrence of
MSA and PSP is very rare, with only four cases being
reported in the literature [336]. The frequency of
argyrophilic grains, a 4-repeat tauopathy, of approx-
imately 20% in a Japanese MSA series [337], was
similar to that reported in PSP [338]. The pres-
ence of unusual tau-positive cytoplasmic inclusions
in astroglia of a few MSA brains, not co-localized
with �S positive GCIs, suggested that tau may be
related to a degenerative pathway different from that
induced by �S [339]. The relevance of tau-positive
(more 4-R than 3-R tau) inclusions in the astroglia
in a single MSA brain [340] is unknown, although
an interaction between different pathological proteins
in neurodegenerative disorders suggests shared com-
mon pathogenic mechanisms [341–346].

There is still an open debate whether multiple
sclerosis can cause parkinsonian symptoms or the
co-existence of both diseases is accidental [347].
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Fig. 2. Overlapping and distinguishing features of MSA and PD at the pathogenic, neuropathologic and clinical level (modified from [22]).

So far, only 45 cases of co-occurring parkinsonism
and MSA have been reported, but CSF �S data are
lacking [347, 348]. The association of MSA and
multiple sclerosis has been reported only in two
cases based on clinico-radiological and/or CSF find-
ings [349, 350]. Despite essential differences in the
neuropathology and etiopathogenesis of MSA and
multiple sclerosis, and their rare co-occurrence, there
is multiple pathogenic overlap between both dis-
orders with similar basic mechanisms, resulting in
chronic degeneration [155].

Clinical presentation

Parkinsonism, with rigidity, slowness of move-
ments, postural instability, gait disability, and
tendency to fall, characterizes the poorly levodopa-
responsive motor presentation of MSA-P [23]. The
motor findings are rarely asymmetrical [351]. Rest
tremor is rare, whereas irregular postural and action
tremor may occur [352, 353]. Cerebellar ataxia, wide-
based gait, uncoordinated limb movements, action
tremor, downbeat nystagmus, and hypometric sac-

cades predominate in MSA-C [354]. Hyperreflexia
and a Babinski sign may occur in 30–50% of
patients, while abnormal postures, such as bent
spine, antecollis, and hand or foot dystonia are rare
[354]. Dysphonia, repeated falls, drooling, dyspha-
gia, dystonia, and pain occur in advanced stages
of the disease [355]. Spinal myoclonus in a MSA-
C patient was caused by �S deposition in spinal
cord [356]. Among non-motor symptoms, observed
in 75–95% of patients [357], autonomic failure, in
particular urogenital (urinary incontinence, impaired
M. detrusor contractibility) and cardiovascular dis-
orders, are frequent early features of MSA, but
are not specific for this disease [353, 358, 359].
On the other hand, autonomic dysfunction may be
the only presenting feature in some MSA patients
[360]. Severe orthostatic hypotension is the main
symptom of cardiovascular autonomic failure, often
manifested as recurrent syncope, dizziness, nau-
sea, headache, and weakness, but it is also seen
in many other conditions [361]. Cardiovascular
autonomic failure associated with degeneration of
the nucleus ambiguus has been reproduced in the
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MSA mouse model [268]. Orthostatic hypotension
usually occurs after the onset of genitourinary symp-
toms. Other non-motor features include constipation
(in one third of the patients), vasomotor failure
with diminished sweating (hypohydrosis) [362, 363],
pupillomotor abnormalities and oculomotor dysfunc-
tions [364]. Excessive daytime sleepiness shows a
frequency similar to that encountered in PD [365,
366], and a similar frequency in Caucasian and
Japanese MSA patients [367]. Gender differences
were apparent for depression (women > men) and
early autonomic failure (men > women) [357]. The
prevalence of REM sleep behavior disorder, often
preceding the onset of the motor disorders, is 88%
or more [368, 369]. Restless legs syndrome is more
prevalent in MSA as compared to the general pop-
ulation [370]. Respiratory disturbances including
diurnal or nocturnal inspiratory stridor and sleep
apnea are frequent and may occur together [371,
372], the latter representing a major cause of death
in MSA [373, 374]. Reduced orexin (associated
with sleep apnea syndrome) immunoreactivity has
been observed in the nucleus basalis of Meynert in
MSA [375].

Dementia and visual hallucinations, character-
istic for DLB, are rare symptoms of MSA [9],
although mild cognitive impairment [376, 377] and
frontal-lobe dysfunction with attention and execution
deficits or emotional incontinence driven by focal
striatofrontal degeneration [229] do occur. Emo-
tional and behavioral changes, including depression,
anxiety, and panic attacks affect about one-third
of MSA patients [354, 378, 379]. Applying the
Movement Disorder Society diagnostic criteria for
Parkinson disease-dementia, 11.7% of MSA patients
were demented on level-2 examinations, executive
dysfunction was seen in 52%, memory impairment
in 15%, and language and visuospatial dysfunc-
tions in 14% and 13%, respectively [380]. MSA-P
and MSA-C were suggested to have different cog-
nitive and mood profiles [381]. Cognitive deficits
correlate with frontal atrophy and disease duration
[382]. MSA is featured by a relentless worsening
of the motor and non-motor symptoms, with more
rapid progress at the onset [31]. The causes of death
usually include (aspiration) bronchopneumonia, suf-
focation, or sudden death [31]. Older age at onset
and early severe autonomic failure are negative prog-
nostic factors, whereas a cerebellar phenotype and
later onset of autonomic failure predict slower dis-
ease progression [1, 46, 52]. Because of its protean
manifestations, MSA can be misdiagnosed, or disor-

ders with other etiologies and pathologies can mimic
MSA, especially at disease onset, as shown by a
retrospective autopsy study in a cohort of patients
with the clinical diagnosis of MSA, where only 62%
were confirmed at autopsy [19]. Autonomic failure
may be indistinguishable from pure autonomic fail-
ure or parkinsonism with autonomic failure. MSA-C
patients presenting with late-onset cerebellar ataxia
and additional autonomic failure can mimic genetic,
toxic, or immune-mediated ataxias, spinocerebel-
lar ataxia, or late-onset Friedreich’s ataxia [247].
MSA-C can be misdiagnosed as sporadic adult-
onset cerebellar ataxia [383]. Conversely, patients
with sporadic adult-onset cerebellar ataxia can be
misdiagnosed as having MSA, when they develop
urinary dysfunction or orthostatic hypotension [17].
SCAs, a group of autosomal dominant genetic dis-
orders, is characterized by progressive degeneration
of the cerebellum and its efferent and afferent con-
nections, but a significant proportion of these patients
have apparently sporadic cerebellar ataxia [384–386].
Some SCAs (2, 3, 6, and 17) may develop parkin-
sonism with nigrostriatal degeneration [387, 388],
sometimes even without cerebellar dysfunction. They
can be misdiagnosed as MSA-P when accompa-
nied by autonomic failure, while others may mimic
MSA-C [389]. A family with SCA1 triplet repeat
expression and MSA-C-like clinical presentation
[146] at postmortem showed multilocal neurodegen-
eration and sparse argyrophilic inclusions positive
for tau and ubiquitin; but since �S immunochemistry
was unavailable at that time, a definite diagnosis of
MSA could not be made. SCA3 gene variants may
also act as susceptibility factors for the development
of MSA-C [390], whereas SCA6 is not commonly
associated with MSA [120]. A prospective evalu-
ation of 1,500 patients with progressive cerebellar
ataxia identified 11% MSA-C cases [391]. There-
fore, genetic testing for SCAs should be included
in the diagnostic workup for MSA [392]. Other
genetic disorders which can clinically mimic MSA
include fragile X-associated ataxia syndrome, Perry
syndrome, and other autosomal recessive cerebellar
ataxias [18, 393, 394]. However, fragile X-associated
tremor/ataxia syndrome is rare in MSA [395]. The
accuracy of the clinical diagnosis of MSA is still
unsatisfactory with a positive predictive value even
in the later stages ranging from 60 to 90% [19, 396,
397], but the true rate of over- or under-diagnosis
of MSA is not known. Various disorders which
may mimic an MSA phenotype have been revised
recently [23].
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CLINICAL DIAGNOSTIC CRITERIA

Revised consensus guidelines define 3 degrees of
certainty of the clinical diagnosis of MSA: definite,
probable, and possible [9] (Fig. 3).

Definite MSA requires postmortem evidence of
widespread �S-positive inclusions with concomitant
SND or OPCA [7].

Probable MSA is defined as a sporadic, progres-
sive disorder in adults, clinically characterized by
severe autonomic failure, involve urinary dysfunc-
tion and poorly levodopa-responsive parkinsonism or
cerebellar ataxia.

Possible MSA can be diagnosed, when a sporadic,
progressive adult-onset disorder with parkinsonism
or cerebellar ataxia is accompanied by at least one
of the additional features suggesting autonomic or
urogenital dysfunction plus one other clinical or neu-
roimaging abnormality. Recognition of patients with
early or possible MSA may be supported by includ-
ing one or more “red flags” (warning signs); two or
more out of six red flags had a specificity of 98.3%
and a sensitivity of 84.2% [353, 354]. Recent studies
confirmed the validity and reliability of an eight-
item pilot scale for the assessment of early MSA
symptoms [398].

The revised consensus criteria regard dementia as a
non-supportive feature of MSA [9]. However, recent
evidence suggests that dementia occurs in up to 31%
of MSA patients [399–401], indicating that the diag-
nosis of MSA cannot be excluded by the presence
of dementia, although the molecular and structural
correlates of cognitive decline are still unclear [232,
233, 400].

Biomarkers

No reliable diagnostic and prognostic fluid
biomarkers are currently available, although many
studies suggest that a combination of CSF biomark-
ers, such as DJ-1, phospho-tau, light chain
neurofilament protein, and A�42 may be helpful in
the differential diagnosis between MSA and other
parkinsonian disorders [6, 402]. Oxidized DJ-1 pro-
tein levels in erythrocytes can be used as a marker for
the differential diagnosis of PD and MSA [403]. The
results of proteomics for biomarker discovery and
miRNA expression need further evaluation [400a].
As cardiac sympathetic postganglionic denervation
distinguishes PD from MSA patients showing intact
innervation, 123IMIBG scan can help differentia-
tion of the two disorders with a pooled specificity

Fig. 3. Diagnostic scheme for MSA according to the current consensus diagnostic criteria.
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of 77% (95%, CI: 68–84%) [404]. Despite some
overlap with PD (reduced 123IMIBG uptake), the
presence of normal or only mildly reduced tracer
uptake, supports the diagnosis of MSA-P [405, 406].
In patients with isolated autonomic failure, 123IMIBG
myocardial scintigraphy may be a valuable predic-
tor of conversion to MSA [407]. However, several
interactions limit the value of this method [408].
Odor identification tests showing severe loss of smell
may exclude MSA [409], separating PD from MSA
with a sensitivity of 76.7% and a specificity of
95.7% [410].

MRI abnormalities including the “hot-cross bun”
sign, a cruciform hyperintensity in the pons [411] and
the “putaminal rim sign” that marks hyperintensity
bordering the dorsolateral margin of the putamen in
T2-weighted MRI reflecting degeneration and iron
(Fe3+) deposition may differentiate MSA-P from PD
[412–417]. They are, however, non-specific signs
and, therefore, not included in the recent consensus
criteria [9], while putaminal atrophy shows 92.3%
specificity but low sensitivity (44.4%) for distin-
guishing MSA-P from PD [418]. The combination
of “swallow-tail” sign and putaminal hypointensity
can increase the accuracy of discrimination between
MSA and idiopathic PD [419]. Others showed signif-
icantly increased putaminal MD (mean diffusivity)
volumes in the small anterior region of interest in
MSA-P versus PD [420]. Another key distinguishing
feature is the extensive and widespread volume loss
across the entire brain in MSA-P, which is not seen in
PD [421]. In quantitative MRI studies, the bilateral
R2* increase in putamen best separated MSA-P
patients from PD [422], consistent with susceptibility
weighted imaging results demonstrating higher iron
deposition in putamen versus PD [423]. DTI allows
differentiation between PD and MSA-P, the latter
showing higher values of the apparent diffusion coef-
ficient in the inner capsule, corona radiata, and lateral
periputaminal white matter [424] and other patho-
logical differences between MSA-P and PD [425].
Combined use of diffusion ratios, magnetic suscep-
tibility values/quantitative susceptibility mapping
allowed differentiation of MSA-P and MSA-C from
other parkinsonian syndromes, with sensitivities and
specificities of 81–100% [425a]. The relevance of
non-specific MRI features in MSA has been criti-
cally reviewed recently [426]. Abnormalities in left
anterior thalamic radiation and bilateral corticospinal
tract are specific for MSA in relation to PD and con-
trols [427]. Elevated putaminal apparent diffusion
coefficient and 123IMIBG tests are also useful for dif-

ferentiation between MSA and PD [428]. FDG-PET
can distinguish MSA-P from PD by showing differ-
ent patterns of decreased glucose metabolism with
a specific positive predicting value of 97% [429].
For autonomic function testing, symptomatic causes
have to be excluded before attributing them to MCA.
Imaging of presymptomatic DAergic functions using
123I�-CIT SPECT may not satisfactorily separate
MSA from PD, whereas DAD2 receptor ligands that
target postsynaptic DAergic functions differentiate
PD (normal or increased signal) from MSA (reduced
signal) [240]. Dopamine transporter (DaT) imaging
showed more prominent and earlier DaT loss in
anterior caudate and ventral putamen in MSA than in
PD [430, 431], although normal DaT imaging does
not exclude MSA [432]. In autopsy-confirmed cases
a greater asymmetry of striatal binding was seen in
MSA than in PD [433], but it is highly correlated with
postmortem SN cell loss [434]. 18F-dopa PET showed
more widespread basal ganglia dysfunction in MSA
than in PD without evidence of early compensatory
increase in Dopa uptake [435]. Ancillary investiga-
tions for MSA have been summarized recently [1, 23,
436, 437]. The diagnostic validity of skin punch biop-
sies for the demonstration of �S deposits in Schwann
or other cells in peripheral nerves in MSA patients
is under discussion and needs further evaluation in
pathologically confirmed cases [210, 292, 293].

PATHOGENESIS

General mechanisms

Although our understanding of MSA remains
incomplete, evidence from animal models and human
postmortem studies indicate that the accumulation
of misfolded �S, particularly in oligodendroglia,
plays an essential role in the disease process [155,
164, 443]. MSA is currently considered a synucle-
inopathy with specific (oligodendro-) glioneuronal
degeneration, associated with early myelin dysfunc-
tion and neuronal degeneration related to retrograde
axonal disease [8, 444, 445]. Although it is tempting
to speculate that primary neuronal pathology leads
to secondary oligodendroglial degeneration as sug-
gested by the finding that NCIs are more widespread
than previously assumed and exist in areas lacking
GCIs [154], the robust observation that distribution
and severity of neurodegeneration reflect subregional
GCI densities supports the assumption that MSA is
a primary oligodendrogliopathy [15, 164, 166]. The
causative role of GCI pathology in introduction of
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the neurodegenerative process was confirmed exper-
imentally in transgenic mice overexpressing human
�S in oligodendrocytes [446–449].

The selectivity of the neurodegeneration in MSA
is determined by the concerted interaction of multiple
noxious factors, among them ectopic �S accumula-
tion in oligodendrocytes, “prion-like” propagation of
misfolded �S, proteasomal and mitochondrial dys-
function [8, 124], dysregulation of myelin lipids [246,
450], genetic polymorphism [118, 121], microglial
activation [257], neuroinflammation [261, 451], pro-
teolytic disturbance, autophagy [191]. and other
factors contributing to oxidative stress, which is sug-
gested to be a major pathogenic factor in MSA and
related diseases [452, 453]. This suggests a multi-
mechanistic hypothesis of the etiopathogenesis of
MSA [454].

α-Synuclein and prions

�S, a heat stable cytosolic protein, primarily
located in presynaptic nerve terminals, when present
in oligodendrocytes in human MSA and transgenic
models, has undergone post-translational modifi-
cation (oxidation, phosphorylation, nitration, etc.)
enhanced by oxidative stress [455, 456]. �S in GCIs is
phosphorylated at residue Ser-129 and ubiquitinated
like in LBs in PD and DLB [457–459].

Biochemical studies revealed a significant accu-
mulation of membrane-associated �S in affected
regions of MSA brains containing both neuronal and
glial inclusions [251], but most of the soluble �S
was also present in areas with few GCIs, suggest-
ing that altered solubility precedes the formation of
GCIs and that an increase in soluble monomeric �S
could result in a conversion into abnormal insol-
uble, filamentous aggregations. Various levels of
�S isoforms were seen, 140 and 112 isoforms as
well as aggregation-prone synphilin-A and parkin
isoforms being significantly increased, whereas �S
126 was decreased [460]. These changes of isoform
expression profiles suggest alterations in regulation
of transcriptions and in protein-protein interactions
that may be important in protein aggregation pro-
cesses being key pathways in the pathogenesis of
MSA [460]. The toxicity of �S in its different forms
is still undecided, with some reporting a cytoprotec-
tive function of �S aggregation in insoluble deposits
[461, 462], while others suggest that oligomeric �S
is the most toxic form of the protein [463–465].

The source of �S in GCIs and the role of many
protein components are enigmatic, although GCIs

express �S mitochondrial RNA (mRNA) [466].
Widespread mRNA dysregulation in MSA has been
recapitulated in murine models [124]. A number of
studies indicates that �S oligomers are released by
neurons and taken up by surrounding oligodendro-
cytes to form GCIs [467]. Incubation of recombinant
�S with an oligodendrocyte cell line demonstrated
its ability to take up and to accumulate �S into GCI-
like structures [459]. SNCA transcripts identified in
oligodendrocyte lienage cells may not be the origin
of �S in GCIs and MSA [6]. Accumulation of �S
in oligodendrocytes induces their dysfunction result-
ing in reduced trophic support and demyelination
shown in the MBP-h/�S mouse model [468, 469].
The leading role of GCI pathology is supported by the
“minimal change” (MC-MSA) forms, where severe
GCI burden is associated with less severe neuronal
loss but shorter disease duration [312].

Changes in MBP levels in MSA brain sug-
gest myelin lipid dysfunction [246, 469, 470],
which together with aberration in protein distribu-
tion may lead to myelin deficit [471], a crucial
pathomechanism in MSA [172]. Elevated matrix met-
alloproteinase activity may also contribute to the
disease process by promoting blood-brain barrier
dysfunction and myelin degeneration [472]. Oligo-
dendroglial dysfunction supports the notion that
neurodegeneration may occur secondary to demyeli-
nation and lack of trophic support by GCI-bearing
oligodendroglia [232], but the causative mechanisms
of demyelination are not yet fully understood. The
temporal evolution of �S pathology in PD [473] and
postmortem demonstration of �S inclusions within
grafted fetal neurons transplanted into PD brains
[474–476] suggested that spreading/propagation of
pathological �S species is a mechanism underly-
ing disease progression in �-synucleinopathies [459,
477]. Evidence from human studies, cell culture and
animal models has strengthened the concept that
pathology arising from neurodegeneration-related
proteins such as �S, amyloid-�, and tau, may prop-
agate in a “prion-like” fashion [478, 479]. On the
other hand, the prion hypothesis of selective neu-
ronal vulnerability may be another important factor
contributing to specific patterns of neurodegenera-
tion [480]. Increasing evidence supports the notion
that �S, which is primarily generated by neurons,
can be toxic once released to the extracellular envi-
ronment [481, 482]. It can then propagate to other
neurons or glia and to other functionally connected
networks in a “prion-like” fashion [16, 483–486].
Propagation and accumulation of �S in glial cells
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could lead to activation of these cells and subsequent
neuroinflammation [261, 487, 488]. Progressive neu-
rodegeneration in MSA results from �S protein
misfolding into a self-templating prion confirmation
that spreads throughout the brain [491]. Neuroinflam-
mation may also favor the formation of intracellular
�S aggregates as a consequence of cytokine release
and the shift to a non-inflammatory environment
[441]. Pathogenic mechanisms leading to elevated
�S levels in neurons underlie neuronal secretion
and subsequent uptake of �S by oligodendrocytes
[489]. Homogenates containing �S derived from
brain biopsy samples from MSA patients triggered
aggregates of phosphorylated �S and a neurodegen-
erative cascade in mice that was compatible with
human MSA pathology [130, 490]. Current data
indicating that MSA prions are remarkably stable
and resistent to inactivation strongly suggest cau-
tion when working with materials that might contain
�S prions [491]. In vitro studies and animal mod-
els have also confirmed the seeding ability of �S
[459, 492–494], and that MSA is caused by a unique
strain of �S assemblies [130, 495–497]. The existing
data suggest that neuron-derived �S with conforma-
tional changes contributes to the formation of GCIs,
that primary oligodendroglia dysfunction may cause
accumulation of �S fibrils in their cytoplasm, and
that cell-to-cell spreading of �S may initiate new
aggregate formation as the disease propagates [14,
498, 499]. Viral-induced oligodendroglial expression
of �S allows replicating some of the key features
of MSA, e.g., how �S accumulation in selected
oligodendroglial populations contribute to the patho-
physiology of the disease [500, 501].

Current view on the pathogenic pathways of MSA
(see Fig. 4)

Although major advances have been achieved in
understanding the pathophysiological structure of
�S [495, 496, 503, 504], the first hit that triggers
the neurodegenerative cascade remains to be elu-
cidated. In the light of in vitro studies, suggesting
that the oligodendroglial-specific phosphoprotein-
25� (p25�) relocation from the myelin sheath to
the oligodendroglial cytoplasm followed by cyto-
plasmic accumulation of p25� is an intriguing early
finding in MSA [505, 506]. It functions in the sta-
bilization of microtubules and the differentiation of
oligodendrocytes [507] and is associated with myelin
dysfunction, reduction in full-length MBP, demyeli-
nation of small-caliber axons, and an increase in

oligodendroglial soma size, preceding �S aggrega-
tion [505]. The interaction between p25�, a potent
stimulator of �S aggregation [505, 508, 509], and �S
promotes its phosphorylation and aggregation into
insoluble oligomers with later formation of GCIs.
These changes and decrease in p25� in oligoden-
drocytes containing �S positive GCIs imply that
mitochondrial dysfunction may lead to secondary
p25� relocation [510]. The aberrant �S undergoing
fibrillation then aggregates to form GCIs, enhanced
by misplaced p25�, which is being incorporated
into inclusions before �S [511]. The role of the
microtubule-associated TPPP/p25 in PD and related
diseases has recently been reviewed. Aggregation
of �S interferes with oligodendrocytes, preventing
the formation of mature oligodendroglial cells [512,
513]. Transgenic expression of human �S indicated
that accumulation of �S in oligodendroglia induces
subsequent degeneration of both oligodendroglia and
neurons [468, 514]. Enhanced FAS (Fas cell surface
death receptor) gene expression is an early hallmark
of oligodendroglial pathology in MSA that may be
related to �S dependent degeneration [262, 515]. Dif-
ferential involvement of the cystein protease inhibitor
cystein C that is associated with increased risk of
neurodegeneration in MSA phenotypes supports its
role in MSA pathogenesis [516]. Formation of GCIs
interferes with oligodendroglial and neuronal trophic
transport leading to death of these cells and to initia-
tion of neuroinflammation by activation of quiescent
microglia [451]. The association of GCI burden
and activated microglial cells [254] suggests that
�S triggers neuroinflammatory responses. This was
corroborated by experimental studies both in vitro
and in vivo [261, 263, 517]. Microglia activation
may contribute to the neurodegenerative process in
MSA via increased levels of reactive oxygen species
in degenerating areas [258]. However, the mecha-
nisms inducing �S dependent microglia activation
remain to be elucidated [249]. It can be speculated,
that the paradoxical protein expression in pons of
MSA (with increased tissue iron, increased ferritin,
and decreased ferroportin indicating reduction of
bioavailable iron) is associated with neuroinflamma-
tion as hepcidin is induced by cytokines and may
result in chronic diseases like anemia with eleva-
tion of total body iron with reduced bioavailable iron
[518]. Changes in T-cell-associated cytokines may
shed light on immune mechanisms that contribute to
MSA [519]. Increased mRNA levels of GSK3� that
is involved in neuroinflammatory pathways, MHC
class II+ and CD45+ positive cells in prefrontal
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Fig. 4. Putative pathogenic pathways of MSA (modified from [502]).

cortex of MSA suggest widespread neuroinflamma-
tory reactions in MSA pathogenesis [520].

Finally, the cell death mechanisms are poorly
understood. Increased iron levels in degenerating
brain areas suggested that oxidative stress may play
a significant role in the selected neuronal death in
MSA, and microglial activation may contribute to
increased levels of reactive oxygen species in the
degenerating areas [258]. Loss of phosphoprotein
DARPP-32 and calbindin-D 28k in areas of less
prominent or absent neuronal loss indicates that cal-
cium toxicity and disturbance of the phosphorylated
state of proteins are early events in MSA patho-
genesis [520]. The apoptosis-modulating proteins
Bax and Bcl-X are increased, which may lead to
initiation of apoptosis in the affected areas [521].
Pathological and biochemical analyses revealed that
autophagy/beclin1 regulator 1 (AMBRA1) is a com-

ponent of the pathological hallmark and upstream
autophagy proteins are impaired in the MSA brain.
AMBRA1 is a novel hub binding protein of �S
and plays a central role through the degradative
dynamics of �S [191]. Mechanisms possibly related
to cell death in MSA include X-linked inhibitor
of apoptosis protein (XIAP) which is upregulated
in GCI- and NCI-bearing cells [200], proteasomal
or autophagosomal dysfunction [522], supported by
experimental studies [469, 523]. �S accumulation
in cells may induce metabolic imbalance, which
may promote cell death. Phosphoinositide 3-kinase
upregulation in neurons and oligodendrocytes sug-
gests a possible response to apoptotic signals in these
cells [524]. Further mechanisms include proteasomal
[525] or autophagosomal dysfunctions [522, 526],
supported by experimental studies [258, 469, 523],
or an altered communication between neurons and
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oligodendrocytes due to perturbation of their neu-
rotrophic transport [527].

CURRENT THERAPIES

So far there are no causative or disease-modifying
treatments available and symptomatic therapies are
limited [1, 49]. Levodopa responsiveness has been
reported initially in 83% of MSA-P patients [353], but
the effect is usually transient, and only 31% showed
a response for a period of 3.5 years [31]. In some
patients, motor fluctuations with wearing-off phe-
nomena or off-bound dystonia were observed [438].
Deep brain stimulation could not be recommended
for MSA [321], while active immunization against
�S and combination with anti-inflammatory treat-
ment may be promising therapeutic strategies [16,
439–442]. New strategies targeting �S are in progress
[23, 436, 443], based on completed or ongoing inter-
ventional trials by the MSA Coalition [23]. Therefore,
there is a strong need to clarify the pathogenic mech-
anisms in MSA in order to develop new therapeutic
strategies options.

CONCLUSIONS AND FURTHER
OUTLOOK

Current evidence supports the hypothesis that mis-
folded �S contributes to oxidative stress through
a pathway that induces microglial activation and
antioxidant response requiring an additional protein
structure [528], but oxidative stress appears unlikely
to represent the sole mechanism for �S aggregation.
Region specific increased accumulation of intracel-
lular iron in pons and putamen in MSA may indicate
its local dysregulation due to a deficit of bioavailable
iron [299]. While experimental studies support the
involvement of the proteasome and autophagosome
dysfunction in oligodendroglial �-synucleinopathy
[258, 523], excitotoxic cell death was not aggravated
by GCI pathology [529]. The burden of neuronal
pathology appears to increase multifocally as an
effect of disease duration associated with increas-
ing overall �S burden, the underlying mechanisms
of which as well as of those leading to widespread
demyelination need further elucidation.

In conclusion, the cascade of events that underlies
the pathogenesis of MSA is currently not completely
understood. Recent studies using animal models
that only partly replicate the human pathology and
the molecular dynamics of the neurodegenerative

process have provided some progress in our under-
standing of MSA pathogenesis. Relocation of p25�
from the myelin sheaths to the oligodendroglial
soma (due to mitochondrial dysfunction), with for-
mation of cytoplasmic p25� inclusions seems to
precede aggregation of transformed �S assemblies
in oligodendrocytes. This is associated with dis-
ruption of myelin homeostasis. The source of �S
in oligodendrogliosis is unclear, but it contains �S
mRNA expression and �S may be secreted by neu-
rons and taken up by oligodendrocytes to form
GCIs. Secondary events in the oligodendroglial inclu-
sion pathway include reduced trophic support to
axons and neurons by reduced glial cell line-derived
neurotrophic factor. Neuroinflammation, oxidative
stress, proteolytic dysbalance, and energy failure are
further essential factors in the cascade leading to
neurodegeneration in MSA. The disease is currently
viewed as a primary synucleinopathy with specific
(oligodendro)glial-neuronal degeneration develop-
ing secondarily via the oligo-myelin-axon-neuron
complex [155], and also has been listed among the
predominant oligodendroglial proteinopathies [15].
Strong evidence against a primary neuronal pathol-
ogy with formation of GCIs resulting from secondary
accumulation of pathological �S that may be of
neuronal origin [527], is the fact that GCIs are the
hallmark of MSA and not of PD, a disease with
similar lesion patterns of �S immunoreactive inclu-
sions (LBs) but no or few GCIs, which differentiates
the two disorders [451]. Although the source of �S
in both disorders is under discussion, “prion-like”
spreading of the misfolded protein, oxidative damage,
mitochondrial dysfunction, proteolytic dysbalance,
dysregulation of myelin lipids, neuroinflammation,
and energy failure are the essential noxious factors in
the cascade leading to the pathogenesis of systemic
neurodegeneration in this unique proteinopathy.
Multidisciplinary research to further elucidate the
pathologic mechanisms of neurodegeneration in
MSA in order to develop reliable biomarkers for
early diagnosis and disease-modifying therapies of
this hitherto incurable disorder is strongly needed.

ACKNOWLEDGMENTS

The author thanks Mr. E. Mitter-Ferstl, PhD,
for secretarial and graphical work. The study was
partially funded by the Society for the Promotion
of Research in Experimental Neurology, Vienna,
Austria.



K.A. Jellinger / Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy 1161

The author’s disclosure is available online (http://
j-alz.com/manuscript-disclosures/17-0397r1).

REFERENCES

[1] Fanciulli A, Wenning GK (2015) Multiple-system atro-
phy. N Engl J Med 372, 249-263.

[2] Graham JG, Oppenheimer DR (1969) Orthostatic
hypotension and nicotine sensitivity in a case of mul-
tiple system atrophy. J Neurol Neurosurg Psychiatry 32,
28-34.

[3] Spillantini MG, Goedert M (2016) Synucleinopathies:
Past, present and future. Neuropathol Appl Neurobiol 42,
3-5.

[4] Jellinger KA (2014) Neuropathology. In Multiple System
Atrophy, Wenning GK, Fanciulli A, eds. Springer-Verlag
Vienna, pp. 17-55.

[5] Goedert M, Jakes R, Spillantini MG (2017) The synu-
cleinopathies: Twenty years on. J Parkinsons Dis 7,
S53-S71.

[6] Koga S, Dickson DW (2017) Recent advances in neu-
ropathology, biomarkers and therapeutic approach of
multiple system atrophy. J Neurol Neurosurg Psychiatry,
doi 10.1136/jnnp-2017-315813

[7] Trojanowski JQ, Revesz T (2007) Proposed neuropatho-
logical criteria for the post mortem diagnosis of multiple
system atrophy. Neuropathol Appl Neurobiol 33, 615-
620.

[8] Jellinger KA, Wenning GK (2016) Multiple system atro-
phy: Pathogenic mechanisms and biomarkers. J Neural
Transm (Vienna) 123, 555-572.

[9] Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias
CJ, Trojanowski JQ, Wood NW, Colosimo C, Durr A,
Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe
W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi
K, Vidailhet M (2008) Second consensus statement on
the diagnosis of multiple system atrophy. Neurology 71,
670-676.

[10] Lyoo CH, Jeong Y, Ryu YH, Lee SY, Song TJ, Lee JH,
Rinne JO, Lee MS (2008) Effects of disease duration
on the clinical features and brain glucose metabolism in
patients with mixed type multiple system atrophy. Brain
131, 438-446.

[11] Dehay B, Vila M, Bezard E, Brundin P, Kordower JH
(2016) Alpha-synuclein propagation: New insights from
animal models. Mov Disord 31, 161-168.

[12] McCann H, Cartwright H, Halliday GM (2016) Neu-
ropathology of alpha-synuclein propagation and Braak
hypothesis. Mov Disord 31, 152-160.

[13] Woerman AL, Watts JC, Aoyagi A, Giles K, Middleton
LT, Prusiner SB (2017) alpha-Synuclein: Multiple sys-
tem atrophy prions. Cold Spring Harb Perspect Med. doi
10.1101/cshperspect.a024588

[14] Goedert M, Masuda-Suzukake M, Falcon B (2017)
Like prions: The propagation of aggregated tau
and alpha-synuclein in neurodegeneration. Brain 140,
266-278.

[15] Rohan Z, Milenkovic I, Lutz MI, Matej R, Kovacs GG
(2016) Shared and distinct patterns of oligodendroglial
response in alpha-synucleinopathies and tauopathies.
J Neuropathol Exp Neurol 75, 1100-1109.

[16] Valera E, Monzio Compagnoni G, Masliah E (2016)
Review: Novel treatment strategies targeting alpha-
synuclein in multiple system atrophy as a model of

synucleinopathy. Neuropathol Appl Neurobiol 42, 95-
106.

[17] Kim HJ, Jeon BS, Jellinger KA (2015) Diagnosis and
differential diagnosis of MSA: Boundary issues. J Neurol
262, 1801-1813.

[18] Kim HJ, Stamelou M, Jeon B (2016) Multiple system
atrophy-mimicking conditions: Diagnostic challenges.
Parkinsonism Relat Disord 22(Suppl 1), S12-S15.

[19] Koga S, Aoki N, Uitti RJ, van Gerpen JA, Cheshire
WP, Josephs KA, Wszolek ZK, Langston JW, Dickson
DW (2015) When DLB, PD, and PSP masquerade as
MSA: An autopsy study of 134 patients. Neurology 85,
404-412.

[20] Mestre TA, Gupta A, Lang AE (2016) MRI signs of
multiple system atrophy preceding the clinical diagno-
sis: The case for an imaging-supported probable MSA
diagnostic category. J Neurol Neurosurg Psychiatry 87,
443-444.

[21] Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A,
Logroscino G (2016) Accuracy of clinical diagnosis
of Parkinson disease: A systematic review and meta-
analysis. Neurology 86, 566-576.

[22] Krismer F, Jellinger KA, Scholz SW, Seppi K, Stefanova
N, Antonini A, Poewe W, Wenning GK (2014) Multi-
ple system atrophy as emerging template for accelerated
drug discovery in alpha-synucleinopathies. Parkinson-
ism Relat Disord 20, 793-799.

[23] Krismer F, Wenning GK (2017) Multiple system atrophy:
Insights into a rare and debilitating movement disorder.
Nat Rev Neurol 13, 232-243.

[24] Bower JH, Maraganore DM, McDonnell SK, Rocca WA
(1997) Incidence of progressive supranuclear palsy and
multiple system atrophy in Olmsted County, Minnesota,
1976 to 1990. Neurology 49, 1284-1288.

[25] Linder J, Stenlund H, Forsgren L (2010) Incidence of
Parkinson’s disease and parkinsonism in northern Swe-
den: A population-based study. Mov Disord 25, 341-348.

[26] Winter Y, Bezdolnyy Y, Katunina E, Avakjan G, Reese
JP, Klotsche J, Oertel WH, Dodel R, Gusev E (2010)
Incidence of Parkinson’s disease and atypical parkinson-
ism: Russian population-based study. Mov Disord 25,
349-356.

[27] Chio A, Magnani C, Schiffer D (1998) Prevalence of
Parkinson’s disease in Northwestern Italy: Compari-
son of tracer methodology and clinical ascertainment of
cases. Mov Disord 13, 400-405.

[28] Tison F, Yekhlef F, Chrysostome V, Sourgen C (2000)
Prevalence of multiple system atrophy. Lancet 355, 495-
496.

[29] Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence
of progressive supranuclear palsy and multiple system
atrophy: A cross-sectional study. Lancet 354, 1771-1775.

[30] Chrysostome V, Tison F, Yekhlef F, Sourgen C, Baldi
I, Dartigues JF (2004) Epidemiology of multiple sys-
tem atrophy: A prevalence and pilot risk factor study in
Aquitaine, France. Neuroepidemiology 23, 201-208.

[31] Wenning GK, Geser F, Krismer F, Seppi K, Duerr S,
Boesch S, Kollensperger M, Goebel G, Pfeiffer KP,
Barone P, Pellecchia MT, Quinn NP, Koukouni V, Fowler
CJ, Schrag A, Mathias CJ, Giladi N, Gurevich T, Dupont
E, Ostergaard K, Nilsson CF, Widner H, Oertel W, Eggert
KM, Albanese A, del Sorbo F, Tolosa E, Cardozo A,
Deuschl G, Hellriegel H, Klockgether T, Dodel R, Sam-
paio C, Coelho M, Djaldetti R, Melamed E, Gasser T,
Kamm C, Meco G, Colosimo C, Rascol O, Meissner

http://j-alz.com/manuscript-disclosures/17-0397r1
http://j-alz.com/manuscript-disclosures/17-0397r1


1162 K.A. Jellinger / Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy

WG, Tison F, Poewe W (2013) The natural history of
multiple system atrophy: A prospective European cohort
study. Lancet Neurol 12, 264-274.

[32] Yabe I, Soma H, Takei A, Fujiki N, Yanagihara T, Sasaki
H (2006) MSA-C is the predominant clinical phenotype
of MSA in Japan: Analysis of 142 patients with probable
MSA. J Neurol Sci 249, 115-121.

[33] Watanabe H, Saito Y, Terao S, Ando T, Kachi T, Mukai
E, Aiba I, Abe Y, Tamakoshi A, Doyu M, Hirayama M,
Sobue G (2002) Progression and prognosis in multiple
system atrophy: An analysis of 230 Japanese patients.
Brain 125, 1070-1083.

[34] Kim HJ, Jeon BS, Lee JY, Yun JY (2011) Survival of
Korean patients with multiple system atrophy. Mov Dis-
ord 26, 909-912.

[35] Ozawa T, Onodera O (2017) Multiple system atrophy:
Clinicopathological characteristics in Japanese patients.
Proc Jpn Acad Ser B Phys Biol Sci 93, 251-258.

[36] Quinn N (1989) Multiple system atrophy–the nature
of the beast. J Neurol Neurosurg Psychiatry Suppl,
78-89.

[37] Jecmenica-Lukic M, Poewe W, Tolosa E, Wenning GK
(2012) Premotor signs and symptoms of multiple system
atrophy. Lancet Neurol 11, 361-368.

[38] Xie T, Kang UJ, Kuo S-H, Poulopoulos M, Greene P,
Fahn S (2015) Comparison of clinical features in patho-
logically confirmed PSP and MSA patients followed at
a tertiary center. NPJ Parkinson’s Dis 1, 15007.

[39] Coon EA, Sletten DM, Suarez MD, Mandrekar JN,
Ahlskog JE, Bower JH, Matsumoto JY, Silber MH,
Benarroch EE, Fealey RD, Sandroni P, Low PA, Singer
W (2015) Clinical features and autonomic testing predict
survival in multiple system atrophy. Brain 138, 3623-
3631.

[40] Sakushima K, Nishimoto N, Nojima M, Matsushima M,
Yabe I, Sato N, Mori M, Sasaki H (2015) Epidemiology
of multiple system atrophy in Hokkaido, the northern-
most island of Japan. Cerebellum 14, 682-687.

[41] Lee SW, Koh SB (2012) Clinical features and disability
milestones in multiple system atrophy and progressive
supranuclear palsy. J Mov Disord 5, 42-47.

[42] Klockgether T, Ludtke R, Kramer B, Abele M, Burk K,
Schols L, Riess O, Laccone F, Boesch S, Lopes-Cendes
I, Brice A, Inzelberg R, Zilber N, Dichgans J (1998) The
natural history of degenerative ataxia: A retrospective
study in 466 patients. Brain 121(Pt 4), 589-600.

[43] Petrovic IN, Ling H, Asi Y, Ahmed Z, Kukkle PL, Hazrati
LN, Lang AE, Revesz T, Holton JL, Lees AJ (2012)
Multiple system atrophy-parkinsonism with slow pro-
gression and prolonged survival: A diagnostic catch. Mov
Disord 27, 1186-1190.

[44] Itoh K, Kasai T, Tsuji Y, Saito K, Mizuta I, Harada Y,
Sudoh S, Mizuno T, Nakagawa M, Fushiki S (2014)
Definite familial multiple system atrophy with unknown
genetics. Neuropathology 34, 309-313.

[45] Schrag A, Wenning GK, Quinn N, Ben-Shlomo Y (2008)
Survival in multiple system atrophy. Mov Disord 23, 294-
296.

[46] Roncevic D, Palma JA, Martinez J, Goulding N,
Norcliffe-Kaufmann L, Kaufmann H (2014) Cerebellar
and parkinsonian phenotypes in multiple system atrophy:
Similarities, differences and survival. J Neural Transm
121, 507-512.

[47] Starhof C, Korbo L, Funch Lassen C, Winge K, Friis
S (2016) Clinical features in a danish population-based

cohort of probable multiple system atrophy patients.
Neuroepidemiology 46, 261-267.

[48] Jecmenica-Lukic M, Petrovic IN, Pekmezovic T, Kos-
tic VS (2014) Clinical outcomes of two main variants
of progressive supranuclear palsy and multiple system
atrophy: A prospective natural history study. J Neurol
261, 1575-1583.

[49] Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C,
Leigh PN (2009) Riluzole treatment, survival and diag-
nostic criteria in Parkinson plus disorders: The NNIPPS
study. Brain 132, 156-171.

[50] Gatto E, Rodriguez-Violante M, Consentino C, Chana-
Cuevas P, Miranda M, Gallin E, Etcheverry JL, Nunez
Y, Parisi V, Persi G, Vecchi C, Sanguinetti A, Alleva
A, Aparcana J, Torres L, Litvan I (2014) Pan-American
Consortium of Multiple System Atrophy (PANMSA).
A Pan-American multicentre cohort study of Multiple
System Atrophy. J Parkinsons Dis 4, 693-698.

[51] Low PA, Reich SG, Jankovic J, Shults CW, Stern MB,
Novak P, Tanner CM, Gilman S, Marshall FJ, Wooten F,
Racette B, Chelimsky T, Singer W, Sletten DM, Sandroni
P, Mandrekar J (2015) Natural history of multiple system
atrophy in the USA: A prospective cohort study. Lancet
Neurol 14, 710-719.

[52] Figueroa JJ, Singer W, Parsaik A, Benarroch EE,
Ahlskog JE, Fealey RD, Parisi JE, Sandroni P, Mandrekar
J, Iodice V, Low PA, Bower JH (2014) Multiple system
atrophy: Prognostic indicators of survival. Mov Disord
29, 1151-1157.

[53] Tada M, Onodera O, Ozawa T, Piao YS, Kakita A, Taka-
hashi H, Nishizawa M (2007) Early development of
autonomic dysfunction may predict poor prognosis in
patients with multiple system atrophy. Arch Neurol 64,
256-260.

[54] Glasmacher SA, Leigh PN, Saha RA (2017) Predictors of
survival in progressive supranuclear palsy and multiple
system atrophy: A systematic review and meta-analysis.
J Neurol Neurosurg Psychiatry 88, 402-411.

[55] Savica R, Grossardt BR, Bower JH, Ahlskog JE, Boeve
BF, Graff-Radford J, Rocca WA, Mielke MM (2017)
Survival and causes of death among people with clin-
ically diagnosed synucleinopathies with parkinsonism:
A population-based study. JAMA Neurol 74, 839-846.

[56] Brown RC, Lockwood AH, Sonawane BR (2005) Neu-
rodegenerative diseases: An overview of environmental
risk factors. Environ Health Perspect 113, 1250-1256.

[57] Fujioka S, Ogaki K, Tacik PM, Uitti RJ, Ross OA,
Wszolek ZK (2014) Update on novel familial forms of
Parkinson’s disease and multiple system atrophy. Parkin-
sonism Relat Disord 20(Suppl 1), S29-S34.

[58] Vidal JS, Vidailhet M, Derkinderen P, Tzourio C,
Alperovitch A (2010) Familial aggregation in atypical
Parkinson’s disease: A case control study in multiple sys-
tem atrophy and progressive supranuclear palsy. J Neurol
257, 1388-1393.

[59] Hohler AD, Singh VJ (2012) Probable hereditary multi-
ple system atrophy-autonomic (MSA-A) in a family in
the United States. J Clin Neurosci 19, 479-480.

[60] Wullner U, Schmitt I, Kammal M, Kretzschmar HA,
Neumann M (2009) Definite multiple system atrophy
in a German family. J Neurol Neurosurg Psychiatry 80,
449-450.

[61] Hara K, Momose Y, Tokiguchi S, Shimohata M, Tera-
jima K, Onodera O, Kakita A, Yamada M, Takahashi
H, Hirasawa M, Mizuno Y, Ogata K, Goto J, Kanazawa



K.A. Jellinger / Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy 1163

I, Nishizawa M, Tsuji S (2007) Multiplex families with
multiple system atrophy. Arch Neurol 64, 545-551.

[62] Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki
H (2006) Heredity in multiple system atrophy. J Neurol
Sci 240, 107-110.

[63] Multiple-System Atrophy Research Collaboration
(2013) Mutations in COQ2 in familial and sporadic
multiple-system atrophy. N Engl J Med 369, 233-244.
Erratum in N Engl J Med 371, 94, 2014.

[64] Chen YP, Zhao B, Cao B, Song W, Guo X, Wei QQ,
Yang Y, Yuan LX, Shang HF (2015) Mutation scan-
ning of the COQ2 gene in ethnic Chinese patients
with multiple-system atrophy. Neurobiol Aging 36, 1222
e1227-1211.

[65] Tsuji S (2014) Susceptibility gene in multiple system
atrophy (MSA). Rinsho Shinkeigaku 54, 969-971.

[66] Ogaki K, Fujioka S, Heckman MG, Rayaprolu S, Soto-
Ortolaza AI, Labbe C, Walton RL, Lorenzo-Betancor O,
Wang X, Asmann Y, Rademakers R, Graff-Radford N,
Uitti R, Cheshire WP, Wszolek ZK, Dickson DW, Ross
OA (2014) Analysis of COQ2 gene in multiple system
atrophy. Mol Neurodegener 9, 44.

[67] Wen XD, Li HF, Wang HX, Ni W, Dong Y, Wu ZY
(2015) Mutation analysis of COQ2 in Chinese patients
with cerebellar subtype of multiple system atrophy. CNS
Neurosci Ther 21, 626-630.

[68] Zhao Q, Yang X, Tian S, An R, Zheng J, Xu Y (2016)
Association of the COQ2 V393A variant with risk of
multiple system atrophy in East Asians: A case-control
study and meta-analysis of the literature. Neurol Sci 37,
423-430.

[69] Sun Z, Ohta Y, Yamashita T, Sato K, Takemoto M,
Hishikawa N, Abe K (2016) New susceptible variant of
COQ2 gene in Japanese patients with sporadic multiple
system atrophy. Neurol Genet 2, e54.

[70] Mitsui J, Koguchi K, Momose T, Takahashi M, Mat-
sukawa T, Yasuda T, Tokushige SI, Ishiura H, Goto
J, Nakazaki S, Kondo T, Ito H, Yamamoto Y, Tsuji
S (2017) Three-year follow-up of high-dose ubiquinol
supplementation in a case of familial multiple system
atrophy with compound heterozygous COQ2 mutations.
Cerebellum 16, 664-672.

[71] Ferguson MC, Garland EM, Hedges L, Womack-Nunley
B, Hamid R, Phillips JA, 3rd, Shibao CA, Raj SR, Biag-
gioni I, Robertson D (2014) SHC2 gene copy number
in multiple system atrophy (MSA). Clin Auton Res 24,
25-30.

[72] Ronchi D, Di Biase E, Franco G, Melzi V, Del Sorbo
F, Elia A, Barzaghi C, Garavaglia B, Bergamini C, Fato
R, Mora G, Del Bo R, Fortunato F, Borellini L, Trezzi
I, Compagnoni GM, Monfrini E, Frattini E, Bonato S,
Cogiamanian F, Ardolino G, Priori A, Bresolin N, Corti
S, Comi GP, Di Fonzo A (2016) Mutational analysis of
COQ2 in patients with MSA in Italy. Neurobiol Aging
45, 213 e211-212.

[73] Sharma M, Wenning G, Krüger R (2014) Mutant COQ2
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