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Abstract: The cathode material LiNi2/3Co1/6Mn1/6O2 with excellent electrochemical performance
was prepared successfully by a rheological phase method. The materials obtained were char-
acterized by X-ray diffraction, scanning electron microscopy, electrochemical impedance spec-
troscopy and charge-discharge tests. The results showed that both calcination temperatures and
atmosphere are very important factors affecting the structure and electrochemical performance of
LiNi2/3Co1/6Mn1/6O2 material. The sample calcinated at 800 ◦C under O2 atmosphere displayed
well-crystallized particle morphology, a highly ordered layered structure with low defects, and
excellent electrochemical performance. In the voltage range of 2.8–4.3 V, it delivered capacity of 188.9
mAh g−1 at 0.2 C and 130.4 mAh g−1 at 5 C, respectively. The capacity retention also reached 93.9%
after 50 cycles at 0.5 C. All the results suggest that LiNi2/3Co1/6Mn1/6O2 is a promising cathode
material for lithium-ion batteries.

Keywords: lithium ion batteries; cathode material; LiNi2/3Co1/6Mn1/6O2; preparation; rheological
phase method

1. Introduction

With the rapid development of portable electronic products and electric vehicles,
higher requirements have been placed on the energy density, safety, cycle life, and cost of
lithium-ion batteries (LIBs). The nickel-rich ternary layered material LiNi1-x-yCoxMnyO2
such as LiNi0.8Co0.1Mn0.1O2(NCM811) and LiNi0.6Co0.2Mn0.2O2(NCM622) exhibit high
capacity and low cost, showing a promising application prospect [1,2]. However, with the
increase of nickel content, the cycle performance, thermal stability, and safety gradually
decrease [3,4] due to the factors such as surface residual alkali, transition metal dissolution,
cation mixing, surface irreversible formation of NiO phases, intergranular cracks and micro-
strains [1–9]. Among the nickel-rich LiNi1-x-yCoxMnyO2 materials, NCM622 material can
be prepared in the air, and has a higher lithium ion diffusion coefficient and better structural
stability [10]; therefore, it has been commercialized and applied on a large scale. For other
nickel-rich ternary materials with Ni content higher than 0.6, such as LiNi0.7Co0.15Mn0.15O2
and NCM811 materials, the application research is still in progress [1,2,11–13].

Based on the first-principles computational studies [14,15], LiNi2/3Co1/6Mn1/6O2
and LiNi0.66Co0.17Mn0.17O2, with almost the same composition, are also considered very
promising cathode materials. Compared with other nickel-rich ternary materials such
as LiNi0.7Co0.17Mn0.08O2 and LiNi0.8Co0.1Mn0.1O2, LiNi0.66Co0.17Mn0.17O2 has been con-
firmed to have higher average voltage, and much higher structural stability with 50%
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lithium extraction [14]. Its structural stability in the delithiation state is even better than
LiCoO2 [14]. This means that the material has a good prospect in the application of
long-life and high-safety lithium-ion batteries in electric vehicles. Kim [15] verified that
LiNi2/3Co1/6Mn1/6O2 is expected to be synthesized with an almost perfect crystal structure
with few point defects other than some oxygen vacancies (VO) and cation-mixing (MLi)
defects. The two kinds of defect can be suppressed easily by controlling the preparation
conditions, which means that LiNi2/3Co1/6Mn1/6O2 is also easier to prepare. However,
there are relatively few experimental studies on the preparation and electrochemical per-
formance of this material. Saavedra-Arias et al. [14] conducted a sol-gel preparation study
of LiNi0.66Co0.17Mn0.17O2, and the sample calcined at 800 ◦C in air delivered a capacity of
167 mAh g−1 at 1C rate in the voltage range of 2.5–4.5 V, and a capacity retention of 93.8%
after 25 cycles. Such a performance did not meet expectations, so it is still necessary to
study the preparation and electrochemical performance of the material further.

It is well known that preparation method has an important influence on the struc-
ture and electrochemical performance of materials. The rheological phase method, as
a simple and effective synthesis route to ensure the mixing of different reactants at
the molecular level, has been applied in the preparation of cathode materials such as
LiNi0.65Co0.25Mn0.1O2 [16], LiNi1/2Mn1/3V1/6O2 [17] and LiNi1/3Co1/3Mn1/3O2 [18] in
recent years. This method enabled the final products with fewer defects and homoge-
neous structure, thereby effectively improving the electrochemical performance. In this
paper, the rheological phase method was used to prepare the promising cathode ma-
terial LiNi2/3Co1/6Mn1/6O2. The present work was to prepare highly ordered layered
LiNi2/3Co1/6Mn1/6O2 material with few defects by optimizing the calcination temperature
and atmosphere based on a first-principles computational study [15], especially the use
of oxygen atmosphere. The material obtained showed excellent electrochemical perfor-
mance compared with some LiNi1-x-yCoxMnyO2 (0.6 ≤ Ni content < 0.7) materials reported
in other papers [14,16,19–21]. It can deliver a capacity of 188.9 mAh g−1 at 0.2 C and
130.4 mAh g−1 at 5 C in the voltage range of 2.8–4.3 V, and retain 93.9% of its initial capacity
after 50 cycles at 0.5 C.

2. Experimental
2.1. Preparation of the Samples

In this work, all the chemical reagents were analytically pure, and purchased from
Sinopharm Chemical Reagent Co., Ltd. Stoichiometric LiOH·H2O, Ni(Ac)2·4H2O,
Co(Ac)2·4H2O, Mn(Ac)2·4H2O and citric acid (CA) with the molar ratio of Li:Ni:Co:Mn:CA
= 1.06:2/3:1/6:1/6:2.06 were placed in a ball mill tank, and an appropriate amount of
deionized water was added. Then the mixture was milled for 5 h at 300 rpm to form a
rheological phase precursor. The precursor was dried at 120 ◦C for 24 h, ground into a
fine powder, then pretreated at 600 ◦C for 6 h in the muffle furnace (TM-0914P, Beijing
Ying’an Meicheng Scientific Instrument Co., Ltd., Beijing, China) to generate an interme-
diate product. The intermediate product was reground and then calcinated at different
temperatures (750 ◦C, 800 ◦C, 850 ◦C, and 900 ◦C) for 12 h, followed by 700 ◦C for 12 h to
yield the final products. A tube furnace (OTF1200X-II, Shenzhen Kejing Zhida Technology
Co., Ltd., Shenzhen, China) was used for calcination in an oxygen atmosphere.

2.2. Materials Characterization

The structures of the final products were analyzed by using a D/Max-2600-PC X-ray
diffractometer (XRD, Rigaku, Tokyo, Japan, with Cu Kα radiation, λ = 1.54056 Å,). The
microscopic morphologies and particle size distribution of the four samples calcinated
at different temperatures (750 ◦C, 800 ◦C, 850 ◦C, and 900 ◦C) were analyzed by Quanta-
400F field-emission scanning electron microscopy (FEI, Hillsboro, OR, USA) and laser
particle size analyzer (Winner2006B, Jinan Winner Particle Instrument Stock Co., Ltd.
Jinan, China). Transmission emission microscopy (TEM) and high-resolution transmission
electron microscopy (HRTEM) for the sample calcinated at 800 ◦C were measured by
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an FEI Tcenai G2 F30 (FEI, Hillsboro, OR, USA). The electrochemical properties of as-
prepared materials were tested by galvanostatic charge-discharge test using CR2032 coin
cells, in which the cathode electrodes comprising 80% active material, 10% Super P, and
10% poly(vinylidene fluoride) (PVdF) were pasted on Al foil, Li-metal chip were used as
anode, LiPF6 (1 mol L−1) dissolved into ethylene carbonate (EC), diethyl carbonate (DEC)
and dimethyl carbonate (DMC) with a volume ratio of 1:1:1 was used as the electrolyte,
and Celgard 2400 membrane was used as the separator. The coin cells were assembled in a
glove box (Etelux Lab2000, Etelux Inert Gas System (Beijing) Co., Ltd., Beijing, China) filled
with argon, and were charge-discharged galvanostatically under the cut-off potential of
2.8 V and 4.3 V (vs. Li/Li+) at different current densities (1 C = 200 mA g−1) using the Land
battery system (LANHE CT2001A, Wuhan Jinnuo Electronics Co., Ltd., Wuhan, China). An
electrochemical workstation (IM6eX, Zahner Elektrik GmbH & Co. KG, Kronach, Germany)
was used to test the electrochemical impedance spectroscopy (EIS) of the four electrode
materials calcinated at different temperatures (750 ◦C, 800 ◦C, 850 ◦C, and 900 ◦C) after
galvanostatic charge-discharge tests at 0.2 C for 5 cycles with alternating current (AC)
amplitude of 5 mV over the frequency range of 10 mHz~100 KHz.

3. Results and Discussion

It is well known that the stoichiometric LiNiO2 is difficult to obtain, because a de-
composition of LiNiO2 to Li1-xNi1+xO2 occurs during the high-temperature treatment of
LiNiO2 [22]. This departure from the ideal composition results in partial reduction of Ni
ion’s valence from 3 to 2, which causes the “cation mixing” of Li+ and Ni2+ due to Ni2+

ions with an ionic radius (0.69 Å) similar to that of Li+ (0.76 Å), thus leading to poor electro-
chemical performance [1,22]. The use of an oxygen atmosphere is beneficial to suppress the
decomposition reaction of LiNiO2 at high temperature [23], therefore a well cation-ordered
layered LiNiO2 and its derivative materials such as LiNi0.8Co0.15Al0.05O2 are usually pre-
pared under an oxygen atmosphere [23,24]. For nickel-rich ternary LiNi1-x-yCoxMnyO2

materials, the Co and Mn ions are in the form of Co3+ and Mn4+ state respectively, while
the oxidation state of Ni ions increases with decreasing Mn content [7]. When the Mn
content is low, e.g., NCM811, most nickel ions are in the form of Ni3+, and therefore oxygen
atmospheres are still required during preparation [25]. When the Mn content is high, e.g.,
LiNi1/3Mn1/3Co1/3O2 and LiNi0.5Co0.2Mn0.3O2, it can usually be calcined in air to obtain
a ternary material with a well-ordered layered structure [26,27]. Even for the NCM622
material, there are many reports that the sample synthesized in air also exhibits well-
ordered layered structure and excellent electrochemical performance [28–30]. Compared
with NCM622, the Ni content in LiNi2/3Co1/6Mn1/6O2 is slightly higher, and the kind of
atmosphere that can be used needs to be experimentally determined first.

Figure 1 shows the XRD patterns and initial charge-discharge curves of
LiNi2/3Co1/6Mn1/6O2 materials calcined at 800 ◦C under different atmospheres. The
XRD data obtained can be analyzed using the MDI-JADE 6.5 software package. From
Figure 1a, it can be seen that all peaks can be indexed to the layer α-NaFeO2 structure with
space group R3-m, and no impurity phase appears. Compared with the sample prepared
in air, the material prepared under oxygen atmosphere show clearer split double peaks of
(006)/(102) and (008/110), and higher ratio of I(003)/I(104) (increased from 1.06 to 1.75), indi-
cating less cation mixing and a better layered structure [31,32]. Based on the first-principles
computational study, Kim [15] confirmed that some oxygen vacancies (VO) and cation-
mixing (MLi) defects may appear in LiNi2/3Co1/6Mn1/6O2. Obviously, the use of oxygen
atmosphere can effectively suppress the generation of such defects, thereby improving the
cation ordering in the layered material. This will be of benefit to enhance electrochemical
performance. As shown in Figure 1b, the material prepared under oxygen atmosphere
exhibits smaller electrochemical polarization and higher charge-discharge capacity and
coulombic efficiency. Compared with the sample produced in air, its discharge capacity at
0.2 C rate in the range of 2.8–4.3 V is increased from 170.8 mAh g−1 to 188.7 mAh g−1, and
the coulombic efficiency is also increased from 82.1% to 88.3%.
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Figure 1. X-ray diffraction (XRD) patterns (a) and initial charge-discharge curves at 0.2 C rate (b) of LiNi2/3Co1/6Mn1/6O2 
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Figure 1. X-ray diffraction (XRD) patterns (a) and initial charge-discharge curves at 0.2 C rate (b) of LiNi2/3Co1/6Mn1/6O2

prepared under different atmosphere.

In addition to the atmosphere, the calcination temperature is also an important factor
affecting the defects in the nickel-rich ternary LiNi1-x-yCoxMnyO2 materials. The cationic
ordering which leads to the 2D structure requires a temperature of 700 ◦C or more [33], but
too high a temperature treatment can result in more defects due to the decomposition of
LiNiO2 to Li1-xNi1+xO2 [22]. Figure 2 shows the XRD patterns of LiNi2/3Co1/6Mn1/6O2
materials prepared at different calcination temperatures under an oxygen atmosphere. All
samples show a single-phase α-NaFeO2-type structure. The lattice parameters refined
using the MDI-JADE 6.5 software package are listed in Table 1. It is well known that in
addition to the intensity ratio of I(003)/I(104), the c/a value is also used generally to indicate
the cation mixing, and a higher ordered layered structure is obtained when c/a >4.899 [34].
The material calcinated at 800 ◦C has the highest values of c/a (4.960, close to 5) and
I(003)/I(104) (1.752, much more than 1.2). That means that the LiNi2/3Co1/6Mn1/6O2 sample
calcinated at 800 ◦C has the least defects, and highest ordered layered structure.
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Figure 2. XRD patterns of LiNi2/3Co1/6Mn1/6O2 prepared at different temperatures under O2 atmo-
sphere.

Table 1. Lattice parameters of LiNi2/3Co1/6Mn1/6O2 materials prepared at different calcination
temperatures.

Temperature (◦C) c (Å) a (Å) c/a V (Å3) I(003)/I(104)

750 14.2134 2.8761 4.9419 101.82 1.43
800 14.1848 2.8601 4.9596 100.48 1.75
850 14.2134 2.8704 4.9517 101.41 1.70
900 14.2134 2.8730 4.9471 101.60 1.46
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Figure 3. Particle morphology and particle size distribution analysis. (1) Scanning electron microscope (SEM) images of
LiNi2/3Co1/6Mn1/6O2 prepared at 700 ◦C (a), 800 ◦C (b), 850 ◦C (c) and 900 ◦C (d). (2) Particle size distribution (e).
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Figure 3 shows the particle morphology and particle size distribution of
LiNi2/3Co1/6Mn1/6O2 materials prepared at different calcination temperatures. From
the scanning electron microscopy (SEM) images, it can be seen that the sample calcinated
at 800 ◦C also has a highly crystallized particle morphology with smooth surface, small
particle size and uniform particle size distribution. Its primary particles size is about
300~500 nm in diameter, but the D10, D50 and D90 obtained from the particle size distribu-
tion analysis is 2.1, 2.8, and 3.2 µm, respectively. This means that the primary particles can
agglomerate to form secondary particles with a medium particle size of 2.8 µm. Although
the secondary particle size is the smallest among the four samples, its primary particles
are highly crystalline. This can be further improved by transmission electron microscopy
(TEM) and high-resolution TEM (HRTEM) analysis. As shown in Figure 4, the sample
calcinated at 800 ◦C possesses a highly ordered layered structure, and the layer spacing
d(003) is 0.47 nm, which is completely consistent with the XRD results. The highly crystalline
and well-dispersed particles with small particle size can increase the contact area with the
electrolyte, and shorten the path for Li+ diffusion inside the particles, thereby helping to
provide higher capacity at high rate.
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LiNi2/3Co1/6Mn1/6O2 calcinated at 800 ◦C.

Furthermore, the electrochemical performances of LiNi2/3Co1/6Mn1/6O2 materials
prepared at different calcination temperatures were investigated. Figure 5 shows the first
charge-discharge curves (Figure 5a) at 0.2 C rate and the AC impedance spectroscopies
(Figure 5b, Nyquist plots). The Nyquist plots were fitted by using the equivalent circuit
(Figure 5b inset), which included electrolyte resistance (Re), surface film resistance (Rf),
charge transfer (Rct) resistance, two constant phase element (CPE1, CPE2), and diffusional
components like Warburg impedance (Wo) [35]. The lithium ion diffusion coefficient was
also calculated from the following formula:

D =
R2T2

2A2n4F4C2σ2 (1)

where R is the gas constant, T is the room temperature in the experiment, A is the surface
area of the electrode, n is the number of the electrons per molecule attending the elec-
tronic transfer reaction, F is the Faraday constant, C is the concentration of lithium ion in
LiNi2/3Co1/6Mn1/6O2 electrode, σ is the slope of the line Z’~ω−1/2 (shown in Figure 5c),
respectively [36]. The fitting results and calculated lithium ion diffusion coefficient D values
are shown in Table 2. The sample prepared at 800◦C delivers a high discharge capacity of
188.7 mAh g−1, which consists with its perfect layered structure, small interface impedance
(Rf + Rct), and high lithium ion diffusion coefficient. In contrast, the interfacial impedance
of the material prepared at 750 ◦C increases to 41.29 Ω, while the lithium ion diffusion
coefficient and discharge capacity decreases to 1.41×10−11 cm2 s−1 and 176.9 mAh g−1
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respectively, which may be attributed to the low calcination temperature leading to a
relatively imperfect layered structure [33]. For the samples calcinated at 850 ◦C and 900 ◦C,
the discharge capacities reduce rapidly to 170.9 mAh g−1 and 167.7 mAh g−1, respectively,
accompanied by decreased lithium ion diffusion coefficient and large increased interface
impedance, which is mainly due to the increased defects caused by loss of oxygen and
lithium at high temperatures [22].
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Table 2. Electrochemical impedance spectroscopy (EIS) analysis results of LiNi2/3Co1/6Mn1/6O2 prepared at different
temperatures.

T (◦C) Rs (Ω) Rf (Ω) Rct (Ω) (Rf + Rct) (Ω) D (cm2 s−1)

750 3.49 (±0.18) 20.89 (±0.41) 20.40 (±0.81) 41.29 1.41 × 10−11

800 5.44 (±0.17) 20.73 (±0.94) 5.69 (±0.10) 26.42 1.59 × 10−11

850 5.38 (±0.14) 15.43 (±0.58) 38.45 (±1.12) 53.88 7.99 × 10−12

900 9.37 (±0.26) 11.86 (±0.42) 188.60 (±7.73) 200.46 1.27 × 10−12

Figure 6 shows the rate capability of LiNi2/3Co1/6Mn1/6O2 prepared at different
temperatures. It is clear that the sample calcinated at 800 ◦C still displays higher capacity
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than other three samples at different rate of 0.2 C to 5 C. It delivers capacity of 188.9, 179.1,
161.7, 148.2, 130.4, and 185.1 mAh g−1 at rate of 0.2 C, 0.5 C, 1 C, 2 C, and 5 C, respectively.
Moreover, it is impressive that the capacity at 0.2 C over 26 to 30 cycles followed after 5 C
charge-discharge cycles still remains 97.9% of its initial discharge capacity at 0.2 C in the
first cycle. Furthermore, the cycling performance of sample calcinated at 800 ◦C was tested
at rate of 0.5 C. As shown in Figure 7, the capacity retention reaches 93.9% after 50 cycles,
and the coulombic efficiency is close to 100% except for the first cycle, indicating good
electrochemical reaction reversibility. The above results reveal that calcination at 800 ◦C
under an oxygen atmosphere is optimized conditions for preparing LiNi2/3Co1/6Mn1/6O2
material with excellent rate performance and structural stability during cycling at different
rates.
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Table 3 lists the electrochemical performance of some LiNi1-x-yCoxMnyO2 (0.6 ≤ Ni con-
tent < 0.7) materials reported in other papers. Compared with LiNi0.66Co0.17Mn0.17O2 [14]
and LiNi0.65Co0.25Mn0.1O2 [16] materials obtained using a similar wet chemical synthesis
route, the LiNi2/3Co1/6Mn1/6O2 sample calcinated at 800 ◦C under O2 atmosphere in this
work exhibits excellent electrochemical performance. This can be mainly attributed to the
optimized preparation conditions such as calcination temperature and atmosphere, thereby
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effectively suppressing appearance of oxygen vacancies (VO) and cation-mixing (MLi)
defects. Compared with the electrochemical performance of the pristine NCM622 material
at a cut-off voltage of 4.5 V [19–21], the as-prepared LiNi2/3Co1/6Mn1/6O2 in this work
can not only obtain almost the same capacity at a cut-off voltage of 4.3 V, but also exhibit
better cycling stability due to the reduced electrolyte decomposition at a low cut-off voltage
(4.3 V). Although the cycling performance of NCM622 materials at high cut-off voltage can
be improved by modification such as surface coating and element doping [11,12,19–21],
this undoubtedly increases the complexity and cost of material manufacturing.

Table 3. Comparison of electrochemical performance of LiNi1-x-yCoxMnyO2 (0.6 ≤ Ni content < 0.7) materials from different
research.

Composition Preparation Method Voltage
Range (V)

Discharge Capacity
(mAh g−1) Capacity Retention Ref.

LiNi2/3Co1/6Mn1/6O2 Rheological phase method 2.8–4.3 188.9 (0.2 C)179.1 (0.5 C) 93.9% (50 cycles, 0.5 C) This work

LiNi0.66Co0.17Mn0.17O2 Sol-gel method 2.5–4.5 169.7 (1 C) 93.8%
(25 cycles) [14]

LiNi0.65Co0.25Mn0.1O2 Rheological phase method 2.5–4.5 130.5 (0.125 C) 96.9%
(20 cycles) [16]

LiNi0.6Co0.2Mn0.2O2 Solid state method 3.0–4.7 187.9 (0.2 C) 50.6%
(150 cycles) [19]

LiNi0.6Co0.2Mn0.2O2 Solid state method 2.7–4.5 179.8 (0.5 C) 69.1%
(100 cycles) [20]

LiNi0.6Co0.2Mn0.2O2 Solid state method 2.7–4.5 187.2 (0.2 C) 79.7%
(100 cycles) [21]

4. Conclusions

The nickel-rich ternary-layered LiNi2/3Co1/6Mn1/6O2 material can be successfully
prepared by a rheological phase method. Both calcination temperature and atmosphere are
very important factors to ensure high cation-ordering and low defects of the product. XRD
and SEM analysis results indicated that the sample produced under the optimized calci-
nation conditions of 800 ◦C and oxygen atmosphere displayed well-crystallized particle
morphology, highly ordered layered structure with low defects. Electrochemical perfor-
mance characterization showed that the sample prepared under the optimized conditions
exhibited small interface impedance, high lithium ion diffusion coefficient, and excellent
electrochemical performance. In the voltage range of 2.8–4.3 V, it delivered capacity of
188.9 mAh g−1 at 0.2 C and 130.4 mAh g−1 at 5 C, respectively. The capacity retention also
reached 93.9% after 50 cycles at 0.5 C. The results prove that LiNi2/3Co1/6Mn1/6O2 is a
very promising cathode material for lithium-ion batteries.
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