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Abstract: Fusarium fungi are the cause of an array of devastating diseases affecting yield losses
and accumulating mycotoxins. Fungicides can be exploited against Fusarium and deoxynivalenol
(DON) production. However, Fusarium resistance to common chemicals has become a therapeutic
challenge worldwide, which indicates that new control agents carrying different mechanisms of
action are desperately needed. Here, we found that a nonantibiotic drug, ethylenediaminetetraacetic
acid disodium salt (EDTANa2), exhibited various antifungal activities against Fusarium species and
DON biosynthesis. The infection of wheat seeding caused by F. graminearum was suppressed over
90% at 4 mM EDTANa2. A similar control effect was observed in field tests. Mycotoxin production
assays showed DON production was significantly inhibited, 47% lower than the control, by 0.4 mM
EDTANa2. In vitro experiments revealed a timely inhibition of H2O2 production as quickly as 4 h after
amending cultures with EDTANa2 and the expression of several TRI genes significantly decreased.
Chitin synthases of Fusarium were Mn2+-containing enzymes that were strongly inhibited by Mn2+

deficiency. EDTANa2 inhibited chitin synthesis and destroyed the cell wall and cytomembrane
integrity of Fusarium, mainly via the chelation of Mn2+ by EDTANa2, and thus led to Mn deficiency
in Fusarium cells. Taken together, these findings uncover the potential of EDTANa2 as a fungicide
candidate to manage Fusarium head blight (FHB) and DON in agricultural production.

Keywords: Fusarium; EDTANa2; deoxynivalenol; chitin synthases; manganese ion

Key Contribution: EDTANa2 is identified as a fungicide candidate molecule to control the growth
and DON production of Fusarium graminearum. The antifungal activity of EDTANa2 mainly results
from Mn deficiency in cells.

1. Introduction

Fusarium is a globally important genus of fungal pathogens, responsible for many
devastating diseases of plants and various serious diseases of humans [1,2]. Fusarium
species are widely present in soil, plants and other organic substrates and have widespread
distributions [3]. Species such as Fusarium graminearum, Fusarium oxysporum and Fusarium
verticillioides can infect many crop plants, vegetables and flowers [2,4–8]. One of the major
diseases caused by Fusarium is Fusarium head blight (FHB), which is becoming more and
more serious recently and causing concern. FHB results in yield loss and damaging of
cereal grains [9,10]. Additionally, Fusarium spp. produce various types of mycotoxins,
including deoxynivalenol (DON) and acetyl-deoxy-nivalenol (3-ADON and 15-ADON),
that suppress humoral and cellular immunity and are thus highly detrimental to human
and animal health [11,12]. DON is a mycotoxin virulence factor that promotes growth of
the F. graminearum fungus in wheat floral tissues [13].
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Practices used to control FHB and DON include rotation with nonhost crops and
tillage [14], planting of resistant cultivars [15], and application of fungicides [16]. Essen-
tially, current protective measures against Fusarium species mainly rely on fungicides,
such as benzimidazole, triazole, demethylation inhibitor and quinone outside inhibitor.
However, some of these can lead to the enhancement of DON biosynthesis in the infected
wheat [17,18]. Therefore, new molecules are needed to control FHB and inhibit DON
biosynthesis.

In addition, Fusarium isolates are susceptible to mutations that lead to phenotypes
of tolerance towards common antifungal drugs [19,20]. Resistance to fungicides allows
pathogens to survive fungicide treatment. The time taken for a new resistant mutant to
reach a population size that is unlikely to die out by chance is called “emergence time”.
Prolonging emergence time would delay loss of control [21]. To date, the drawbacks of both
scientific control strategies and the use of effective fungicides need to be addressed [8,22,23].
Undoubtedly, the processes of discovery and development of new antifungal drugs in the
pharmaceutical industry are not only laborious and time consuming but also costly [24].
This is particularly true, as fungicides with novel modes of action are only rarely found, and
resistance to single-target fungicides may occur within few years [25]. Some nonantibiotic
drugs were recently reported to exhibit some antimicrobial activity against bacteria and
Candida albicans [26,27].

Ethylenediaminetetraacetic acid (EDTA) is a chelating agent targeting divalent cations
and has been previously used in oil fields to increase oil production and inhibit scale
formation [28,29]. EDTA has also been shown to possess antimicrobial activities against
bacteria and C. albicans because it can limit the availability of essential cations. The chelation
of cations causes a separation of lipopolysaccharides from the outer membrane of microbial
cells and thus increases the membrane permeability and subsequently leads to cell death in
bacteria [30–35]. Generally considered safe, EDTA has been used intensively in the food
and therapeutic industry [33,36,37]. Here, we demonstrated that EDTANa2 had antifungal
activity against Fusarium graminearum and DON biosynthesis. Our study contributes to the
understanding of the mechanisms underlying EDTANa2 control of FHB and provides a
fungicide candidate molecule against Fusarium graminearum and its mycotoxin biosynthesis.

2. Results
2.1. Ethylenediaminetetraacetic Acid Disodium Salt Exhibits Various Antifungal Activities against
Fusarium Species

Mycelial growth was inhibited with 0.15 mM ethylenediaminetetraacetic acid or
ethylenediaminetetraacetic acid sodium salt (Figure 1A). The effectiveness of ethylenedi-
aminetetraacetic acid sodium salt was affected by its number of sodium ions. For all tested
reagents, EDTANa2 had the best antifungal activity in terms of growth inhibition as well
as cell swelling effects, closely followed by EDTANa3. The antifungal activity of EDTANa4
was similar to that of EDTA. Moreover, the mycelial growth and morphology with the 0.3,
0.45, 0.6 mM sodium ion treatments showed no difference from the control group (only the
treatment with 0.6 mM sodium ion is shown in Figure 1A), indicating that the sodium ions
had no effect on Fusarium growth at a concentration less than 0.6 mM.

To test the antifungal activity of EDTANa2, thirteen isolates of Fusarium, including F.
acuminatum, F. asiaticum, F. avenaceum, F. concentricum, F. culmorum, F. equiseti, F. fujikuroi,
F. graminearum, F. lateritium, F. oxysporum, F. proliferatum, F. solani and F. verticillioides were
inoculated into 96-well microtiter plates. The minimum inhibitory concentrations (MICs) of
EDTANa2 on the test pathogens varied from 9.37 to 18.75 mM (Table S1). The lowest MIC
value was observed for F. asiaticum, F. avenaceum, F. equiseti, F. fujikuroi and F. proliferatum,
while the other Fusarium isolates (except F. lateritium) had MIC values of 18.75 mM. The
MIC value of EDTANa2 to F. lateritium was 200 mM. Surprisingly, EDTANa2 did not
show any antifungal activity against F. lateritium but promoted its growth in the range of
4.69–150 mM.
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Figure 1. The antifungal activity of ethylenediaminetetraacetic acid disodium salt (EDTANa)(n) 
against Fusarium graminearum. (A) The influence of sodium ion on EDTA effects. Conidia of F. gra-
minearum were grown in SNA (1 g L-1 KH2PO4, 1.0 g L-1 KNO3, 0.5 g L-1 MgSO4˙7H2O, 0.5 g L-1 KC1, 
0.2 g L-1 glucose, 0.2 g L-1 sucrose) medium with 0.15 mM EDTANa(n) (n = 0, 2, 3 or 4; pH 4.2) and 
were photographed after 24 h of cultivation. The effect of sodium ions was assayed by replacing 
EDTANa(n) with NaCl and was used as the second control group. Each right panel is an enlarged 
view of the area in the black box in the left panel. The arrows indicate conglobate structures after 24 
h in response to EDTANa(n). The experiment was repeated three times with the same patterns. (B) 
Sensitivities of F. graminearum to EDTANa2. The measurement was performed on minimal medium 
(MM) after 4 d at 25 °C. Photos were taken 3 days after incubation. The experiment was repeated 
three times with the same patterns. 
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For F. graminearum PH-1 strain, a linear regression of the percentage inhibition re-
lated to the control of mycelial growth versus the log10 transformation for each of 
EDTANa2 concentration was obtained. The median effective concentration (EC50) was cal-
culated for each strain using a linear equation. The EC50 value of EDTANa2 for F. gramine-
arum PH-1 strain was 0.29 mM (107.88 mg L−1) (Figure 1B). 
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against Fusarium graminearum. (A) The influence of sodium ion on EDTA effects. Conidia of F.
graminearum were grown in SNA (1 g L−1 KH2PO4, 1.0 g L−1 KNO3, 0.5 g L−1 MgSO4˙7H2O,
0.5 g L−1 KC1, 0.2 g L−1 glucose, 0.2 g L−1 sucrose) medium with 0.15 mM EDTANa(n) (n = 0, 2, 3 or
4; pH 4.2) and were photographed after 24 h of cultivation. The effect of sodium ions was assayed
by replacing EDTANa(n) with NaCl and was used as the second control group. Each right panel
is an enlarged view of the area in the black box in the left panel. The arrows indicate conglobate
structures after 24 h in response to EDTANa(n). The experiment was repeated three times with the
same patterns. (B) Sensitivities of F. graminearum to EDTANa2. The measurement was performed on
minimal medium (MM) after 4 d at 25 ◦C. Photos were taken 3 days after incubation. The experiment
was repeated three times with the same patterns.

For F. graminearum PH-1 strain, a linear regression of the percentage inhibition related
to the control of mycelial growth versus the log10 transformation for each of EDTANa2
concentration was obtained. The median effective concentration (EC50) was calculated for
each strain using a linear equation. The EC50 value of EDTANa2 for F. graminearum PH-1
strain was 0.29 mM (107.88 mg L−1) (Figure 1B).

2.2. The Control Effect and Phytotoxicity Test of Ethylenediaminetetraacetic Acid Disodium Salt

The EDTANa2 for control of seedling blight in wheat was effective, reducing disease
severity by 59%, 79%, 92% at 1 mM, 2 mM and both 4 mM and 8 mM, relative to the
inoculated control, respectively (Figure 2A). No significant different effect was observed
among 1 mM to 8 mM EDTANa2, indicating that the control effect was stable within that
range under controlled conditions. To ascertain whether the EDTANa2 molecule could
inhibit Fusarium infection under natural conditions, a crop phytopathogen, F. graminearum,
was chosen for pathogenicity assays by spray inoculation experiments. The disease inci-
dences were recorded 21 days post inoculation (dpi). The field experiment was conducted
for two years (2018 and 2019) and produced similar results to the previously described
experiments. As shown in Figure 2B, EDTANa2 significantly reduced Fusarium head blight
in the field. After spray treatment with 7 g ha−1 EDTANa2, F. graminearum caused 52% and
45% spikelets infection at 21 dpi, 45% and 49% reduction compared to the sterile water
control in 2018 and 2019, respectively. When the dosage of EDTANa2 increased to 70 g ha−1,
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the incidence of disease decreased to 12% and 8%, 87% and 91% reduction compared to
the sterile water control in 2018 and 2019, respectively. In 2019, the incidence of disease
treated with 70 g ha−1 EDTANa2 had a 70% reduction compared to the 140 g ha−1 car-
bendazim treatment (Figure 2B). To further analyze the influence of EDTANa2 treatments
on spikelet morphology, we sprayed a series of EDTANa2 concentrations (7 g ha−1 to
4000 g ha−1) onto wheat spikelets, and the results showed that there was little change in
spikelets morphology following spray application of 7 g ha−1 to 1600 g ha−1 EDTANa2.
However, when the dosage of EDTANa2 increased to 2000 g ha−1, phytotoxicity was
observed (Figure 2C). These results suggested that EDTANa2 could be used as a safe
antifungal agent at low concentration.Toxins 2021, 13, x FOR PEER REVIEW 5 of 17 
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Figure 2. Control effect and phytotoxicity test of EDTANa2. (A) Control effect of EDTANa2 on wheat
seedling blight in laboratory. The test was designed with two random replications for each race
of plant. Ten seedlings per treatment were inoculated with macroconidia suspension 24 h after
EDTANa2 spray. The lesions of diseased leaves were measured and photographed on sixth day post
inoculation. Different letters represent a significant difference at p < 0.05. A linear regression equation
of the percentage control effect for each EDTANa2 concentration was developed using the SPSS
20.0 (IBM, Chicago, IL, USA) statistical package (y = 4.67 + 3.329x, R = 0.9476). (B) Control effect of
EDTANa2 on Fusarium head blight in the field. Wheat spikelets (cultivar Huaimai33) were sprayed
with water, 40% carbendazim (140 g ha−1), or EDTANa2. Twenty-four hours later, the spikelets
were inoculated via a spray inoculation experiment with a conidial suspension. Each combination
of fungicide treatment and fungus was represented by 30 heads. After 21 days, the percentages of
infected spikelets were determined, and representative heads were photographed. Values are means
± SD. Different letters represent a significant difference at P < 0.05. (C) Phytotoxicity test of EDTANa2

in the field. Wheat spikelets (cultivar Huaimai33) were sprayed with EDTANa2 and photographed at
21 days post inoculation. The data are an average ± standard error from 30 randomly selected heads.
The experiment was replicated three times.
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2.3. EDTANa2 Decreases DON Biosynthesis and TRI Gene Expression of Fusarium Graminearum
In Vitro

Because the mycotoxin DON is a virulence factor, we investigated the mycotoxin
biosynthesis potential of strains under EDTANa2 treatment. To verify the ability of the
EDTANa2 to limit toxin production, DON amounts were measured using a competitive
ELISA-approach. As shown in Figure 3A, the DON production in TBI media was signifi-
cantly inhibited by 0.4 mM and 0.8 mM EDTANa2, about 47% and 57.3% lower than the
control group, respectively.Toxins 2021, 13, x FOR PEER REVIEW 7 of 17 
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Figure 3. Effect of EDTANa2 on production of deoxynivalenol (DON) (A), H2O2 concentrations (B) and TRI genes expression
(C). DON content was determined using a competitive ELISA approach 7 d after start of the experiments. The experiment
was repeated three times. H2O2 was measured at 4 h and 12 h and calculated based on a standard curve included in each
experiment. TRI gene expression was assayed by qRT-PCR. Hyphae were harvested from 2-day-old TBI cultures (1 day
after EDTANa2 adding). Data are represented as the means ± SD of three biological replicates (significant differences at
* p < 0.05).
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As several lines of evidence in the literature corroborate an important role for H2O2 in
induction of toxin production, the accumulation of H2O2 upon EDTANa2 application was
monitored using an in vitro assay. It showed that adding 0.4 mM and 0.8 mM EDTANa2
resulted in a decreased H2O2 content in the medium compared to the control as fast as
4 h after the start of the assay (Figure 3B). This indicated that EDTANa2 decreased the
intracellular oxygen content within a short time after adding to the medium, which may
reduce the activation of oxygen to toxin synthesis.

To further reveal the expression profiles of individual genes and their coordination
in the trichothecene biosynthesis pathway, we measured the expression of several TRI
genes after treating with EDTANa2. We found four genes in the trichothecene biosynthesis
pathway were significantly down-regulated compared with the control group (Figure 3C).
After treating with 0.4 mM EDTANa2 at 12 h, the expression of the TRI6 and TRI10
genes, which have been identified as positive transcription factor genes for trichothecene
biosynthesis in F. graminearum, decreased by 2- and 2.13-times; The TRI12 gene, which is
associated with trichothecene accumulation and resistance in F. graminearum, decreased
by 3.45-times compared with the control group; The expression of the TRI11 gene also
decreased by 1.56-times. The inhibitory effect of 0.8 mM EDTANa2 on the TRI genes
expression was consistent with that of 0.4 mM EDTANa2. It should be mentioned that
the Tri101 gene encoding a trichothecene 3-O-acetyltransferase showed a remarkable up-
regulation, with 2.24- and 3.02-fold more transcripts after treating with 0.4 mM and 0.8 mM
EDTANa2, respectively (Figure 3C). These in vitro results suggested that EDTANa2 can
indeed inhibit DON biosynthesis and may be useful for reducing DON contamination in
grains caused by F. graminearum.

2.4. Ethylenediaminetetraacetic Acid Disodium Salt Affected Cell Wall Formation and
Cell Permeability

The inhibition of Fusarium growth by EDTANa2 was observed, so we analyzed the
cell wall formation and cell permeability of cells grown in the presence of EDTANa2. The
mycelia treated by EDTANa2 were sensitive to the preparation condition of scanning elec-
tron microscopy (SEM), and were destroyed and lysed with SEM observation (Figure 4A).
As shown in Figure 4B, the ultra-structures of the untreated cells exhibited normal electron-
dense layers and patterns under transmission electron microscopy. In contrast, the cells
cultured in 0.075 mM EDTANa2 had a clearly altered cell wall electron density, thickness
and ultrastructure. The most notable visual alteration was a thicker cell wall in the treated
cells, which topped 573 nm compared with that of the control cell, which had an average of
142 nm (the biggest thickness was 153 nm) (n = 20). Furthermore, the number of layers in
the treated cell wall was reduced, and the electron density declined, whereas three layers
were easily recognized in the normal cell wall. In filamentous fungi, chitin, a β-1,4-linked
polysaccharide of N-acetylglucosamine, is a key structural component of the cell wall [38].
To further analyze the effect of EDTA and EDTANa2 on cell wall formation, we measured
the chitin content of F. graminearum cell walls after EDTA or EDTANa2 treatment. The
results illustrated that the EDTA and EDTANa2 treatment groups produced only 33.43%
and 25.23% chitin relative to the hyphal dry weight, values 35.35% and 51.2% lower than
those of the control group, respectively (Figure 4C). It is noteworthy that EDTANa2 was
more effective than EDTA, which concurred with our above results.
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In most cases, the mode of action of antimicrobials against pathogens depends on the 
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Figure 4. Effects of EDTANa2 on Fusarium cell wall formation and cell permeability. (A) Scanning
electron microscopy of hyphae of Fusarium graminearum treated with or without EDTANa2. (B)
Transmission electron microscopy of hyphae of F. graminearum treated with or without EDTANa2.
The right panel is an enlarged view of the area in the black box in the left panel. CW, cell wall; EL,
external electron-dense layer; ML, middle electron-dense layer; IL, internal electron-dense layer;
PM, plasma membrane. Chitin content (C) and relative conductivity assay (D) of F. graminearum
treated with 0.3 mM NaCl, 0.15 mM EDTA or EDTANa2. The experiment was performed in triplicate.
Different letters represent a significant difference at p < 0.05.

In most cases, the mode of action of antimicrobials against pathogens depends on the
destruction of the fungal cell membrane and the resulting increase in cell permeability. The
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change in electrical conductivity reflects the change in the cell membrane permeability of
Fusarium. Additionally, our data showed that the relative conductivity of hypha was signif-
icantly increased by 11% and 15% after 0.15 mM EDTA and 0.15 mM EDTANa2 treatment
compared with that of the control group, respectively (Figure 4D). There was no difference
between 0.6 mM NaCl treatment and the control group. Therefore, EDTA and EDTANa2,
especially EDTANa2, indeed affected both cell wall formation and cell permeability and
resulted in a decreasing resistance to the external environment in F. graminearum.

2.5. The Inhibitory Effects of Ethylenediaminetetraacetic Acid Disodium Salt against Fusarium are
Ameliorated by Mn2+ but not Mg2+ and Ca2+

In order to find out the mechanism of inhibiting effect of EDTANa2, we examined the
effect of the saturation of EDTANa2 (0.15 mM) by the addition of excess cations (0.15 mM
to 1.2 mM). As shown in Figure 5A, the adding of Mn2+ increased the biomass of mycelia,
but the adding of Mg2+ and Ca2+ had no significant effect on mycelia biomass. In addition,
when an additional 0.3 mM MgCl2, 0.3 mM CaCl2 or 0.15 mM FeCl3 was added into the
media as sources of divalent ions to bind 0.15 mM EDTANa2, mycelial growth was not
resumed. 0.15 mM EDTANa2 plus 0.3 mM Mn2+, however, rescued mycelial growth and
morphology, which was similar to that in control wells not given EDTANa2 (Figure 5B).
That indicated that the inhibiting effect of EDTANa2 was related to its function of chelation.
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Figure 5. (A) EDTANa2 saturation with Mg2+, Ca2+ and Mn2+ induces the resumption of mycelial growth. The mycelial
biomass was measured after 52 h of incubation as from MgCl2, CaCl2 or MnCl2 adding. Mycelial biomass was expressed
as absorbance. (B) Effects of different cations on EDTANa2 activity against Fusarium graminearum. The right panel is
an enlarged view of the area in the black box in the left panel. The arrows indicate conglobate structures. The same
amounts of cations were added to the medium as controls. The experiment was repeated three times with the same
patterns. (C) Concentration of selected trace elements in fungi treated with 0.15 mM EDTANa2 or 0.15 mM EDTANa2 plus
0.3 mM additional cations. Mycelial biomass and trace element assays were performed using three biological replicates for
each group.

We further measured the trace element content of Fusarium hyphae in different treat-
ments. As shown in Figure 5C, when EDTA and EDTANa2 were added to the medium,
the Mg and Mn elements decreased as expected. However, the contents of Ca and Fe ele-
ments were not significantly changed after the addition of EDTA and EDTANa2. When an
additional Mg2+ or Ca2+ was added into the medium containing EDTANa2, all the trace el-
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ements, except Mn, increased or showed no difference compared with the untreated group.
The Mn was always in a deficient state in the mycelia treated by EDTA and EDTANa2
unless Mn2+ was added into the medium. These results suggested that intracellular Mn2+

was chelated by EDTANa2, resulting in cell wall and cell membrane defects.

2.6. Chitin Synthases are More Active in F. graminearum When Mn2+ Is Used as a Cofactor

To further study the mechanism of the EDTANa2 control effect, chitin synthases were
extracted for enzymatic analysis. Unlike most chitin synthases in other fungi that used
Mg2+ as the cofactor, chitin synthases in F. graminearum were more active when Mn2+ was
used at the active site. The chitin synthases with 5 mM Mn2+ had a 26% higher activity
than that with 5 mM Mg2+, indicating that chitin synthases in F. graminearum may use
Mn2+ as the cofactor. The addition of 0.25 mM EDTANa2 into the reaction systems could
decrease enzymatic activity by 40% and 44% after chelation of Mn2+ and Mg2+, respectively.
However, chitin synthase in the Mn2+ reaction system still had a 33% higher activity than
that in the Mg2+ reaction system. When the EDTANa2 concentration was increased to 1 mM,
the activity of chitin synthase in the Mn2+ and Mg2+ reaction systems decreased to 0.09
and 0.11 nmol GlcNAc h−1 mg−1, respectively (Figure 6A). Consistent with this, the metal
ion addition experiment showed that the chitin content returned to normal levels after the
addition of 0.15 mM Mn2+ to SNA culture medium (containing 0.15 mM EDTANa2). While
wells adding Mg2+ or Ca2+ produced equivalent chitin to wells adding EDTANa2 only, a
35–50% reduction was observed compared to the control group (Figure 6B).
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Figure 6. Chitin synthase activity and chitin content assay of Fusarium graminearum. (A) Chitin synthase activity was
measured following (14C) GlcNAc incorporation into the filter-retainable polymer in the presence of Mg2+ or Mn2+. Data
are expressed as nmol of GlcNAc incorporated per hour per mg of protein. (B) Mycelia were treated with EDTANa2 or
EDTANa2 with additional cations. EDTANa2 (0.15 mM) was saturated by adding Mg2+, Ca2+ or Mn2+ (0.45 mM) to SNA
media. Data are represented as the means ± SD of three biological replicates (* indicates significant differences at p < 0.05
compared to CK).

3. Discussion

The genus Fusarium, which is pathogenic and toxic to plants and humans, is one
of the most economically damaging fungal genera. Fusarium colonizes a wide range
of environments, and control of Fusarium floral infections remains problematic. Some
fungicides, including triazoles, benzimidazoles and strobilurins, are moderately effective,
but reports of fungicide failure resulting from resistance have increased since the late
1960s [39,40]. To make matters worse, the development of new fungicides is much slower
than the appearance of fungicide resistance in Fusarium populations [41,42]. Here, a
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nonantibiotic drug, EDTANa2, exhibited novel antifungal activity against F. graminearum
and DON production. Through combined analyses of morphology, DON content and
TRI gene expression detection, chitin detection, cell permeability, transmission electron
microscopy and field experiments, we demonstrated that EDTANa2 destroyed cell wall
and cytomembrane integrity and inhibited TRI gene expression in F. graminearum, and the
antifungal effect of EDTANa2 relied on Mn2+-chelating abilities.

EDTA is considered as an ion chelator, and it has been recommended as an antimi-
crobial agent against bacteria and C. albicans [43–45]. The EC50 value of EDTANa2 for F.
graminearum is 107.88 mg L−1, which is higher than that of carbendazim (about 0.5 mg L−1).
The field test, however, shows that 70 g ha−1 EDTANa2 decreased the incidence of disease
by 70% compared to 140 g ha−1 carbendazim treatment. As DON is an important virulence
factor in wheat, previous studies suggest that significant decreases in FHB incidence in
field situations are possible with proper DON inhibited fungicide applications [46]. In our
study, the DON production was significantly inhibited by EDTANa2, which may increase
the antifungal effects on FHB.

The fungal cell wall protects the cell against osmotic pressure and other environmental
stresses and is considered the carbohydrate armor of the fungal cell [47]. After EDTANa2
treatment, all layers across the cell wall were affected, and the chitin content was decreased
in Fusarium. In addition, the membrane permeability increased significantly when Fusarium
was cultured in medium containing EDTANa2. This suggests that the fungal cells became
more sensitive to changes in environmental stresses with EDTANa2 treatment.

Our next question was which divalent cation was chelated by EDTANa2 and then
caused chitin content reduction and cell wall defects in Fusarium. There have been reports
that calcium-binding agents inhibit Cryptococcus neoformans and C. albicans by disrupting
the assembly of the polysaccharide capsule through Mg2+ and Ca2+ chelation [31,48,49].
However, the results in our paper showed that EDTANa2 chelated Mn2+ and resulted in
a reduction of chitin synthesis. In fungi, chitin is synthesized by chitin synthase, whose
activities are known to depend upon the presence of a divalent cation [50,51]. Chitin
synthases (CHSs) in Fusarium were previously classified into seven categories [52]. Different
chitin synthases are distinct in their responses to the divalent cation, for example, Chs2 and
Chs3 are stimulated, while Chs1 is inhibited by Co2+ in Saccharomyces cerevisiae [53]. On the
basis of the data obtained in our study, it may be logical to assume that Mn2+ is essential for
the main chitin synthase of Fusarium. EDTA had a fungistatic effect on F. fujikuroi growth,
a pathogen causing bakanae disease, and its action was largely suppressed by Mn2+ and
slightly by Ca2+ [54]. Combining with our findings, we can speculate that this kind of
chelating agent, such as EDTA and EDTANa2 inhibits Fusarium spp. mainly because of
Mn2+ deficiency.

In summary, EDTANa2 inhibits DON production and disrupts the cell wall and cell
membrane functionality of Fusarium, an effect that appears to mainly result from Mn2+

chelation. The results of our study provided new material and candidate compound against
Fusarium in crop protection.

4. Materials and Methods
4.1. Fungi, Plants, and Culture Conditions

Fusarium graminearum strains PH-1, F. asiaticum strain 2021, F. acuminatum, F. ave-
naceum, F. concentricum, F. culmorum, F. equiseti, F. fujikuroi, F. lateritium, F. oxysporum, F.
proliferatum, F. solani and F. verticillioides (Figure S1, Table S2) used in this study were stored
in our laboratory [55]. The wheat variety Huaimai33 was maintained in our laboratory.
Carboxymethyl cellulose (CMC) broth [56] and SNA medium (0.1% KH2PO4, 0.1% KNO3,
0.05% MgSO4˙7H2O, 0.05% KCl, 0.02% glucose, and 0.02% sucrose) were used for conidia
production and assessments of mycelial growth, respectively. EDTA (99%) and inorganic
metal salts were purchased from Sigma-Aldrich (St. Louis, MO, USA).
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4.2. Control Effect Measurement on Wheat Seedling Blight

The test was evaluated under controlled conditions using a completely randomized
design with two replications for each treatment. Ten seedlings per treatment were inocu-
lated on the fully expanded primary leaves 8 d after Huaimai33 planting. The EDTANa2
was sprayed on leaves at different concentration from 0.5 to 8 mM. After 24 h, leaves were
punctured and inoculated with three microliter of macroconidia suspension (1 × 106 spores
mL−1). The lesions of diseased leaves were measured and photographed at 6th day post
inoculation. Duncan’s multiple comparison test (SPSS20.0, IBM, Chicago, IL, USA) with
a significant difference set as P < 0.05 was used to compare sample means. Mean values
and standard deviations were reported. The differences between means with P less than
0.05 were considered statistically significant. The control effect was characterized by linear
regression analysis (R = 0.94) using the SPSS statistical package.

4.3. Control Effect Measurement on Fusarium Head Blight and Phytotoxicity Field Test

The field study was conducted for two years (2018 and 2019) at the same location with
different randomizations for each year (Table 1). Wheat (Triticum aestivum L. cv. Huaimai33)
was grown on the experimental farm of Nanjing Agricultural University. At Zadok’s
growth stage (ZGS) 65, while more than half of the wheat spikes were in bloom, field plots
were arranged in a randomized block, which was designed with three 3 plots (each plot was
4 × 5 m). The treatments were as follows: (1) a control consisting of water; (2) 140 g ha−1

carbendazim; (3) 7 g ha−1 EDTANa2; (4) 70 g ha−1 EDTANa2. 7–4000 g ha−1 EDTANa2
were used for phytotoxicity assays. For floral spray inoculations, each plant was sprayed
with 0.5 mL of 1 × 104 spores mL−1 F. graminearum strain PH-1 conidia 24 h after EDTANa2
spray treatment. Pathogenicity assays were performed 14 or 21 days after EDTANa2 spray
treatment as described previously [57]. The influence of EDTANa2 on wheat was tested by
assessing browning spikelets. Thirty wheat heads were randomly selected to calculate the
browning spikelets ratio for each concentration of EDTANa2. The browning spikelets ratio
was defined as follows: browning spikelet (%) = browning spikelets/total spikelets. The
experiment was replicated three times.

Table 1. Climate conditions in the field study.

Year Experimental Date Rainy Period
Temperature a (◦C)

Tav Tmax Tmin

2018 20 Apr.–4 May. 21 Apr.–23 Apr., 29 Apr.–1 May 21 30 11

2019 20 Apr.–11 May. 21 Apr., 27 Apr. and 28 Apr. 18 30 9
a Data represent the average of the daily mean (Tav), minimum (Tmin) and maximum (Tmax) temperatures recorded
during each experimental period.

4.4. Mycelial Growth Inhibition by EDTANa2

For a fungicide-sensitivity assay in the laboratory, a three-day-old mycelial plug (5 mM
in diameter) was placed in the center of a minimal medium (MM) (10 mM K2HPO4, 10 mM
KH2PO4, 2.5 mM NaCl, 4 mM NH4NO3, 10 mM glucose) plate amended with EDTANa2
at 0, 0.1, 0.2, 0.4, 0.8, 1.6 mM (0, 37.2, 74.4, 148.8, 297.6, or 595.2 mg L−1). After 4 d at
25 ◦C, the colony diameters in two perpendicular directions of each plate were measured
and averaged. Each combination of strain and concentration was represented by three
biological replicates. The median effective concentration (EC50) value was calculated with
DPS software (version 7.0, DPS Inc., Cary, NC, USA).

4.5. Optical, Scanning Electron Microscopy and Transmission Electron Microscopy Observation

Morphological observation of mycelia was performed using an inverted Olympus
IX71 microscope (Olympus Canada, Markham, ON, Canada). Images were captured and
analyzed by Image-Pro Plus 4.5 software (Media Cybernetics, Silver Spring, Maryland).
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were
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carried out using hyphae germinated from spores in SNA supplemented with 0.15 mM
EDTANa2 at 25 ◦C for 24 h. All the cultures were performed in triplicate. For SEM determi-
nation, mycelia were fixed with 2.5% glutaraldehyde in 0.1 M sodium phosphate buffer
(pH 7.2) at 4 ◦C for 12 h. The samples were then washed with sodium phosphate buffer
(0.1 M, pH 7.2) and treated with 1% osmium tetroxide in sodium phosphate buffer for 1 h,
subjected to gradual dehydration in ethanol (70, 80, 90 and 100%), and dried to the critical
point (CPD 030 Critical Point BALTEC Dryer, Leica Microsystems, Liechtenstein). After
drying, the samples were glued on stubs using carbon tape and coated with gold (Sputter
Coater BALTEC SDC 050, Leica Microsystems, Liechtenstein). For TEM determination,
sections were prepared and visualized using a H-7650 transmission electron microscope
(Hitachi, Tokyo, Japan) as described by Song et al. [57].

4.6. Measurement of H2O2 and DON

H2O2 formation in the fungicide experiments was measured 4 h and 12 h after 0.4 mM
or 0.8 mM EDTANa2 treatment using a TMB (tri-methyl-benzidin) assay [58]. H2O2
formation was determined by measuring the absorbance at 620 nm in duplicate in each
time point and in three independent experiments. In each experiment, a standard curve
of pure H2O2 was added in a concentration range of 0.01 mM up to 100 mM. The H2O2
formed in the in vitro assay was calculated based on this standard curve.

DON production in TBI cultures was assayed with a competitive ELISA-based DON
detection plate kit (Wise, Zhenjiang, China) according to previous studies [59]. Ten mi-
croliter of conidia (1.5 × 107/mL) were inoculated in 30 mL TBI and cultured at 28 ◦C for
24 h in dark, and then 0.4 mM or 0.8 mM EDTANa2 was added and cultured for additional
6 days. The experiment was repeated three times. To assay TRI gene expression, hyphae
were harvested from 2-day-old TBI cultures (1 day after EDTANa2 adding) and used for
RNA isolation. qPCR was performed as previously describe (Table S3) [57]. The tubulin
gene of F. graminearum was used as the internal control. The results were calculated with
the data from three biological replicates.

4.7. Chitin Content, Chitin Synthase Activity and Cell Membrane Permeability Measurement

Macroconidia (104 mL−1) were cultured in SNA, SNA amended with 0.15 mM EDTA or
SNA amended with 0.15 mM EDTANa2 for 7 days and were used for chitin determination
as previously described [57]. Fresh mycelium cultured in Czapek’s medium (3 g L−1 of
NaNO3, 1.31 g L−1 of K2HPO4, 0.5 g L−1 of KCl, 0.5 g L−1 of MgSO4·7H2O, 0.01 g L−1 of
FeSO4·7H2O, 30 g L−1 of sucrose, pH 7.2) for 5 d were collected and finely ground with
liquid nitrogen for chitin synthase extraction. Chitin synthase activity was extracted and
measured according to Song et al. [57] with some modifications. Chitin synthase activity
was measured by following (14C) GlcNAc incorporation into the filter-retainable polymer
in the presence of 0–1 mM EDTANa2 plus 5 mM Mg2+ or Mn2+. To measure the cell
membrane permeability, macroconidia (final concentration was 103 mL−1) were inoculated
into SNA, SNA with 0.3 mM NaCl, SNA with 0.15 mM EDTA or SNA with 0.15 mM
EDTANa2 at 25 ◦C for 7 days. The conductivity was measured with a conductometer
(CON510 Eutech/Oakton, Singapore) as described previously [60]. The conductivity of
mycelia boiled for 5 min represented the final conductivity. The relative conductivity was
calculated as follows: relative conductivity (%) = conductivity/final conductivity × 100.
Three biological replicates were tested for each treatment.

4.8. Fungicidal Activity of EDTANa(n) against Fusarium spp.

Ten microliters of spores (104 mL−1) of F. graminearum PH-1 were plated in a 96-well
flat bottom culture plate containing 0.15 mM EDTA, EDTANa2, EDTANa3 or EDTANa4 in
100 µL of SNA medium (pH 4.2). The plates were cultured at 25 ◦C for 24 h and observed
using an inverted microscope. The growth and morphology of mycelia were photographed
and compared among treatments using NIS-Elements AR software (version 3.2, Nikon,
Tokyo, Japan). The experiment was replicated three times.
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The determination of the minimum inhibitory concentration (MIC) was performed
using 96-well microtiter plates. The Fusarium spp. (listed in ‘Fungi, plants, and culture
conditions’) fungal inoculated in 96-well microtiter plates were treated with EDTANa2
at different concentrations and incubated for 24 or 36 h. The lowest concentration that
demonstrated no visible growth was determined as the MIC. Measurements were repeated
three times.

4.9. Effect of Metal Ions on EDTANa2 Activity

To assess whether cations would ameliorate the inhibitory effects of EDTANa2 on
mycelial growth and chitin synthesis, an additional 0.3 mM MgCl2, 0.3 mM CaCl2, 0.3 mM
MnCl2 or 0.15 mM FeCl3 was added into SNA medium separately to bind the preadded
0.15 mM EDTANa2, followed by inoculation at 25 ◦C for 24 h and subsequent micro-
examination. Corresponding amounts of MgCl2, CaCl2, MnCl2 or FeCl3 were used as
controls. Subsequently, a series of MgCl2, CaCl2 or MnCl2 concentrations (0, 0.15, 0.3,
0.45, 0.6, 1.2 mM) was added to the media to saturate the 0.15 mM EDTANa2 to different
degrees, and the fungi were cultured for 52 h to measure the mycelial biomass at OD290.
The mycelia that were treated with 0.3 mM cations were collected at 7 d, frozen and dried
for chitin content and trace element measurements [61]. Three independent experiments
were performed, and the average was calculated.

4.10. Statistical Analysis

Statistical analysis was performed using Duncan’s multiple comparison test (for
multiple comparisons) and Student’s t-test, all at a significance level of 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
651/13/1/17/s1, Table S1: Minimum inhibitory concentrations of EDTANa2; Table S2: Strains
used in this study; Table S3: Primers used in TRI genes qPCR; Figure S1: Internal transcribed
spacer (ITS) sequences alignment of Fusarium isolates used in this study. ITS sequences of different
strains were amplified using primers ITS-F/ITS-R (ITS-F: TCCGTAGGTGAACCTGCGG, ITS-R:
TCCTCCGCTTATTGATATGC). Sequences alignment was performed using NCBI Blastn (https:
//blast.ncbi.nlm.nih.gov/Blast.cgi) with default parameters.
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