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Excessive dietary fat intake has extensive impacts on several physiological systems and
can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure
to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat
and causes increase in weight gain that can lead to obesity, and without intervention,
these physiological and behavioral consequences can persist for several generations. The
hypothalamus is a region of the brain that responds to physiological hunger and fullness
and contains orexigenic neuropeptide systems that have long been associated with
dietary fat intake. The past fifteen years of research show that prenatal exposure to a high
fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are
correlated to behavioral changes that induce a pro-consummatory and obesogenic
phenotype. Current research has uncovered several potential molecular mechanisms
by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the
immune system, gut microbiota, and transcriptional and epigenetic changes. This review
will examine the current knowledge of dietary fat-associated changes in the hypothalamus
and the potential pathways involved in modifying the development of orexigenic peptide
neurons that lead to changes in ingestive behavior, with a special emphasis on
inflammation by chemokines.
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INTRODUCTION

The latest National Health and Nutrition Examination Survey reports 39.8% of adults and 18.5% of
youth in the United States to be obese (1), with the ingestion of a diet rich in saturated fats or high in
omega-6 fatty acids to be a risk factor in developing obesity (2–5). The ingestion of a High-fat diet
(HFD) in humans and in adult animal models have harmful effects to physiological organ systems
by inducing a state of systemic inflammation that is related to the increased risk for developing
disease including cardiovascular disease, diabetes, and cancer (6–8), and also has cognitive effects in
humans (9, 10). These disease states have been correlated to HFD-induced cellular changes in all
organ systems, such as adipose tissue, liver, heart, kidneys, and the gut itself (11, 12). The effects of a
HFD are not exhaustive to peripheral organ systems and can also directly impact the central nervous
system (13, 14), with the central effects governing ingestive behavior. Ingestion of a HFD and obesity
prior to mating, during pregnancy, and postnatally also induces similar physiological and central
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phenotypic outcome in offspring. Animal studies have revealed a
transgenerational effect of HFD intake or obesity from both
paternal and maternal sides prior to and during pregnancy on
over-consummatory behavior in offspring (15, 16), with similar
findings in humans from the 1958 British birth cohort study (17).
Recently, the fields of developmental biology, metabolomics,
nutrition, and ingestive behavior have linked the systemic and
central nervous system effects of a fat-rich diet to the activation
of the immune system, with inflammatory mediators playing a
potential role in mediating HFD changes on the periphery, the
brain and on developmental processes (18, 19). The connectivity
of these disciplines on the outcome of HFD intake and obesity
bring to light the complexity between inflammation and a HFD
in adult animal models and in offspring that are prenatally-
exposed to this diet, particularly on specific inflammatory
mediators such as the chemokines. This article will begin with
a brief historical perspective on ingestive behavior and examine
in more detail the intersection of other fields in relation to
inflammation by chemokines to uncover cellular mechanisms of
HFD effects.
DIETARY FAT ON STIMULATING
NEUROCHEMICAL SYSTEMS IN
THE HYPOTHALAMUS

Several decades of research have well-established in adult animal
models that the ingestion of a fat-rich diet consisting of high levels
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of saturated fats (20) alters brain neurochemistry, particularly in
the hypothalamus (21–23) where there exists populations of
neurons that express several neurochemicals involved in
controlling dietary fat intake (24–26). While the ingestion of a
HFD can impact the levels of orexigenic and anorexigenic
neuropeptides, the larger effect primarily occurs on the former
(27, 28). Several orexigenic neuropeptides, with some of the main
players to include enkephalin, galanin, orexin, and melanin-
concentrating hormone, have been positively linked to HFD
intake that increases expression and peptide levels in the brain.
The injection of these neuropeptides or analogs of these
neuropeptides directly into the hypothalamus can in turn
stimulate excessive HFD intake (20, 29–33). The circuitry
maintaining these peptide neurons are complex, with hormones
released from the gut, such as ghrelin and cholecystokinin (34, 35),
to directly impact hypothalamic peptide neuron excitation and
inhibition, respectively, and stimulate or inhibit feeding behavior
(Figure 1).

These early neuropeptide studies expanded to include local
hypothalamic circuitry involved in the control of neuropeptide
release. Two of the main classical inhibitory and excitatory
neurotransmitters, g-Aminobutyric acid (GABA) and glutamate,
have been examined and have been shown to contribute to
dietary-fat sensitive neuropeptide function. Glutamatergic
innervation of the hypothalamus has been closely linked to
ingestive behavior, with a glutamate analog injected into the
hypothalamus or the surrounding intracerebroventricular region
to increase food intake (36). To date, glutamatergic neuronal
contacts with peptide neurons include neuropeptide Y (37),
FIGURE 1 | Hunger and satiety can stimulate the release of gut neuropeptides that directly signal the hypothalamus. Ghrelin, released from the stomach during
hunger, activates the orexigenic peptide neurons in the hypothalamus to signal food intake, whereas cholecystokinin (CCK) from the intestine, insulin from the
pancreas, or leptin from adipose tissue, inhibits orexigenic neuropeptide signaling in the hypothalamus to signal satiety and high levels of macronutrients. Diets rich in
fats can directly impact activation of the orexigenic neuropeptide signaling in the hypothalamus, leading to increased ingestive behavior, and additionally induce a
state of inflammation. Inflammatory mediators have also been shown to affect orexigenic neuropeptides in the hypothalamus. Other neurotransmitters, such as
glutamate and GABA, have also been shown to stimulate orexigenic neuropeptide release and can lead to increase in dietary fat intake.
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leptin (38), melanin-concentrating hormone (39), and orexin (40).
Glutamatergic neurons that may be involved in stimulating the
release of peptides from hypothalamic neurons during hunger to
initiate food intake can also be depressed during short-term HFD
intake and may act as a control mechanism to both initiate feeding
and prevent over-ingestion of dietary fat. (41, 42). Linehan et al,
found that excitatory signaling on orexin neurons could be
depressed during short-term HFD intake but had reduced
sensitivity to this signaling during long-term HFD regimes,
suggesting extended glutamate signaling can exacerbate
orexigenic neuropeptide signaling that leads to increased dietary
fat intake (42). Long-term HFD exposure, in female mice in
particular, can increase the number of glutamatergic neurons in
the hypothalamus (43) and may over time increase neuronal
signaling of peptide neurons to stimulate behavioral changes.
Likewise, GABA agonists can exert similar effects as glutamate
signaling in stimulating feeding (44). Both glutamatergic and
GABAergic signaling in the brain can be impacted by
overactivity and cellular stress. Prolonged exposure to a HFD
can cause changes to the hypothalamic proteome involved in
neuronal health and viability, and suggests these effects can lead to
increased cellular stress, mitochondrial dysfunction, and altered
synaptic plasticity (45), factors that impact glutamatergic and
GABAergic signaling in the brain. These HFD-induced brain
neurochemistry changes in adults leading to behavioral and
physiological changes could potentially impact reproduction and
offspring development.

The extensive documented effects of a HFD in adult animals
on neuropeptides and neuronal connectivity is observed in
offspring born from paternal or maternal obesity. The 1958
British birth cohort study show that both paternal and
maternal obesity predisposes offspring to becoming obese, with
maternal factors having a more pronounced phenotypic change
in offspring compared to paternal obesity, and the combination
Frontiers in Endocrinology | www.frontiersin.org 3
of obesity in both parents have additive effects in offspring (17).
In animal models, in utero exposure to a diet rich in fats with or
without prior maternal obesity, predisposes offspring to have
increased body weight (46–48), increases the risk of developing
obesity (46), increases tendencies to consume other substances of
abuse such as nicotine and ethanol (47, 49, 50), and is associated
with an increase in the incidence of psychiatric disorders (Figure
2) (51–53). Ingestion of a HFD during pregnancy increases lipid
accumulation in the placenta (54), while in offspring decreases
the circulation of essential fatty acids (54), and increases the
levels of triglycerides and adipocyte size (55, 56). Prenatal HFD
paired with a postnatal HFD regime can cause several effects in
offspring that is exerted on a macro and microscale level,
including a reduction in the variation of DNA methylation in
peripheral organs and changes the expression of genes involved
in inflammation and RNA processing (48). The paternal
inheritance of HFD-induced obesity paired with non-obese
maternal pregnancy has similar physiological effects in
offspring. Paternal obesity induces in male offspring increase in
body weight, impairs glucose and insulin sensitivity and
increases leptin levels while female offspring also has increased
adiposity. Further breeding of these offspring reveals persistence
of these physiological changes in F2 females but not males,
suggesting HFD-induced obesity on the paternal side without
maternal obesity contributes to female susceptibility to metabolic
disorders (57, 58). Studies also show paternal gene imprinting of
alleles related to body fat accumulation, Igf2 and Peg3, to be
decreased in obesity-resistance mice compared to obesity-prone
mice, suggesting a likelihood of paternal gene transmission in
offspring resulting in diet-induced obesity (59). Although HFD-
induced paternal obesity has been shown to effect physiological
outcomes in offspring, the field has primarily focused on
maternal contributions due to the large effects evoked in
offspring brain neurochemistry.
FIGURE 2 | Prenatal high-fat diet exposure impacts several aspects of offspring physiology and behavior that leads to excessive dietary fat intake and increasing the
risk for obesity.
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In maternal models of HFD-intake, brain neurochemistry is
changed such that offspring excessively consume dietary fat
when presented with a high-fat diet choice (46, 60). This
exposure during gestation increases in the hypothalamus of
offspring the mRNA expression and peptide levels of the very
same orexigenic neuropeptides that are altered during adult HFD
intake (46). This increase is also accompanied by a pronounced
rise in the neurogenesis of these peptide neurons (46, 61). While
the relationship between dietary fat and neuropeptides in the
hypothalamus is well established, the factors involved in causing
neurochemical and neurogenesis changes in the brain of
offspring are still under speculation, although many studies
have provided some insight regarding specific pathways that
may be involved. Prenatal HFD exposure can impact DNA
methylation of several genes related to dietary fat intake (62,
63) as well as the levels and activity of several transcription
factors that have been associated with brain development (64),
such as transcriptional enhancer factor-1 (TEF-1), yes-associated
protein-1 (YAP-1), and the family of peroxisome proliferator-
activated receptors (PPARs), that in turn effect the expression of
some of the orexigenic neuropeptides (65–68). The transcription
factors TEF-1 and YAP-1 has been linked to prenatal HFD effects
and plays a large role in organ formation and brain development
during embryogenesis (69–72), and activation of these
transcription factors have been found to control neuronal
proliferation and differentiation (73–75). Both TEF-1 and
YAP-1 were inactivated or decreased during in utero HFD
exposure and may promote increased neurogenesis events (65).
The PPAR family of transcription factors are fat sensitive and
control lipid and carbohydratemetabolism and inflammation (76).
While PPAR-d is colocalized with hypothalamic ENK neurons,
reduction of transcriptional regulator results in increased ENK
expression and levels, suggesting a regulatory mechanism that is
protective of HFD-exposure on neurons (66). A commonality of
these factors is their relation to the immune system and the
activation of inflammatory mediators. An abundance of research
has directed the field toward inflammatory processes and
inflammation, which are now thought to play a large role in
both the physiological and central effects induced by the intake of a
HFD and in obesity.
DIETARY FAT INTAKE INDUCES GLOBAL
SYSTEMIC INFLAMMATION

The ingestion of a HFD and the obese state produces an increase
in systemic inflammation and has been reported to occur in
almost every peripheral tissue and physiological system
examined to date (77–80). This low-grade inflammation is
characterized by an elevation of cytokines and chemokines (81,
82) that is atypical from the disease state and is accompanied by
the activation of cellular inflammatory pathways (77, 83) and
immune cells. This inflammation occurs whether HFD intake is
acute or chronic and has been linked to diseases produced by
metabolic syndrome. This inflammation has been linked to
Frontiers in Endocrinology | www.frontiersin.org 4
excessive levels of saturated fatty acids and omega-6 fatty acids
in human western diets (84–86) and in HFD used in animal
model studies (87–89).Central nervous system inflammation and
activation of immune cells have also been linked to psychiatric
disorders such as depression and bipolar disorder (90, 91),
implicating the extensive effects HFD-induced inflammation
has on the brain and behavior.

In the hypothalamus and in brain regions involved in the
emotional component of ingestive behavior such as the amygdala
and hippocampus (88, 89, 92, 93), there is an increase in many
classical cytokines and activation of inflammatory pathways (94–
96). These changes in inflammatory mediators can alter orexigenic
neuropeptide levels in the hypothalamus (97–100), stimulate
weight gain and increase HFD intake in animal models (101),
while inhibition of hypothalamic inflammation with antibodies
targeted for cytokines results in a reduction of food intake in obese
animals (88, 96, 102). Neuroglial cells in the brain, including
microglia, astrocytes, and oligodendrocytes, in conjunction with
neurons, may contribute to this inflammation by releasing
inflammatory mediators during exposure to excessive dietary
fatty acids. Evidence suggests that the immediate inflammatory
effect caused by a HFD in the brain can be due to several factors,
including infiltration of peripheral macrophages (103),
stimulation of resident microglia (94, 104), and direct astrocyte
activation, which can increase inflammatory signaling and
positively contribute to HFD intake and the onset of obesity
(105, 106). The crosstalk between neuroglia, cytokine release,
and dietary fat seem to directly impact neuronal signaling.

The exact pathway and the timing of the original
inflammatory trigger across physiological systems and its
subsequent effects in the brain is not known; is dietary fat
itself the inflammatory trigger in the entire body or does the
initial inflammatory trigger in the intestines where dietary fat is
absorbed lead to additional inflammation across all physiological
systems? For instance, long-term dietary fat intake can stimulate
inflammation in the gut and alter intestinal microbiota leading to
a leaky environment that is more susceptible to absorbing
digested fats into the bloodstream (107, 108), with the increase
in absorbed fatty acids to enter the brain and themselves induce
central inflammatory effects. In contrast, reduction or alteration
of gut microbiota results in a reduction of dietary fat intake (109,
110) and may prevent the central inflammatory effects by dietary
fat. Based on this observation, it is possible that gut inflammation
may precede brain inflammation (111) with the initial localized
inflammation of the intestines producing central inflammatory
effects. However, a single day of HFD intake itself can increase
hypothalamic inflammation (77), suggesting that the increased
load of absorbed fatty acids from the HFD itself may be directly
causing the low-grade systemic inflammation in the body and
brain, with longer term HFD ingestion to additionally contribute
to gut inflammation and increase dietary fatty acid absorption
that exacerbates the effects of dietary fat on the brain. This also
suggests that the pathway of dietary fat intake and induction of
inflammation conforms to a perpetual positive circuit and if
continued over the course of reproductive age, can also lead to a
generational effect.
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MATERNAL INFLAMMATION IS SIMILAR
TO EXCESSIVE DIETARY FAT INTAKE

The impact of a HFD on inflammation is evidenced in maternal
humans and in animal models that have widely established
significant metabolic effects in offspring. In humans, increase
of a marker of inflammation, C-reactive protein, induced by
obesity has been correlated with increased incidence of obesity in
offspring (112, 113) and suggests this inflammation may be
involved in the prenatal programming of ingestive behavioral
changes that leads to obesity. During pregnancy, several
inflammatory mediators play a role in placental formation and
in organogenesis events, and must maintain a delicate balance of
immune function and immune suppression to ensure fetal
survival (114–116). During pregnancy in obese humans,
increased secretion of inflammatory mediators contributes to
lowered blood flow into the placenta and potential dysfunction
(113). It is possible that HFD-induction of a low-grade systemic
inflammation (18) may disrupt the normal placental
environment and impact the developing embryo. Prenatal
exposure to a HFD and maternal obesity increases macrophage
accumulation (117) and cytokine levels in the placenta (118, 119)
that creates a more leaky environment to increase dietary fatty
acids permeability through the placenta and into the embryo.
Prenatal HFD also increases inflammation in several fetal organ
systems that is found to be sustained in postnatal offspring, with
this hyperinflammation to be further triggered during exposure
to foreign pathogenic molecules (56, 119–121). The most notable
physiological change in inflammatory profile is found in adipose
tissue and closely mirrors the effect of a HFD in adult animals,
revealing larger diameter adipocytes, upregulation of genes
associated with adipogenesis, and increased association of these
adipocytes with macrophages (56, 122, 123). One possibility for
the increase in prenatal HFD associated inflammation may be
due to the changes in maternal gut microbiota that result in
increased intestinal inflammation and fatty acid absorption. The
excess fatty acids and inflammatory mediators in the circulatory
system of the mother in conjunction with the change in immune
cell recruitment can allow these biological agents to enter the
placenta and the fetus (119, 124, 125). These studies further show
these microbiota changes in the mother to alter offspring
microbiota and inflammatory profiles that persist postnatally
and into adulthood (126–128). The combination of a HFD
increasing inflammation in the mother and in the embryo may
alter the course of brain development during gestation.

Prenatal HFD exposure increases in the hypothalamus of
offspring the expression of cytokines and chemokines (104, 129,
130), compromises the blood brain barrier (131), the number of
astrocytes (132), macrophage infiltration into the brain (103),
activation of microglia (133), and immunoglobulin levels in
microglia (94). These effects of a HFD in offspring on
inflammation, immune cells, and inflammatory mediators can
last well into adulthood (134–136) and has been linked to a
number of disorders and diseases (137). This interplay between
the immune system and HFD induced changes in fetal
development is further solidified with prenatal inflammation
Frontiers in Endocrinology | www.frontiersin.org 5
challenges. Exposure to inflammatory mediators or challenges to
the immune system during pregnancy results in increased body
weight, increased risk of the development of obesity, and
increased ingestive behavior in offspring (138, 139). In
contrast, treatment during pregnancy with a natural anti-
inflammatory compound, resveratrol, prevented brain changes
and physiological changes associated with prenatal high-fat diet
exposure (140, 141). The consequences of this heightened
immune response in fetal brain may be rewiring of neuronal
architecture that leads to postnatal behavioral and physiological
consequences in offspring. These aspects of a HFD on maternal
immune function, placental formation, and the fetus itself
suggest that inflammatory mediators and immune cells play a
unique and diverse role during pregnancy and embryogenesis.
MODULATION AND DEVELOPMENT
OF HYPOTHALAMIC PEPTIDE
NEURONS BY CHEMOKINES

A unique class of inflammatory mediators that have recently been
shown to play a role in the HFD effects on brain neurochemistry in
offspring are the chemokines. Chemokines are a large class of small
chemotactic cytokines that induce chemotactic activity in the
immune system and has additional non-immunogenic function in
the brain (142, 143). Generally, chemokines have been shown to
regulate the development, migration and function of cells in several
peripheral organs in addition to the brain, with genetic deletion of
specific chemokines, such as C-C motif ligand 2 (CCL2) or C-X-C
motif chemokine 12 (CXCL12), to modify embryonic development
or in certain cases be lethal (144–146). For example, conditional
genetic knockout of CXCL12 or its receptor CXCR4 in organ
systems has been shown to result in defective blood vessel
development in kidneys (147) and thicken alveolar tissue reducing
oxygen exchange in lungs of mice (148). In an early 1990’s study
conducted by Plata-Salaman CR, et al, they infused several
chemokines into the intracerebroventricular zone in rats,
measured feeding outcomes, and found that several chemokines
reduced acute food intake, providing the first evidence showing the
involvement of chemokines in the neuronal regulation of feeding
(149). Since then, several chemokines have been linked to
metabolism and brain neurochemicals, and given the nature of
chemokines, may also be involved in the neurogenesis effects of a
HFD on hypothalamic peptide neurons. The chemokine CXCL12
has been shown to be involved in neurogenesis events by regulating
neuronal migration and proliferation in several brain regions (150–
153) and controlling neuropositioning of newly-born neurons
(154). Knockdown of CXCL12 causes impaired proliferation,
migration, and differentiation of neurons (145, 155) suggesting
modifications to this system can effect peptide neuron formation
during pregnancy.

In adult rat models of HFD intake, the chemokine CXCL12 is
increased in circulation and the brain while its receptors, C-X-C
chemokine receptor 4 (CXCR4) and C-X-C chemokine receptor 7
(CXCR7), are increased in the hypothalamus and third ventricular
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injection of CXCL12 into the brain stimulates the expression of
ENK in the paraventricular nucleus of the hypothalamus (87).
Likewise, prenatal HFD exposure during the window of
hypothalamus development significantly elevates maternal
circulating levels of CXCL12 and also in offspring stimulates ENK
expression in conjunction with CXCL12 and its receptors, CXCR4
and CXCR7, in the paraventricular nucleus of the hypothalamus
(Figure 3). Maternal injection of CXCL12 during this same
hypothalamic developmental time period in pregnancy to achieve
chemokine levels similar to a prenatal HFD paradigm can increase
the genesis of ENK neurons in the paraventricular nucleus of the
hypothalamus in offspring (156) and produce similar effects in
increasing anxiolytic and ingestive behavior in offspring. These
studies suggest that one pathway of HFD in its physiological and
behavioral effects may bemediated through the CXCL12 chemokine
pathway, with this chemokine to directly effect ENK in the
paraventricular nucleus of the hypothalamus.

Another chemokine that is transformed by and may be
involved in the physiological and behavioral effects of a HFD is
the chemokine, CCL2, also known as monocyte-chemoattractant
protein-1 (MCP-1). This chemokine is known to be highly
expressed in the obese state and is closely associated with the
intake of a HFD (157), with genetic deletion or pharmacological
blockade of its receptor, C-C chemokine receptor 2 (CCR2),
Frontiers in Endocrinology | www.frontiersin.org 6
to reverse or eliminate HFD-induced effect (158). This
chemokine has much broader range in the brain due to its
diverse co-expression with neuropeptides in several brain areas,
including the hypothalamus and thalamus (159–161), and in
developmental studies with other substances of abuse reveal close
association with migratory radial glial cells (161). If the CCR2
receptor is centrally blocked by an antagonist, weight-loss
induction by triggering foreign molecule inflammation through
lipopolysaccharide injection is blocked (162), suggesting reduced
brain activity of the CCR2 receptor may contribute to increased
dietary fat intake and subsequent weight gain. In examining
hypothalamic neurons extracted from embryos exposed to low-
fat diet conditions, stimulation of hypothalamic neurons by
CCL2 increases migration of hypothalamic neurons and the
expression of the orexigenic peptides, enkephalin and galanin
(159). In contrast, prenatal HFD exposure inhibited CCL2’s
ability to produce these same effects (163), suggesting this diet
severely disrupts the normal functioning of the CCL2/CCR2
signaling pathway in offspring brain to reduce over-ingestion of
dietary fat. Other chemokines that have been implicated in the
neuronal effects of a HFD include C-X3-C motif ligand 1
(CX3CL1) and C-C motif ligand 5 (CCL5) and their receptors
(164, 165). The CX3CL1 is one of the first chemokines to be
expressed during early hypothalamic inflammation (164), has
FIGURE 3 | Prenatal high-fat diet ingestion can increase circulating levels of CXCL12 in pregnant rats and also induces in offspring several changes in both behavior
and in orexigenic peptide neurons in the arcuate nucleus (ARC), perifornical lateral hypothalamus (PFLH), and in the paraventricular nucleus of the hypothalamus
(PVN). Prenatal HFD and prenatal CXCL12 overlap in their effects in offspring on increasing ENK levels in the PVN, and in increasing high-fat diet intake and anxiety-
like behaviors.
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been shown to be a marker for developing metabolic syndrome
(166), its presence associated with increased propensity to
develop obesity and increased recruitment of white blood cells
into adipose tissue (167), and found to be highly expressed in the
hypothalamus in HFD-induced obesity in mice (164). Reduction
of CX3CL1 expression in the hypothalamus of mice provide mild
reduction in brain inflammation and glucose tolerance, but not
adiposity measures and body mass, suggesting this chemokine
has a specific role in controlling HFD-induced obesity-related
glucose metabolism (164). The chemokine CCL5 has been found
to be co-expressed in the hypothalamus with insulin receptors
and found to also be involved in insulin resistance derived from
HFD-induced obesity (168). Intracerebroventricular injection of
CCL5 stimulated the mRNA expression of orexin and melanin-
concentrating hormone in the hypothalamus (169), suggesting
this chemokine is another target of HFD effects that explicitly
functions to activate these two fat-associated peptide neurons. A
recent study by Fioravante et al, revealed that a chemokine decoy
receptor, Ackr2, to be involved in the physiological and
neurological effects of a HFD. This receptor is found in the
hypothalamus and co-expressed in NPY and POMC neurons.
After the intake of an acute HFD regimen, mice that were
obesity-prone compared to obesity-resistant had much lower
levels of the Akr2 receptor in the hypothalamus (170), suggesting
that the increased presence of this decoy chemokine receptor
reduces chemokine inflammation that occurs with HFD intake.
With over 50 chemokines to date and a few studies showing
individual chemokines to be involved in specific aspects of HFD-
intake and obesity, future studies are needed to further clarify the
role of individual chemokines in mediating HFD effects on brain
development and ingestive behavior.
FUTURE DIRECTIONS

While the extensive research in the field of ingestive behavior has
uncovered a large body of knowledge that details how a HFD
causes changes in the developing body and the brain, many
questions still need to be addressed. While research has
primarily focused on the maternal effects of HFD ingestion due
to the larger effect on offspring, evidence shows that the paternal
side can additively contribute to offspring phenotype and
singularly effect female offspring more than male offspring. This
suggests that future studies should focus on male contributions in
the transmission of HFD-induced obesity proneness to offspring.
There is a lack of brain studies in particular and examining the
paternal effects on offspring brain neurochemistry and should be
Frontiers in Endocrinology | www.frontiersin.org 7
explored. While the extensive inflammatory effects induced by a
HFD on the entire body is also well-documented, there are many
players involved and, particularly with chemokines, shown to have
specific function in mediating certain aspects of a HFD on
development, cellular and neuronal profiles, and on behavior. It
is therefore imperative to continue individualized studies on each
inflammatory mediator to explore the function and role that each
chemokine may play during HFD intake, particularly during the
developmental period. Lastly, the penetration of maternal immune
cells, inflammatory mediators, and fatty acids into the embryos
during development is not known. Exploration of this topic could
elucidate whether it is maternal HFD itself or maternal
inflammation that is directly impacting developmental outcomes.
CONCLUSIONS

Ingestion of a HFD and prenatal exposure to this diet has similar
effects on activating inflammatory pathways in adult, embryonic,
and postnatal animal models. The system-wide effects of dietary
fat and the abundance of immune factors and ubiquitous
expression of inflammatory mediators in peripheral organ
systems and in the cells of the central nervous system suggest
several regulatory pathways are involved in distinct aspects of
ingestive behavior. While a few studies show positive results with
the use of anti-inflammatory compounds to prevent prenatal
changes in offspring, research on the long-term ramifications in
offspring of non-selectively decreasing inflammation during
pregnancy still needs to be performed. Similar to the individual
chemokine studies such as with CXCL12, future studies focusing
on relating each inflammatory mediator with the specific
neuronal outcome and behavior may reveal the degree and the
type of anti-inflammatory supplements to safely ingest during
pregnancy as a preventative measure.
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