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The etiology of major depressive disorder (MDD) involves many factors such as heredity and environment. There are very few MDD-
related studies in Chinese population using twin or sib-pairs for depression-control samples. Here we used the microarray approach
and compared gene expression profiling of peripheral blood lymphocytes from 6 sib-pairs discordant on lifetime history of MDD.
Within sib-pair differentially expressed genes are obvious fewer in the 1st, 2nd, and 5th compared with those in the 3rd, 4th, and
6th sib-pairs. Gene expression pattern of these DEGs distinguished MDD individuals from the normal one in 3rd, 4th, and 6th sib-
pair but not in the 1st, 2nd, and 5th pair, suggesting heterogeneity of different sib-pairs and somewhat commonalities among the
3rd, 4th, and 6th sib-pairs. Comprehensive protein interaction network analysis revealed two key genes PTH and FGF2 in a dominant
network where the majority of the genes were significantly down-regulated. PTH was significantly down-regulated in all the sib-
pairs while FGF2 was in the 3rd, 4th, and 6th sib-pairs. KEGG enrichment analysis of all the DEGs in networks showed that PTH and
related genes were significantly enriched in the pathway of parathyroid hormone secretion, synthesis, and action while FGF2 and
related genes were significantly enriched in the pathways of cancer and specifically breast cancer. Generally reduced expression of
these genes in peripheral blood lymphocytes of MDD individuals implied their functional repression associated with MDD. Pending
validation in more samples, the findings in this study provided valuable cues for understanding the potential mechanism of MDD,
as well as potential markers for the diagnosis and treatment of depression in the Chinese population.
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INTRODUCTION
Major depressive disorder (MDD) is a chronic mental disease with
low mood, loss of interest, and lack of energy as the core
symptoms. It is characterized by a high recurrence rate high
suicide rate and high mortality rate. It is expected to be the major
cause of the disease burden by 2030 [1]. Depression has become
an important public health problem and seriously affects the
quality of life of individuals and families [2]. In China, the lifetime
prevalence of depression is 6.9% and the 12-month prevalence is
3.6% [3] and the number of people with depression is the highest
in the world.
Depression is a complex disease that is associated with the

central nervous system, hypothalamic-pituitary-Adrenal (HPA)
axis, inflammation, metabolomics, immune system, and brain-
derived neurotrophic factor [4, 5]. The etiology of depression also
involves multiple genetic and environmental factors [6, 7]. Large
sample genomic screening studies have been generated from
those of European ancestry, Japanese and Chinese samples
respectively, proposed nearly different sets of genetic risk
loci [7–9], suggesting heterogeneity in genetics as well as

environments of this disease. Specifically, GWAS with Chinese
women with recurrent MDD identified two risk-related loci near
the SIRT1 gene and in an intron of the LHPP gene [8]. In addition
to genomic deciphering of the mechanism of MDD, recent
progresses on comparative transcriptomics provide new insights
to elucidate the molecular mechanism of MDD and provide cues
for identifying biomarkers and better treatment for depression
[10–14]. For example, studies on brain comparative transcrip-
tomics indicated altered glial, endothelial and ATPase activity
related to MDD [11]; Sha and Banihashemi detected a cerise of
pathways including immune response and transmembrane
transport, which were associated with regional grey matter
volume change regional structural variations in MDD [13], A
single-nucleus transcriptomics of the prefrontal cortex in major
depressive disorder found greatest dysregulation occurred in
deep layer excitatory neurons and immature oligodendrocyte
precursor cells [15]. In addition to the brain, gene expression
profiling in blood was also reported to be affected by MDD
[16–19], providing cues of inflammation in MDD and new
insights in the molecular pathways involved.
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It is notable that different studies may have inconsistent
results, due to the complex biological and non-biological factors
of depression, mainly involving differences in diagnostic criteria,
specific dilemmas of genetic and imaging research methods. In
addition, the depressed patients in many studies are random,
with genetic heterogeneity among different individuals, result-
ing with potentially unavoidable noise interference. Interest-
ingly, some surveys have found that depression tends to occur in
one of the sib-pairs or even twins, while another may be normal
for the long term (only 20% of male monozygotic twin pairs and
38% of female monozygotic twin pairs show consistency with
the disease) [20]. Such sample models provide a unique
opportunity to explore the pathogenesis of depression. For
example, Zhu et al. conducted a genome-wide comprehensive
analysis of DNA methylation and transcriptome in peripheral
blood monocytes from 79 monozygotic twin pairs discordant on
lifetime history of MDD and suggests epigenetic regulation may
be associated with alteration of gene expression related to MDD
[21]. In particular, several studies have used sib-pairs methods to
explore the effects of family on psychopathological similarities
and differences among siblings [22, 23]. Till now, almost all the
researches using these unique materials are based on European
and American population. Evidence from Asia samples is thus
urgent, which may shed new light on the understanding
pathogenesis of depression.
China has the highest number of MDD people but there was

little research on the pathological mechanism of depression for
Chinese sib-pairs, and almost most of the previous studies used a
variety of xenogeneic cells in the postmortem brain tissue. Yang
et al. examined the association of genetic polymorphisms with
MDD susceptibility and treatment response using 181 Han
Chinese with MDD and 80 healthy controls, which found the
CNR1 is a promising candidate for the genetic association study of
MDD and understand how genetic polymorphisms are associated
with the pathophysiology of major depressive disorder [24].
Another study explored the relationship between overweight
and thyroid function in first-episode untreated Chinese patients
with MDD at different ages of onset [25]. It is the same way that
using low-coverage whole-genome sequencing of 5,303 Chinese
women with recurrent MDD and 5,337 controls to identify possible

loci contributing to the risk of MDD [8]. Lymphocytes are key
monocyte immune cells involved in inflammation, and the
immune system and inflammation are related to the pathological
mechanisms of depression [26]. In this study, sampling 6 Chinese
sib-pairs discordant of MDD (including 2 pairs of twins) as samples,
we investigated gene expression profiling of peripheral blood
lymphocytes using RNA microarray technology followed by
statistical analysis, network analysis, and functional enrichment
analysis, to preliminary explore the influence of MDD in blood. Our
study provides the cues from the Chinese sib-pair samples,
implying that repression of PTH and cancer-related pathways
might be associated with MDD in these people.

MATERIALS AND METHODS
Subjects
We collected Chinese sib-pairs discordant of MDD (2 pairs of twins) from
Guangzhou Panyu Central Hospital. The pairs were well matched in
gender, age, et al. The study was approved by the Ethics Review
Committee of the Guangzhou Panyu Central Hospital. All participants
provided written informed consent prior to proceeding with the
procedures related to the study. Their sibling were interviewed and they
agreed to be included in our research program and were willing to provide
blood samples.

MDD diagnosis
All the patients with depression were diagnosed and evaluated by
experienced psychiatrists through the DSM-IV-TR Axis I Disorders-Patient
Edition (SCID-I/P) specific diagnostic tools, and DSM-IV depression was
used as the diagnostic standard for diagnosis and clinical evaluation to
determine lifetime and current depression. All eligible and interested
subjects signed the Informed Consent Form before the trial. A discordant
sib-pair is defined as one of the sib-pair that meets the criteria for a lifetime
history of MDD, and his / her compatriot does not. Finally, 6 sib-pairs were
selected in further analysis in this study (Table 1).

Inclusion / exclusion criteria
Only complete sib-pairs were eligible to participate in this study. Our
samples belong to the type of sib-pair, so it was divided into inclusion/
exclusion criteria for patients with depression and healthy compatriots.
Inclusion criteria for patients with depression included: (1) meeting the

Table 1. Clinical characteristics of sib-pairs.

Sibling pair number 1 2 3 4 5 6

Gender* M O M F M F

Age of patient (year) 35 17 18 27 43 17

Age of normal (year) 35 12 23 26 43 21

Twins or not yes no no no yes no

Age difference 0 5 5 1 0 4

First onset age of patient (year) 35 16 16 24 43 15

Age stage of sibling pair ≥35 12–17 18–35 18–35 ≥35 17–21

Suicide score 7 39 27 39 0 29

Total score of compulsion 0 7 0 8 3 13

Total score of anxiety 18 0 21 0 13 0

Mania score 0 4 4 0 0 0

Age of first visit (year) 35 17 17 27 43 15

First course of disease (month) 4 12 12 24 4 1

Hamilton Depression Scale (HAMD) of patients 31 23 25 25 20 10

Marital status (depression / normal)# 1/0 0/0 0/0 1/1 1/1 0/0

Working conditions (depression / normal)& 1/1 0/0 0/1 1/1 1/1 0/0
*M represents a male-male sibling pair, F represents a female-female sibling pair, and O represents a opposite-sex sibling pair.
#0 means unmarried and 1 means married.
&0 means not working and 1 means working.
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diagnostic criteria for depression in the Diagnostic and Statistical Manual
of Mental Disorders V (DSM-V); (2) aged between 18 and 45; (3) more than
6 years of education (primary school or above); (4) no history of
electroconvulsive therapy within 3 months; (5) patients of first-episode
and non-medication, the total score of HMDA ≥ 17; (6) understand the
content of the study, hope to attend and be able to complete the
whole experiment, and were willing to provide blood samples. The main
exclusion conditions included: (1) had a history of neurological or major
physical diseases; (2) had other psychiatric disorders (such as schizo-
phrenia, obsessive-compulsive disorder, or phobia); and (3) has a history of
alcohol and drug abuse or dependence. Among them, the inclusion criteria
for the healthy control of sib-pairs were slightly different:(1) must be
siblings (excluding parents or children); (2) not suffering from depression
or other mental illness; (3) aged between 18 and 45; (4) more than 6 years
of education (primary school or above); (5) understand the content of the
study, hope to participate in and complete the whole experiment, and
were willing to provide blood samples. The exclusion criteria were the
same as those for patients with depression.

Other measures
Each sib-pair was required to complete the case report form, including
general sociodemographic information, medical history, family history,
lifestyle, use of psychoactive substances, endocrine testing, and various
scales. The severity of current depressive symptoms was assessed by the
Hamilton Depression Scale (HAMD) and the Hamilton Anxiety Scale (HAMA).
Reports of suicide thoughts were measured through suicide scales. Bipolar
disorder was preliminarily excluded using the manic symptom scal (Bech-
Rafaelsen). To investigate whether there were some genetic factors, genetic
research family questionnaire was used to record the family history of sib-
pair. Participants have tested the cortisol and adrenocorticotropic hormone
to obtain endocrine test results.

Isolation and preservation of lymphocytes
We took fresh anticoagulant 1 ml, mix with whole blood and tissue
homogenate diluent (Cat#:2010C1119) at 1:1, and carefully added to the
liquid surface of 2 ml cell separation solution, centrifuge at 1500–2000 rpm
for 15min (horizontal rotor with a radius of 15 cm). At this time, the liquid
in the centrifuge tube was divided into four layers from top to bottom.
The first layer was a plasma layer. The second layer was cyclic milky white
lymphocytes. The third layer was a transparent separation liquid layer. The
fourth layer was the erythrocyte layer. We collected the second layer of
cells and put them in a test tube containing 4–5ml of cell washing solution
(Cat#: 2010 × 1118). After fully mixing, we centrifuged at 1500–2000 rpm
for 10–30min. The precipitation was washed twice to obtain the desired
cells. Blood samples were processed and stored in a refrigerator at −80 °C
for later use.

Extraction, purification and quality control of RNA
Total RNA was extracted from lymphocytes using Trizol Reagent
(Cat#15596-018, Life technologies, Carlsbad, CA, US) according to the
standard operating procedures provided by the manufacturer. The
extracted total RNA was qualified by Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, US) electrophoresis and purified by RNeasy
micro kit (Cat#74004, QIAGEN, GmBH, Germany) and RNase-Free DNase Set
(Cat#79254, QIAGEN, GmBH, Germany). The concentration and quality of
RNA were determined by NanoDrop ND-2000 spectrophotometer (biolo-
gical analyzer). The qualified RNA could be used for subsequent microarray
experiments.

Microarray
The total RNA was sent to Shanghai Biotechnology Corporation for
microarray establishment and raw data analysis. Briefly, RNA sample was
amplified and labeled by Agilent expression microarray kit, Low Input
Quick Amp Labeling Kit, One-Color (Cat.# 5190-2305 total RNA technol-
ogies, Santa Clara, CA, US) with standard operating procedure, and the
labeled cRNA was purified with RNeasy mini kit (Cat.# 74106 and QIAGEN,
GmBH, Germany). According to the standard hybrid process and Gene
Expression Hybridization Kit (Cat.# 5188-5242 Magi Technologies, Santa
Clara, CA, US) provided by Agilent expression microarray, the sample size
of hybrid cRNA was 1.65 μg that was roll-hybrid in a rolling hybridization
furnace Hybridization Oven (Cat.# G2545A, Agilent technologies, Santa
Clara, CA, US) at 65 °C, 10 rpm for 17 h and washed in the staining dishes
(Cat.# 121, Thermo Shandon, Waltham, MA, US). The reagent used for the

washing sheet is Gene Expression Wash Buffer Kit (Cat.# 5188-5327, Agilent
Technologies, Santa Clara, CA, US).
The chip that completes the hybridization was scanned by Agilent

Microarray Scanner (Cat.# G2565CA and Agilent technologies, Santa Clara,
CA, US), and the software was set to Dye channel: Green, Scan resolution=
5 μm, PMT 100%, 10%, 16 bit. Row data were filtered by Feature Extraction
software 10.7 (Agilent Technologies, Santa Clara, CA, US), and finally
normalized by the limma package in R software, using the algorithm of
Quantile, to generate expression data of each gene. The probes that did
not detect signals in all samples were removed from further analysis.

Identification of differentially expressed genes (DEGs)
potentially associated with MDD
The original data were normalized by the limma package in software R,
and the output was an expression matrix file. We combined two
approaches for identifying DEGs potential associated with MDD in each
sib-pair. Firstly, within each pair, the candidate DEGs should have two-Fold
changes in expression between the patient and the normal. Secondly,
between 6 MDD patients and 6 related normal sibs, the candidate DEGs
should have significantly different expression levels based on paired t-test.

Upset plotting, principle components analysis (PCA) and
hierarchical clustering of DEGs
DEGs from each sib-pair were then combined for Upset plotting at the
online platform OmicStudio (https://www.omicstudio.cn/), principal com-
ponent analysis (PCA) and hierarchical clustering at the online platform
OmicShare Tools (https://www.omicshare.com/tools/).

Protein interaction network analysis
Protein interaction network analysis of interested DEGs was generated by
the STRING11.0 platform (https://string-db.org/). Genes that had no
interaction with any other genes were removed from further analyses.
The network was further processed using Cytoscape software 3.7.1.

Functional enrichment analysis
Gene Ontology (GO) enrichment and KEGG enrichment analyses of the
interesting gene sets were generated using the online platform OmicsBean
(http://www.omicsbean.cn/).

RESULTS
Sib-pairs
Table 1 showed the characteristics of the sib-pairs. Among the
6 sib-pairs, the 1st and 5th are wins. The age ranged from 12 to 43
and the age gap of each sib is not more than 5. Totally there are
four male and 2 female patients. Of the six patients, one showed
relatively lower HAMD (No.6, 10). Combined with other indexes
such as Suicide score and total score of compulsion, she was
diagnosed with MDD.
In terms of marital status and working conditions, except that

the 1st pair had different marital status, the depressive patient of
3rd sib-pair had no job while his compatriot had job, there were
no obvious differences between depressive patient and health
control of each sib-pair. In addition, all six patients with depression
were first-episode without medication, but the age of the first
episode was different, three were adolescent, two were young,
and the other one was more than 40 years old. It is notable that
none of the six sib-pair had a family history of mental illness.

DEGs potential associated with MDD
Considering genetic heterogeneity among the six sib-pairs and
the small sampling size, we made efforts to identify potential
DEGs in each of the sib-pair, by a uniform criterion taking into
account of the fold change of expression level within each pair as
well as a significant difference in expression level between the six
patients and the relative sibs. Finally, the first, second, and fifth
pairs had 27, 34, and 46 DEGs respectively, which is obviously
lower than the third, fourth, and sixth pairs had (88, 99, and 100,
respectively) (Fig. 1A). Upset Plotting indicated that a considerable
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proportion of the DEGs were unique to each sib-pair, while the
3rd, 4th and 6th pair shares quite a few common DEGs (Fig. 1A).
The results of Wayne diagram analysis consistently indicate that
the 3rd, 4th, and 6th pairs are largely overlapping whereas the 1st,
2nd, and 5th were somewhat scattered distributed, suggesting
unique characteristics of these three pairs (Fig. 1A). Heatmap
Hierarchical clustering of DEGs showed that the 3rd, 4th, and 6th
sib-pairs could significantly distinguish between depression and
normal individuals, while for 1st, 2nd, and 5th, compared with
depression and normal type, they clustered by sib-pair, indicating
that the gene expression similarity of sib-pair was higher. When
we performed PCA analysis (Fig. 1C), we still found that 3rd, 4th,
and 6th sib-pairs were separated from depression and normal on
the principal component axis, suggesting that there was a great
difference between them. It is interesting that although clustering
did not separate depression from normal for the 1st, 2nd, and 5th
sib-pairs, PCA analysis did. There may be some commonalities in
depression individuals in 1st, 2nd, and 5th sib-pairs, which need
further exploration.

Protein-protein interaction (PPI) network analysis of DEGs
Given that a fairly proportion of DEGs in each sib-pair are unique
and that there might some similarities in gene expression pattern
in MDD individuals, specifically in the 3rd, 4th, and 6th sib-pairs,
we further tried to explore potential connections of the DEGs by
protein-protein interaction network analysis (PPI). We firstly
analyzed the PPI network of DEGs in each sib-pair separately to
detect the potential MDD potential network at each case (Fig. S1,
S2). We found that both the 1st and 5th sib-pairs had one
dominant local network where the gene coding Parathyroid
Hormone (PTH) was the hub (Fig. S1). In the 2nd sib-pair, PTH was
also among the DEGs whereas no connection was detected,
implying a somewhat weak of PTH network compared with 1st
and 5th sib-pairs. Factually DEGs in the 2nd sib-pair had nearly no
connection at all (Fig. S1). As to the 3rd, 4th and 6th sib-pairs that
have more common features (Fig. 1), we found they had a fairly
similar dominant network which also contains PTH (Fig. S2).

These results suggest that despite genetic heterogeneity, PTH
might be a potential gene associated with MDD, in the test
samples. It is notable that in the dominant network generally
shared in the 3rd, 4th, and 6th sib-pairs, there is another hub gene,
i.e., fibroblast growth factor 2 (FGF2), which had more connected
genes compared with PTH (Fig. S2), although PTH was still in the
important position within the network (Fig. S2).
To further decipher the interaction of the genes that may share

in all the tested samples, we included all the DEGs from each sib-
pair and generated an integrated PPI (Fig. 2A). As expected,
there was a remarkable dominant network bearing 38 genes,
where FGF2, PTH were the outstanding hub genes. FGF2
was shared in three sib-pairs and had 8 connections while PTH
was shared in all the six tested sib-paired and had 6 connections
(Fig. 2A). In addition, there were other eight small networks
bearing two to four genes (Fig. 2A). It is notable that the two hub
genes were generally down-regulated in MDD patients (Fig. 2B).
Factually, the majority of DEGs in networks (45 out of 61) were
generally down-regulated in MDD patients (Fig. 2A). These results
implied reduced functional activity of these networks that might
be influenced by MDD. We further investigated the expression
pattern of these genes by heatmap and hierarchical clustering and
found a relatively clearer divergence between the MDD patients
and the normal sibs compared with the clustering generated by
including all DEGs identified in each sib-pair (Fig. 1A), except for
the 2nd sib-pair, in which the two sibs were still clustered together
(Fig. 2C). Even when selecting DEGs in the dominant FGF2-PTH
network, we still detected the same pattern (Fig. 2D). We checked
the clinical characteristics of this pair and found that they were the
only pair with two teenagers and the normal individual was only
twelve. Maybe this is one potential factor that made them
distinctive to other pairs in terms of gene expression.

Functional enrichment analysis
To explore the functional implications of the above networks, we
further generated GO and KEGG enrichment analyses on the
differentially expressed genes identified in the protein-protein

Fig. 1 The overall pattern of gene expression in peripheral blood lymphocytes of the six sib-pairs. A Upset plot of differentially expressed
genes of 6 sib-pairs (fold-change > 2 or < 0.5 and paired T-test < 0.05). The Gene number refers to the number of differentially expressed genes
in each pair of sib-pairs. The first number in the bar is the number of up-regulated genes, and the second number is the number of down
regulated genes. The blue dots and lines show the specific genes and common genes between sib-pairs, and the black bar chart shows their
corresponding number. The Wayne diagram shows the intersection of the differentially expressed genes between them. B Heatmap of
differentially expressed genes in 6 sib-pairs. It divides sibling pairs into two groups, 1st, 2nd, and 5th and 3rd, 4th and 6th. Among them, 1st,
2nd, and 5th sib-pairs are clustered according to sibling pairs, while 3rd, 4th and 6th sib-pairs are clustered according to normal and
depression. C PCA plot of differentially expressed genes of 6 sib-pairs.
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interaction networks. There were no significant enriched GO terms
(data not shown). The result of KEGG enrichment analysis showed
that there were three significant enriched pathways, i.e., two were
related to cancer, i.e. pathway in cancer and breast cancer, and the
other was the pathway of parathyroid hormone synthesis,
secretion, and action (Fig. 3A). We firstly took breast cancer for
example to decipher the detailed information of the DEGs in this
pathway and found that they were mainly in the network of the
3rd, 4th, and 6th sib-pairs (Fig. 4). The hub gene FGF2 was in this
pathway. We found that these genes are involved in processes
such as cell proliferation, organogenesis, and cancer-related
transcriptional regulation. The five genes in this pathway were
down-regulated in the peripheral blood lymphocytes of the MDD
patients (Fig. 4), suggesting that the proliferation activity of these
immune-related cells were reduced in the MDD patients of the
three sib-pairs.
The pathway of parathyroid hormone synthesis, secretion, and

action is factually the hub gene PTH-related pathway (Fig. 3B). The
four genes PTH, PLCB4, EGR1, and PDE4A located in important

nodes of this pathway and they were all down-regulated (Fig. 3B).
Hence Parathyroid hormone was reduced in the blood in the MDD
patients. Furthermore, we noticed that two genes, PLCB4 and
PDE4A that are important in downstream signaling pathways such
as in calcium signaling and the second messenger cAMP pathway,
respectively were also repressed, which influence bone and kidney
function (Fig. 3B). These results indicate that the abnormal mental
state of major depressive disorder may have a potential impact on
physiological functions.

DISCUSSION
In this study, we generated comparative transcriptome analysis of
peripheral blood lymphocytes from sib-pairs discordant of MDD
and provided preliminary molecular cues of MDD in Chinese
people. To our knowledge, this study is the first gene expression
profile analysis of MDD using peripheral blood lymphocytes based
on Chinese sib-pairs. Although the sample size is still small, the
findings and implication in this study is valuable for further deep

Fig. 2 Protein interaction network and gene expression heatmap of the genes in the networks. A Protein-protein interaction networks
constructed by the all DEGs in the six sib-pairs. Six colors are used to represent six pairs of siblings, purple for the first sib-pair, faint blue for
the second sib-pair, green for the third sib-pair, yellow for the fourth sib-pair, dark blue for the fifth sib-pair, and lake blue for the sixth sib-pair.
The red edge represents the up-regulated gene, and the blue edge represents the down-regulated gene. Hub gene are FGF2 and PTH.
B Expression heatmap and clustering of the genes in A. C Realtive expression of PTH and FGF2 in six sib-pairs. PTH is a significantly differentially
expressed gene shared by six sib-pairs, while FGF2 only has a significant difference in 346 sib-pairs. D Expression heatmap and clustering of
the genes in the subnetwork of PTH-FGF2 in A.
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verification, which may be helpful for assistant diagnosis. Using
these small samples, we were able to identify differentially
expressed genes in each sib-pair (Fig. 1). We found fairly difference
in terms of DGEs, suggesting possible genetic heterogeneity
among sib-pairs. However, there were also some DGEs shared in
certain sib-pairs. Further principle component and clustering
analyses consistently reflected this pattern.
Some of the DGEs identified in our study were reported to show

genetic variation in previous studies. A genome-wide association
meta-analysis based in 135,458 cases and 344,901 controls was

published in 2018 and identified 44 risk variants, of which the SNP,
rs4143229, the gene nearest to that is LACC1, which was also found
in our results [7]. Another quantitative review of whole-genome
transcriptional data from 10 case-control studies reported the
differentially expressed genes overlapped with our DEGs list,
including ADM, IFIT3, METTL21B, ADAMTS2, MCTP1, and
LOC100996385 [14]. Besides, in two case-control studies of blood
microarrays in major depressive disorder, a total of 165 genes were
differentially expressed in both studies with the concordant direction
of fold change, with the ADM gene also present in our DEGs [17].
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However, our list of differentially expressed genes is not identical to
those found in a recent study of depressive-normal twins, in which
30 DEGs were identified [21]. While in another study used genome-
wide microarray gene expression from the peripheral blood of the
elderly western population [27], with genetically unrelated case and
control objects, we found that there were seven genes, PLEKHA1,
RECQL, RAGAPA1, C1ORF86, XPR1, NAMPT, and MCTP1, were also
identified in at least one sib-pair of our study. Furthermore, there
were efforts on exploring epigenetic differences of discordant
monozygotic twins [28–30], or using sib-pairs samples to explore
the relationship between proband and patients and the genetic
factors of depression [31, 32]. Methylation studies found that several
CPG sites across which depressive co-twins from the discordant pairs,
respectively is CCDC181, RAB37, LHFP, KCND2, NGLY1, NUDT16P,
TMEM81A, GANC, GHSR. These studies using sib-pairs identified the
alpha-haptoglobin (alpha-Hp) and third complement component
(C3) loci and implied genetic linkage in depression spectrum disease.
However, due to the heterogeneity of the MDD phenotype and all
kinds of confounding differences between studies (such as race, type
of participants, age, tissue/cell type, use of antidepressants, and other
factors), there is no comparability in the results of comparing them
under different circumstances, and the etiology of MDD is not
determined by one gene or multiple genes. It is caused by many
factors, which needs further in-depth exploration.
Although pending further validation in larger Chinese samples,

here our pilot study highlighted two important cues that might be
possibly associated with MDD. The first is parathyroid hormone

(PTH) and it involved a pathway of parathyroid hormone synthesis,
secretion, and action which were generally repressed in MDD
individuals. The normal level of calcium and vitamin D in the
human body is maintained by parathyroid hormone (PTH). The
abnormality of calcium and vitamin D is directly or indirectly
related to psychiatric features such as delusion, schizophrenia,
cognitive impairment, mental illness, coma, mania, and various
depressions [33]. In patients with depression, the conversion of
tryptophan in the brain stops due to disregulation of parathyroid
hormone, which produces little or no serotonin, further con-
tributes to a defective mental state, changed cognition, and false
sensory gait [33]. Defects in the processing of PTH may lead to
hypoparathyroidism, resulting in hypocalcemia and numbness,
which can cause psychiatric disorders. In an elderly patient with a
long history of depression who developed chronic hypoparathyr-
oidism after parathyroid adenoma surgery, when he was treated
with calcium supplementation to restore serum calcium home-
ostasis, depression was completely eliminated [34]. These studies
strongly supported that chronic hypoparathyroidism marked by a
reduced level of PTH, may be a correlative factor in the
development of depression.
It is notable that in western human samples, there are still

controversial results in terms of the association of PTH and MDD. A
study report there were no associations between serum concen-
trations of 25-hydroxyvitamin D and parathyroid hormone and
depression among US adults based on a cross-sectional,
population-based sample (including 3916 participants aged ≥ 20
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years) from the 2005-6 National Health and Nutrition Examination
Survey [35]. Results from a national population-based household
sample of 4,002 Jordanian participants aged ≥ 25 years exhibited
that no significant association was found between serum PTH
levels and depression [36]. Furthermore, these studies tested the
content of serum PTH instead of lymphocyte. Jamilian compared
serum levels of vitamin D, calcium, phosphorus and parathyroid
hormone in depressed patients and healthy subjects in an Iranian
population and discovered vitamin D and parathyroid hormone
level in healthy participants was significantly higher than
depressed patients [37] In order to evaluate possible pathogenic
mechanisms implicated the association of vitamin D status with
major depressive disorder, it has been conducted with Spanish
[38], Jordanians [36], Malaysian women [39] and Chinese elderly
people [40], measuring serum parathyroid hormone level to reflect
from the side whether there is a correlation between vitamin D
and depression. Here our study provided cues of reduced
expression of PTH at the transcriptional level, in peripheral blood
lymphocytes of MDD individuals. Further investigation in more
Chinese samples will help clarify this insight.
The other interesting finding is the fibroblast growth factor

(FGF2) and its involved pathway of cancer, specifically breast
cancer which were generally repressed in MDD individuals
of 3 out of 6 sib-pairs, indicating an additional potential
association with MDD occurred in some Chinese MDD patients.
FGF2 belongs to the FGF family binding to heparin and have a
wide range of mitogenic and angiogenic activities. This protein
is involved in a variety of biological processes, such as limb and
nervous system development, wound healing, and tumor
growth.
The fibroblast growth factor FGF2 is one of the major

neurotrophic proteins and plays an important role in the central
nervous system (CNS). Hence the role of FGF2 and related
networks in depression are well documented in the brain
[41]. There is growing evidence that the expression of the FGF2
gene is down-regulated in the brain region of depressed patients
and plays an antidepressant role in animal models of depression
[41–44]. In another case, FGF2 was reported to decrease the
expression of CTGF, a possible pre-depression molecule, in the
adult dentate gyrus [45]. It was also reported that genes positively
regulated by FGF2 included EGR1, Etv4, SPRY4, and DUSP6 in non-
neuronal cell types [42].
Here in our study, we detected generally repressed expression

of FGF2 and its related genes enriched in the breast cancer
pathway, including EGR1, in peripheral blood lymphocytes of
certain MDD individuals. A recent study measured serum FGF2
levels in the 28 MDD patients before and after treatment and 30
healthy controls using enzyme-linked immunosorbent assay, and
found that serum FGF2 levels in patients with depression were
significantly lower than those in healthy controls [46], consistent
to our result. We suspected that the result might suggest a
reduced proliferative potential of these lymphocytes, although the
MDD individuals also have normal values in whole blood cell
analyses (data not shown). The low proliferative potential of
lymphocytes may cause a decrease in immunity, brought an
additional healthy risk of some MDD patients. Pending on large
sample validation, FGF2, and related pathway may become a
potential molecular targets to an exploration of the pathogenesis
of MDD, and provide new ideas for the diagnosis and treatment of
depression in the future.
Despite the above two interesting findings, the main

limitation of this study is the small sample size. We anticipate
that a large sample size of well-matched psychiatric controlled
samples (monozygotic twins discordant on MDD without
medication and suicide) should help to analyze the effects of
depression in future studies. Secondly, the age span of our
sample is relatively large, particularly including teenagers. In
our study, we are not able to distinguish the MDD from the

normal one in this teenager sib-pair, using the microarray data.
Maybe there is still a novel molecular mechanism related to
MDD in teenagers, which should be paid more attention in the
near future.
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