
ORIGINAL RESEARCH ARTICLE
published: 08 April 2014

doi: 10.3389/fnhum.2014.00188

Neural decoding of expressive human movement from
scalp electroencephalography (EEG)
Jesus G. Cruz-Garza1,2 †, Zachery R. Hernandez1,3*†, Sargoon Nepaul4, Karen K. Bradley5 and

Jose L. Contreras-Vidal1,3

1 Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
2 Center for Robotics and Intelligent Systems, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
3 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
4 Department of Neurobiology, University of Maryland, College Park, MD, USA
5 Department of Dance, University of Maryland, College Park, MD, USA

Edited by:

Klaus Gramann, Berlin Institute of
Technology, Germany

Reviewed by:

Joseph T. Gwin, University of
Michigan, USA
Julie A. Onton, Institute for Neural
Computation, USA

*Correspondence:

Zachery R. Hernandez, Laboratory
for Noninvasive Brain-Machine
Interface Systems, Department of
Electrical and Computer
Engineering, University of Houston,
4800 Calhoun Rd., Houston,
TX 77004, USA
e-mail: zrhernandez@uh.edu

†These authors have contributed
equally to this work.

Although efforts to characterize human movement through electroencephalography (EEG)
have revealed neural activities unique to limb control that can be used to infer movement
kinematics, it is still unknown the extent to which EEG can be used to discern the
expressive qualities that influence such movements. In this study we used EEG and
inertial sensors to record brain activity and movement of five skilled and certified Laban
Movement Analysis (LMA) dancers. Each dancer performed whole body movements of
three Action types: movements devoid of expressive qualities (“Neutral”), non-expressive
movements while thinking about specific expressive qualities (“Think”), and enacted
expressive movements (“Do”). The expressive movement qualities that were used in
the “Think” and “Do” actions consisted of a sequence of eight Laban Effort qualities as
defined by LMA—a notation system and language for describing, visualizing, interpreting
and documenting all varieties of human movement. We used delta band (0.2–4 Hz)
EEG as input to a machine learning algorithm that computed locality-preserving Fisher’s
discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture
models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models
to classify all the possible combinations of Action Type and Laban Effort quality (giving
a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type
and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential
relations between the EEG and movement kinematics of the dancer’s body, indicated
that motion-related artifacts did not significantly influence our classification results. In
summary, this research demonstrates that EEG has valuable information about the
expressive qualities of movement. These results may have applications for advancing the
understanding of the neural basis of expressive movements and for the development of
neuroprosthetics to restore movements.
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INTRODUCTION
In recent years, neural engineering approaches to understanding
the neural basis of human movement using scalp electroen-
cephalography (EEG) have uncovered dynamic cortical contri-
butions to the initiation and control of human lower limb
movements such as cycling (Jain et al., 2013); treadmill walk-
ing (Gwin et al., 2010, 2011; Presacco et al., 2011, 2012; Cheron
et al., 2012; Petersen et al., 2012; Severens et al., 2012; Schneider
et al., 2013), and even robotic assisted gait (Wagner et al., 2012;
Kilicarslan et al., 2013). Most of these studies however have been
limited to slow walking speeds and have been constrained by
treadmills or the cycling or robotic devices used in the tasks, and
have yet to examine more natural, and therefore less constrained,
expressive movements. To address this important limitations, a
mobile EEG-based brain imaging (MoBI) approach may be a
valuable tool for recording and analyzing what the brain and the

body do during the production of expressive movements, what
the brain and the body experience, and what or how the brain
self-organizes while movements of physical virtuosity are modi-
fied by expressive qualities that communicate emotional tone and
texture—the basic language of human interactions. These expres-
sive patterns are unique to each person, and we organize them in
such particular ways that they become markers for our identities,
even at great distances and from behind (Williams et al., 2008;
Hodzic et al., 2009; Ramsey et al., 2011).

Interestingly, studies of the so-called human action obser-
vation network, comprised of ventral premotor cortex, inferior
parietal lobe, and the superior temporal sulcus, have shown disso-
ciable neural substrates for body motion and physical experience
during the observation of dance (Cross et al., 2006, 2009). Orgs
et al. (2008) reported modulation of event-related desynchroniza-
tion (ERD) in alpha and beta bands between 7.5 and 25 Hz in
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accordance to a subject’s dance expertise while viewing a dance
movement. Tachibana et al. (2011) reported gradual increases in
oxygenated-hemoglobin (oxy-Hb) levels using functional near-
infrared spectroscopy (fNIRS) in the superior temporal gyrus
during periods of increasing complexity of dance movement.
While current neuroimaging research aims to recognize how the
brain perceives dance, no study has described the various modes
of expressive movements within a dance in relation to human
scalp EEG activity. Thus, the current study focuses on extract-
ing information about expressive movements performed during
dance from non-invasive high-density scalp EEG.

The study emerged from many questions about the differences
in neural engagement between functional and expressive move-
ment in elite performers of movement; specifically, dance, and
movement theatre. The questions are important, because dance
has been studied primarily as elite athletic movement, located
in the motor cortex. And yet, dancers train for years to express
nuanced and complex qualities in order to tell a story, express
an emotion, or locate a situation. Where do these various com-
municative messages, manifested in expressive movers, fire? Are
they part of the motor functions, or are other aspects of cog-
nition involved? The questions therefore became the basis of an
emergent inquiry, using the high-density scalp EEG. Since no pre-
vious data on the differences between these two modalities of
movement have been found, the study is nascent. As the inves-
tigators planned for the research, it became clear from the lack
of any prior studies making these distinctions that we would be
gathering baseline data and demonstrating feasibility for further
studies.

Our study utilized expert analysts and performers of expres-
sive movement, all trained in Laban Movement Analysis (LMA)
(Laban, 1971; Bradley, 2009). LMA is composed of four major
components: Body, Space, Effort, Shape, which make up the
grammar for movement “sentences,” or phrases. In this study,
we focus on the Effort component, which represents dynamic
features of movement, specifically the shift of an inner atti-
tude toward one or more of four factors: Space (attention or
focus), Weight (impact, overcoming resistance), Time (pacing),
and Flow (on-goingness). Each factor is a continuum between
two extremes: (1) Indulging in or favoring the quality and (2)
Condensing or fighting against the quality. Table 1 illustrates the
Laban’s Effort qualities, each factor’s indulging and condensing
element, respectively with textual descriptions and examples.

LMA differentiates between functional and expressive move-
ment. Functional movement is perfunctory, task-oriented, non-
expressive movement. It can be highly skill-based and technically
complex, but it does not communicate an attitude or express an
emotion. An example of functional movement might be cycling
or treadmill walking; when such activities are primarily about
the mechanics of executing the action. Expressive movement
occurs through shifts in thoughts or intentions, and communi-
cates something about the personal style of the mover. Human
beings communicate in both verbal and nonverbal ways; the
nonverbal expressive aspects of movement are “read” as indica-
tors of our unique personalities and personal style. For example,
movement analysts would describe individuals as “hyper” or
“laid-back” based, in part, on their Effort patterns. Individuals

Table 1 | Effort factors and effort elements (Zhao, 2001; Bishko, 2007;

Bradley, 2009).

Effort Element Description

Space Attention to the surroundings. “Where.”
Spatial orientation

Indirect All-round awareness, three–dimensionality of
space, flexible
Example: waving away bugs, scanning room
for misplaced keys

Direct Straight, linear action, attention to singular
spatial possibility
Example: pointing to a particular spot,
threading a needle

Flow Amount of control. “How.”
Feeling of how movement progresses

Free Uncontrolled, unable to stop in the course of
movement
Example: flinging a rock into a pond, waving
wildly

Bound Rigid, controlled, restrained, resisting the flow
Example: carrying an filled up of hot tea,
moving in slow motion

Weight Sensing, Intention. “What.”
Attitude of movement

Light Buoyant, weightless, sensitive
Example: dabbing paint on a canvas,
movement of feather

Strong Powerful, bold, forceful, determined
Example: punching, pushing, wringing a towel

Time Intention, decision. “When.”
Lack or sense of urgency

Sustained Leisurely, lingering
Example: yawning, smelling the flowers

Quick Unexpected, surprising, urgent, fleeting
Example: swatting a fly, grabbing child from
path of danger

might have recurring moments of a Strong, Direct stance. Others
may demonstrate recurring moments of Quick, Free, Light ges-
tures that accent a sparkly or lively presence. These expressive
components of movement do not occur in isolated ways from the
other aspects of movement analysis (Body, Space, and Shape), but
rather, modify movement events. They are capable of a wide range
of such modifications, and the complex patterns of expressiveness
make up unique movement signatures. In this way, familiar peo-
ple can be identified from even great distances, simply from their
Effort qualities. Unfortunately, prior research investigating natu-
ral expressive movement has been limited to motion capture tech-
nology (Zhao and Badler, 2005; Bouchard and Badler, 2007). The
markers that track the body in movement are tantalizingly close to
being able to trace movement qualities, but have not yet achieved
legibility of the shift into expressive movement. Thus, the goal of

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 188 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cruz-Garza et al. Decoding expressive movements from EEG

this study is two-fold: (1) Identify those efforts and individual dif-
ferences in such qualities from brain activity recorded with scalp
EEG, and (2) further develop MoBI approaches to the study of
natural unconstrained expressive movement.

Certified Laban Movement Analysts were used as subjects
because of the extensive training in distinguishing between cat-
egories of movement as both observers and performers. The five
subjects were also teachers of LMA, and had extensive experience
in demonstrating the differences and unique qualities of each fea-
ture of expressive movement to students of the work. One of the
researchers (Bradley) is a Certified Laban Movement Analyst and
has been teaching the material for 30 years. Such experienced sub-
jects and researcher allowed for the identification (and labeling)
of shifts in performance from functional to expressive moments.

MATERIALS AND METHODS
EXPERIMENTAL SETUP
Subjects
Five healthy Certified Movement Analysts (CMAs) proficient in
the expressive components of LMA participated in the study after
giving Informed Consent. All subjects were professional teachers
and performers of movement; either dancers or movement-based
actors. One man and four women were studied with ages rang-
ing from 28–62 years. Data from subject 2 were discarded due to
technical issues during the recording that resulted in missing data
or data of bad quality.

Task
The study consisted of three-trial blocks where synchronized
scalp EEG and whole-body kinematics data were recorded during
a ∼5 min unscripted and individualized dance performance. Each
trial block consisted of three Action Types (“neutral,” “think,”
“do”). During “neutral” action, subjects were directed to perform
functional movements without any additional qualities of expres-
sion. This was followed by the “think” condition where subjects
continued to perform functional movements, but now imagined
a particular Laban Effort quality instructed by the experimenter.
Lastly, subjects executed (i.e., enacted) the previously imagined
expressive movement during the “do” condition. Dancers were
instructed to begin and end each Laban Effort quality cued by
the experimenter, a professional movement analyst, in addition to
a monotone auditory trigger at the onset of each condition. The
sequence of Laban Effort qualities varied from trial-to-trial as well
as from subject-to-subject. Nonetheless, all efforts were arranged
such that the indulging (favored) element was preceded by con-
densing element of the Laban Effort quality. As we were interested
in inferring expressive qualities, all the “neutral” instances, which
were devoid of willed expressiveness, were collapsed within a
superset “neutral” leaving therefore a total of 17 distinct classes
of expressive movements to infer from scalp EEG (“neutral” +
“think” × 8 efforts + “do” × 8 efforts).

DATA ACQUISITION AND PREPROCESSING
Brain activity was acquired non-invasively using a 64 channel,
wireless, active EEG system sampled at 1000 Hz (BrainAmpDC
with actiCAP, Brain Products GmbH). Electrode labeling was pre-
pared in accordance to the 10–20 international system using FCz

as reference and AFz as ground. The kinematics of each dance’s
movements were captured using 10 wireless Magnetic, Angular
Rate, and Gravity (MARG) sensors (OPAL, APDM Inc., Portland,
OR) sampled at 128 Hz mounted on the head, upper torso, lum-
bar region, arms, thighs, shanks, and feet. Each sensor contains a
triaxial magnetometer, gyroscope, and accelerometer (Figure 1).
A Kalman filter was used to estimate the orientation of each IMU
with respect to the global reference frame. Using this information
about sensor orientation, the tri-axial acceleration data, which
had been compensated for gravitational effects, was estimated
(Marins et al., 2001).

Peripheral EEG channels (FP1-2, AF7-8, F7-8, FT7-10, T7-
8, TP7-10, P7-8, PO7-8, O1-2, Oz, PO9-10 in the extended
10–20 EEG system montage) were rejected as these channels
are typically heavily corrupted with motion artifacts and scalp
myoelectric (EMG) contamination. In addition, time samples of
500 ms before and after the onset of each condition were removed
from further analysis to minimize time transition effects across
conditions. EEG signals were resampled to 100 Hz, followed by
a removal of low frequency trends and constrained to the delta
band (0.2–4 Hz) using a 3rd order, zero-phase Butterworth band-
pass filter. The EEG data were then standardized by channel by
subtracting the mean and dividing by the standard deviation.
Finally, a time-embedded feature matrix was constructed from
l = 10 lags corresponding to a w = 100 ms window of EEG data.
The embedded time interval was chosen based on previous stud-
ies demonstrating accurate decoding of movement kinematics

FIGURE 1 | Dancer wearing the 64 ch. EEG cap and the 10 ch. magnetic,
angular rate, and gravity (MARG) inertial sensors for data collection.
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from the fluctuations in the amplitude of low frequency EEG
(Bradberry et al., 2010; Presacco et al., 2011, 2012). The feature
vector for each time sample tn was constructed by concatenat-
ing the 10 lags (tn − 9, tn − 8, . . ., tn) for each channel into
a single vector of length 10 × N, where N is the number of
EEG channels. To avoid the problem of missing data, the fea-
ture matrix was buffered by starting at the 10th EEG sample of
the trial. All EEG channels and time lags were subsequently con-
catenated and standardized to form a [t0 − w] × [N ∗ l] feature
matrix.

DIMENSIONALITY REDUCTION
Once feature matrices were generated for all trial blocks, training
and testing data were randomly sampled in equal sizes for each
class for cross-validation purposes, and reduced in dimension-
ality (Bulea et al., 2013; Kilicarslan et al., 2013). Local Fisher’s
Discriminant Analysis (LFDA) is deployed here to reduce the
dimensionality of a sample set of classes by minimizing and
maximizing samples within and between classes, respectively,
while preserving the locality of the samples that form each class
(Sugiyama, 2006, 2007). Details of the technique adopted here
(LFDA) are described in Sugiyama (2006, 2007).

NEURAL CLASSIFIER ALGORITHM
A Gaussian mixture model (GMM), capable of representing arbi-
trary statistical distributions as a weighted summation of multiple
Gaussian distributions, or components (Paalanen et al., 2006),
was employed to classify the Laban Movement (LBM) Efforts
from scalp EEG. As the name implies, GMM represents each
class as a mixture of Gaussian components whose parameters
and component number are approximated using the Estimation-
Maximization (EM) algorithm and Bayes Information Criterion
(BIC), respectively (Li et al., 2012). The two main parameters
for this algorithm include the number of reduced dimensions r
and k-nearest neighbors knn (from the LFDA) and thus must be
optimized for this particular application of expressive movement
classification (Li et al., 2012; Kilicarslan et al., 2013).

The probability density function for a given training data set
X = {xi}n

i = 1 ∈ R
d is given by:

p(x) =
K∑

k = 1

αkφk (1)

φk(x) = e−0.5(x − μk)
T�−1

k (x − μk)

(2π)d/2|�k|1/2
(2)

where K is the number of components and αk is the mixing
weight, μk is the mean, and �k is the covariance matrix of the
k-th component. The parameters of each GMM component K,
including αk, μk, and �k, are estimated as those which maximize
the log-likelihood of the training set given by:

Lk =
n∑

i = 1

log pk (xi) (3)

where p(x) is given in (1). Maximization of (3) is carried out using
an iterative, greedy expectation-maximization (EM) algorithm

(Vlassis and Likas, 2002), with the initial guess of the parame-
ters αk, μk, and �k established via k-means clustering (Su and Dy,
2007), until the log-likelihood reaches a predetermined threshold.
The determination of K is critical to successful implementation
of GMMs for classification. The BIC has been reported as an
effective metric for optimizing K (Li et al., 2012).

BIC = −2Lmax + 2 log (n) (4)

where Lmax is the maximum log-likelihood of each model from
(3). During training, the maximum value of K = 10 was cho-
sen based on estimates from prior work in our lab (Kilicarslan
et al., 2013). We then computed Lmax for each value of K ∈
{1, 2, . . . , 10} and estimated the optimal value of K as the model,
using the minimum BIC from (4). In this manner, class-specific
GMMs representing each Effort could be specified for use in a
maximum-likelihood classifier. The parameters for each class-
conditional GMM were specified using an optimization data set
(classifier optimization). The posterior probability of each new
data point was computed using the optimized model for each
class, and that data point was then assigned to the class that
returned the largest value.

Neural classification from scalp EEG was performed using two
schemes of class initialization. We defined the Scheme 1 (Action
Type) as a differentiation of n time samples into one of three
classes corresponding to the conditions of “Neutral,” “Think,”
and “Do.” In a similar initialization for Scheme 2 (Laban Effort
quality Type), each condition of “Think” and “Do” were segre-
gated into each of the eight Laban Effort quality elements, thereby
forming an accumulation of 17 classes. The results of each classi-
fication could be observed by obtaining the confusion matrix of
each classification scheme. This matrix provides the user with a
detailed understanding of the overall accuracy rate in terms of the
accuracy, or sensitivity and precision, for each class.

CROSS VALIDATION
Overall classification accuracy and class precision rates were aver-
aged by implementing a random sub-sampling cross validation
scheme. That is, samples from the concatenated feature matrix of
three trial blocks were randomly selected and placed into an equal
number of samples per class based on a percentage of samples
from the least populated class. This process was then repeated 10
times (Figure 2) in order to minimize the effects of random sam-
pling bias, avoid over-fitting, and demonstrate replicability of the
algorithm. A sampling of 10 accuracies was found to be sufficient
as it usually resulted in a low standard error (ε < 1).

FORWARD SELECTION OF EEG CHANNELS
In an attempt to identify the EEG channels that contributed most
to classification accuracy, the iterative process of forward selection
was introduced upon the EEG channels and their correspond-
ing lags that comprise the feature matrix. This was performed by
computing the mean classification accuracy of each EEG chan-
nel independently using the LFDA-GMM algorithm, and ranking
them in descending order of accuracy values. The highest ranked
channel was added to the selected channels list (SCL), and tested
against each of the remaining channels. The channel that ranked
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FIGURE 2 | Flow diagram depicting the computational approach to neural decoding of expressive movements. The sample sizes n and m are equivalent
to a percentage of the least populated class size.

highest in classification accuracy when tested along the SCL was
added to the SCL for the next iteration. This procedure was
repeated until all remaining non-SCL channels were exhausted.

EXAMINATION OF POTENTIAL MECHANICAL ARTIFACTS ON EEG
DECODING
To assess the potential contribution of mechanical/motion arti-
facts to decoding, we performed a series of analyses including
time-frequency analysis, cross-correlation analysis, and coherence
analysis to compare the EEG signals with the motion signals
acquired with the MARG sensors. First, we performed principal
component analysis (PCA; Duda et al., 2012) on the accelera-
tion data (d = 10 sensors). A cross-correlation analysis was then
performed between the raw EEG (resampled to 100 Hz) and the
first “synergy” (i.e., first PC) of acceleration data. Histograms
and box plots of each EEG channel by PC1 calculated corre-
lation values were subsequently assessed to observe differences
across the distribution of each class. Second, we performed a
time-frequency analysis to compare the raw EEG signals over
selected frontal, lateral, central, and posterior scalp sites and
the gravity-compensated accelerometer readings from the MARG

sensor placed on the head. Then, we estimated the coherence
between the raw EEG signals and the accelerometer signals.
Finally, we computed a whole-scalp cross-correlation of the EEG
signals and the head accelerometer readings to examine the con-
tribution of head motion to EEG.

RESULTS
KINEMATIC ANALYSIS
Figure 3 depicts a sample set of EEG and motion capture record-
ings for Subject 4, Trial 2 comprising all Action type classes for
the Laban Effort quality of Flow, which includes the opposing ele-
ments of free and bound flows. PCA was performed upon the full
time series of acceleration data from all 10 MARG sensors. The
PCs whose cumulative variability summed to at least 80% were
also featured within the sample set of signal data in Figure 3. Time
series provided for both “neutral” blocks in Figure 3 appear to be
relatively “smooth” (less varying) in terms of both neural activity
and kinematic movement. One exception to this includes rapid
changes in acceleration around 169 s as confirmed by the accel-
eration plots. EEG signal patterns are visually distinct between
“think” time segments of free and bound flow elements, especially
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FIGURE 3 | Sample EEG and MARG recordings for Subject 4, Trial 2 with video recording (see Supplementary Materials). EEG and accelerometer data
are segmented by each condition (Neutral, Think, Do) of the Laban Effort quality of Flow. The first four PCs of acceleration data are also shown.
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with unique areas of modulation of neural activity at 185 s (free
flow) and 209 and 214 s (bound flow) which contained little to no
effect of motion artifacts, as confirmed by the kinematics signal
data. By contrast, the “do” section of the Laban Effort quality of
free flow was found to contain the greatest influence of motion
embedded in the EEG signal data, as demonstrated by the large
excursions in signal magnitude for both EEG and kinematics data.
These differences between classes are more prominent when the
distribution of PC values can be observed for every class in the
trial, as shown in Figure 4. Key features to note include the small
variance accounted by “Do Light Weight” and “Do Sustained
Time” classes, which reflects the low movement the subject effec-
tuated for the particular action. Other classes such as “Do Free
Flow” and “Do Quick Time” have a higher variance due to the
nature of these efforts as they cover a greater range of motion.
Potential motion artifacts produced by the subject’s movements
appear to contaminate EEG signal patterns, however the effect
appears to be localized to specific classes of Laban Effort qual-
ities (e.g., “Do Free Flow”) and thus not consistent over the
entire time series. A more detailed analysis of potential mechan-
ical/motion artifacts based on cross-correlation, coherence and
time-frequency analyses are thus provided next.

The distribution of correlation values between raw EEG chan-
nels and the first PC of the raw acceleration data returned a range
of median correlation coefficients between 0.02 and 0.15 across
classes (Figure 5A). Outliers were identified for some efforts, and
thus may be indicative of a close relationship between a particu-
lar EEG channel and the first PC “synergy” of acceleration. The
coefficient of determination was obtained by squaring each cor-
relation coefficient ρ. This coefficient is defined as the percent
variation in the values of the dependent variable (raw EEG) that
can be explained by variations in the values of the independent
variable (acceleration). Coefficients of determination (ρ2) values
were generally low and ranged from ∼0.0 to ∼0.23 (that is, ∼0
to 23% of the total variation of the raw EEG can be accounted
for by changes in the PC1) across all subjects and electrodes.
Spatial distributions of ρ2-values were plotted as scalp maps to
indicate the relationship between the raw EEG and the head accel-
eration across scalp channels. Peaks of highest accounted variance
(Figure 5B) were observed for certain Laban Effort qualities, most
notably in the occipital regions for “Think Quick Time” and
“Think Light Weight” and temporal regions for “Do Sustained
Time” for Subject 4 (See Supplementary Material for ρ2 data from
other subjects).

FIGURE 4 | Normalized histogram distribution of time sample data for

the first principal component of magnitude acceleration data recorded

from Subject 4, Trial 2 (n = number of samples, k = kurtosis). A boxplot

representation excluding outliers of the distribution is shown below each
histogram. Note that the distributions for PC1 are a combination of
super-Gaussian and sub-Gaussian distributions as estimated by their kurtoses.

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 188 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cruz-Garza et al. Decoding expressive movements from EEG

FIGURE 5 | The boxplots (A) and scalp maps (B) show the distribution of

the cross-correlation coefficients and coefficients of determination

between raw EEG signals and the first PC of the magnitude acceleration

data across subjects and efforts. The first PC of the acceleration data
accounted for 64.5, 39.3, 59.8, and 44.9% of the variance for subjects 1, 3, 4,
and 5 respectively. Asterisks (∗) indicate outliers within the set of ρ-values.

A similar analysis comparing the raw EEG signals and the head
accelerometer (which directly recorded EEG electrode move-
ments), rather than the first PC “synergy,” was also conducted
(Figure 6). This resulted in correlation values generally below
ρ = 0.15, though many boxplot distributions varied by sub-
ject throughout each Laban Effort quality (Figure 6A). Although
strong relationships between the accelerometer and EEG signals
may be expected, the relatively low ρ2 scores indicate otherwise.
Low correlations between neural activity and head motion were
observed for classes such as “Bound Flow,” which is reasonable
given the rigid-like movements that this effort entails. In contrast,
much higher correlation coefficients remained for “Light Weight”
and “Indirect Space” time segments. Figure 6B depicts scalp maps
with ρ2-values between head accelerometer and raw EEG data
for Subject 4. In the scalp maps some classes show channels with
slightly high correlation ρ2 = 0.1 (which account for ∼10% of
the total variation of the EEG due to the head motion), specif-
ically in “Think Light Weight,” “Think Direct Space,” “Think
Quick Time,” and “Do Sustained Time,” for Subject 4. Overall,
these analyses showed a slight contamination, for some classes of
Laban Effort qualities, of EEG signals due to head movement (see
Supplementary Material), but the amount of total variance in the
EEG signals explained by head motion was relatively small.

Additionally, time-frequency and coherence analyses were per-
formed upon the raw signals of three selected EEG electrodes (Cz,
C6, and POz) representing a sampling of the spatial assortment of
neural activity across the scalp, as well as the gravity-compensated
acceleration magnitude of the head MARG sensor by generat-
ing two spectrograms, as shown in Figure 7. The spectrograms

were generated by computing the short-time Fourier transform
(STFT) over a time window of samples with overlap at each PSD
computation of the FFT. We used a frequency range between
0.1–40 Hz and a time window of 1024 samples with 93% over-
lap. The mean-squared coherence between the head acceleration
and each corresponding EEG electrode at each frequency value
was computed using Welch’s overlapped-segment averaging tech-
nique (Carter, 1987). From the spectrograms it can be observed
that the actions “Do Quick Time,” “Do Think Free Flow,” “Do
Strong Weight,” and short-lived portions of “Neutral” tasks con-
tained higher power in the head accelerometer readings that may
affect decoding. However, coherence estimates were generally low
(<0.3; see Figure 7) with some transient increases in coherence
between EEG and head acceleration during some Laban Effort
qualities. Given that relatively high levels of coherence were short-
lived and localized to a few classes of Laban Effort qualities,
and that random sampling of EEG signals were used for train-
ing and cross-validation of our neural classifiers, we argue that
motion artifacts, if present, had only a very minor contribution
to decoding. We further discuss these results below.

DECODING ACTION TYPE FROM SCALP EEG
We first examined the feasibility of inferring the action type
(“neutral,” “think,” “do”), irrespective of Laban Effort quality,
from scalp EEG. Analyses showed the “think” condition had the
highest sensitivity than the other two action types. Based on the
optimization of LFDA parameters, the mean accuracy rate (10
random subsampling cross-validation iterations were used for
each subject) was 56.2 ± 0.6% by Action Type for Subject 1
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FIGURE 6 | (A) The boxplots show the distribution of the
cross-correlation coefficients between raw EEG signals and the
magnitude acceleration data from the head MARG sensor across
subjects and efforts. (B) Scalp maps of coefficient of determination

(ρ2) values between raw EEG signals and the magnitude acceleration
data from the head MARG sensor across Laban Effort qualities for
Subject 4. See Supp. Materials for other subjects. Asterisks (∗)
indicate outliers within the set of ρ-values.

(r = 300, knn = 21), which was well above 33% chance proba-
bility. Similar classification accuracy results were obtained for the
rest of the subjects, namely 57.0 ± 0.4% for Subject 3, 62.1 ±
0.5% for Subject 4, 62.4 ± 1.0% for Subject 5. Figure 8 shows the
mean classification accuracies for the different data sets tested.

Predicted samples were summed across all four subjects and
normalized by dividing each predicted sample size by the actual
class sample size, as indicated by the percentages within each
confusion matrix block (Figure 9). Figure 9 depicts the confu-
sion matrix for the Action Type decodes. Classification of EEG
patterns corresponding to the “think” class achieved the high-
est classification rates (88.2%), followed by both “neutral” and
“do” classes. Note that the highest misclassifications occurred
for class “neutral,” which were classified as belonging to the
“think” (32.9%) class. The worst performance was for the “do”
class as instances of “neutral” (23.5%) and “think” (50.7%) were
misclassified as “do.”

DECODING LABAN EFFORT QUALITY TYPE FROM SCALP EEG
We then examined the classification accuracy for Laban Effort
quality Type (8 Think about Laban Effort quality + 8 Do Laban
Effort quality + Neutral = 17 classes). In this case, nearly all
test samples were accurately classified into their respective classes,
which resulted in 88.2% classification accuracy across subjects.
Figure 8 (black bars) shows the mean classification accuracies
for Laban Effort qualities across subjects. Interestingly, most test
samples were misclassified under the “neutral” class as shown by
the relatively high percentages for all non-“neutral” classes in the

first column (Figure 10). Based upon Figure 10, classes related to
actions of “do” were more difficult to classify (relative to actions
of “think”) except for “Do Quick Time,” which contained the
highest sensitivity rate overall (96.5%).

TRAINING SAMPLE SIZE EFFECTS ON CLASSIFICATION ACCURACY
The effect of training sample size on classification accuracy was
also examined in Subject 1. The training sample size constituted
a percentage (20–90) of the least populated class. Classification
of Action type was not significantly affected by percentage of
training samples (Figure 11); however, classification of Laban
Effort quality type showed a non-linear increase as a function of
percentage of training samples.

RELEVANT EEG CHANNELS FOR CLASSIFICATION
A forward selection approach was employed per subject in order
to identify the EEG channels with the most useful information for
classification (Pagano and Gauvreau, 2000). While maintaining
the number of reduced dimensions (r) and k-nearest neigh-
bors (knn) constant (r = 10, knn = 7) and operating under the
Effort Type classification scheme, the mean classification accu-
racy was computed for all 39 channels and corresponding lags
independently. The channel that yielded the highest classification
accuracy (channel A) was then selected. Classification accura-
cies were then re-computed by adding channel A to each of the
remaining 38 channels independently. The channel-pair yield-
ing the highest accuracy was again selected and added to each
of the remained channels to find the channel-triplets yielding

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 188 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cruz-Garza et al. Decoding expressive movements from EEG

FIGURE 7 | Spectrograms and short-term coherence between

selected (raw) EEG channels (Cz, C6, and POZ) and the acceleration

magnitude of the head MARG sensor for Subject 4. Frequency axes
are shown in logarithmic scale. Note the generally low coherence

values (<0.3) across most Laban Effort quality classes with some
short-lived increases in coherence for some Efforts. Bold vertical black
lines above each figure indicate the efforts windows in Figures 3, 4 to
compare to each spectrogram plot.
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FIGURE 8 | Mean (SD) classification accuracies for 10 iterations and

optimized LFDA parameters for both Action (3 classes) and Effort (17

classes) Type decoding. The gray middle bars show the mean classification

accuracy for the 10 electrodes that individually yielded the highest classification
accuracy using the forward selection algorithm with constant LFDA parameters
(r = 10, knn = 7, See Relevant EEG channels for classification for discussion).

the highest accuracy, and so on. This process continues until no
channels remained, and classification accuracy was shown to stop
increasing after selecting approximately 10 electrodes for each
subject (shaded gray region in Figure 12). Hence, 10 electrodes
were retained for further analysis per subject, as illustrated by the
scalp maps depicted in Figures 13A–D. Electrodes common to
at least two subjects were highlighted in Figure 13E, which span
over scalp areas above bilateral premotor and motor cortices and
dorsal parietal lobule areas. This is consistent with previous stud-
ies seeking to associate dancing movements with cortical regions
(Cross et al., 2006, 2009). Though peak accuracies at 10 electrodes
(Figure 12) were low (40–50%) relative to optimized Effort Type
accuracies (Figure 8), this was largely due to the lower reduced
dimension parameter for LDFA. This suggests that a higher-than-
chance classification accuracy can be obtained by using as few
as 10 electrodes. Nevertheless, relevant information within all 39
EEG channels ultimately allows the classifier to reach more than
90% decoding accuracy (Figure 8).

EFFECTS OF HEAD MOTION ON NEURAL CLASSIFICATION
We examined the relationship between classification performance
and motion artifact contamination. Taking the ρ-values from
Figure 5A, we compared them with each class’ F1 score in clas-
sification. If classes with higher ρ-values showed a higher F1
score, this would mean that the classifier was able to better clas-
sify the classes that were modulated by motion artifacts. However,
Figure 14 shows no evidence of a correspondence between the F1
score and the correlation coefficients per class.

The F1 score (5) is a weighted average of the sensitivity and
precision rates, and thus reflects the overall accuracy of a partic-
ular class (Hripcsak and Rothschild, 2005). For purposes of this

FIGURE 9 | Normalized Summed Confusion Matrix across subjects for

three classes (Action Type decodes). The bottom-right corner provides
the overall mean classification accuracy (59.4%).

study we use the balanced F1 score equation, defined as:

F =
(
1 + β2

) × sensitivity × precision(
β × precision

) + sensitivity
, β = 1 (5)

where β is used as a weighting factor between sensitivity and
precision. Overall, a direct relationship between classification
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FIGURE 10 | Normalized Summed Confusion Matrix across

subjects for 17 classes (Laban Effort quality Type). The
bottom-right corner provides the overall mean classification

accuracy across subjects (88.2%). This was obtained by summing
each subject’s normalized confusion matrix and normalizing the
summed result.

success and the median correlation coefficient of EEG channels-
to-acceleration data does not seem to occur, but rather a tendency
exists for high successes of neural classification in classes that also
contain low correlations with accelerometer data.

EFFORT TYPE CLASSIFICATION REPRESENTED IN 4D LABAN SPACE
Figure 15 illustrates the highly predictive power of the Laban
Effort quality Type neural classification scheme. Using a normal-
ized variant of the GMM probability density function, we placed
weightings to the four coordinates in the Laban Effort quality
space. Each axis corresponds to a Laban Effort quality of Space,
Flow, Weight, and Time. Some testing samples were found to
be misclassified between Indirect Space, Light Weight, and Quick
Time axes, as shown by the ellipsis in Figure 15. This may suggest

shared characteristics between the expressive movements that
cause such misclassification. Non-expressive, or non-classifiable,
samples are depicted as green foci falling near the center of the
plot, as indicated by the small arrows. The small amount of non-
classified samples reflects the overall error of the classifier to
predict Laban Effort quality using neural recordings.

DISCUSSION
CLASSIFICATION OF EXPRESSIVE MOVEMENTS FROM SCALP EEG
In this study we demonstrate the feasibility of classifying expres-
sive movement from delta band, EEG signals. Classification rates
ranged from 59.4 ± 0.6% for decoding of Action Type (“neutral,”
“think,” and “do”) to 88.2 ± 0.7% for decoding of Laban Effort
quality (17 classes). Surprisingly, only the “think” class was
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FIGURE 11 | Mean accuracies (for 10 iterations) across varying

percentage of training samples for classification by Action (3 classes)

and Laban Effort quality (17 classes) types for Subject 1. LFDA
parameters: (r = 180, knn = 7) for both classification schemes. ∗Training
data samples constitute a percentage of the least populated class.

FIGURE 12 | Growth of the mean accuracy (for 30 iterations) as n

channels were added to the new set for subjects 1, 3, 4, and 5 using

forward selection with constant LDFA parameters (r = 10, knn = 7) and

the Effort Type classification scheme. The approximate peak in accuracy
rate at 10 electrodes, highlighted by the vertical gray bar, was displayed in
Figure 8 to demonstrate the extent of classifying using only 10 electrodes
at such a relatively low dimensionality.

reliably decoded from EEG whereas classes “neutral” and “do”
were poorly decoded. It should be noted that subjects were not
instructed to perform a particular pattern of movement, but
rather a mode of action (“neutral,” “think,” and “do”) and Laban
Effort quality as a component of LMA. Thus, subjects performed
highly individualized changing movement patterns throughout
the recording session irrespective of mode of action. We note
that our neural decoding framework uses a within-subject
approach where neural classifiers are trained for each subject.
Such neural decoding approaches are subject specific (Lotte et al.,
2007; Bradberry et al., 2010; Presacco et al., 2011, 2012; Wagner

et al., 2012; Bulea et al., 2013), and thus common and unique
neural patterns are to be expected to influence classification.
Conventional statistical analyses can therefore be difficult to
interpret in the context of this framework because many factors
affect the resulting estimates of significance (i.e., assumptions
underlying response distribution, sample size, number of trials,
data over-fitting, etc.) (Tsuchiya et al., 2008). Given the cross-
validation procedure (i.e., separate random sampling of data
for training and test trials) used in our methodology, the risk
of over-fitting is minimized. By deploying our methodology
for investigating differences in cortical EEG activity patterns,
especially as a function of within-subject training, valuable
information could be learned about the adaptation/learning
trajectories of those patterns and their relationship to perfor-
mance and training. On the other hand, the consistency of the
underlying neural representations, within a subject, would be a
valuable metric in longitudinal studies.

DECODING OF ACTION TYPE AND LABAN EFFORT QUALITIES
The mean decoding accuracy for action type (“neutral,” “think,”
“do”) was near 60%, which was well above chance level.
Interestingly, classification rate for the “think” actions was high-
est (88.2%), followed by “neutral” (64.3%) and “do” actions
(25.8%). We note that individualized and unscripted functional
movements were performed across all the three action types.
Thus, the lowest classification rate for the “do” actions may reflect
neural patterns that contain integrated elements of “thought”
expressiveness and functional movement that were enacted by
the dancers. This would have likely introduced “noise” to these
patterns as diverse functional movements were performed irre-
spective of the Laban Effort qualities being imagined. On the
other hand, the “neutral” actions, albeit unscripted and varying
across time, contained separable information for the classifiers to
discriminate them from the other action types. Only the “think”
actions contained separable information about functional move-
ment and Laban Effort qualities, which could be decoded by the
classifiers. Thus, it is expected the “neutral” class to yield the worst
classification rate given the stochastic pattern of functional move-
ments it contains. Likewise the poor classification of the “do”
class may be due to the heterogeneous mixture of functional and
expressive movements co-occurring, which may introduce some
neural noise within the neural activity evoked by this action.

Interestingly our results demonstrate a greater predictive
power toward the classification of each Laban Effort quality ele-
ment rather than the aggregation of all Laban elements into a
singular condition-defined class (Figures 9, 10) suggesting that
the neural internal states associated with these efforts contain dif-
ferentiable features, beyond the movements performed, that can
be extracted from scalp EEG.

INFLUENCE OF MOTION ARTIFACTS
Given the nature of the experimental setup, it is reasonable to
assert the assumption that the EEG data may be plagued with
motion artifacts. To examine this possibility we performed a series
of analyses to uncover any potential relationship between the
EEG signals and the dancers’ body and head movements. We
found that in a few instances the correlation between the raw
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FIGURE 13 | Binary scalp maps for each subject depicting the first 10

electrodes identified as yielding the highest combined accuracy as

computed by the forward selection algorithm. (A) S1. (B) S3. (C) S4. (D)

S5. (E) Electrodes common to a least two subjects, as indicated by the

circles above a particular electrode channel. Given the subject-specific nature
of neural decoding schemes, common, and unique neural patterns were
expected (Lotte et al., 2007; Bradberry et al., 2010; Presacco et al., 2011,
2012; Wagner et al., 2012; Bulea et al., 2013).

FIGURE 14 | Scatter plot of F1 score vs. median correlation for each of

the 17 possible classes (Effort Types). The F1 score represents the
weighted average between the precision and sensitivity rates of each class.

EEG and the dancers’ movements assessed via the MARG sensors
was moderately high; however these effects appear to be local-
ized to particular segments of time (see Figures 3, 4). We also
note that periods of intense unscripted and varying functional
movements may have been responsible for the periods of higher
correlation and coherence estimates. However, we hypothesize
that for the same reason, neural activity related to the “think-
ing” of Laban Effort qualities may have occurred or modulated
varying body and head movements, thus making these motions
likely irrelevant for classifiers. Additionally, the relatively low
coefficients of determination between EEG and kinematics data
demonstrated that the % variability of EEG signals accounting
for head motion was rather small. Moreover, the random sam-
pling of both training and testing datasets would have precluded

FIGURE 15 | Visualization of classification results for delta-band

processed EEG data from “think” actions in 4D space of Laban Effort

qualities. Classification data from Subject 1, trials 1–3 are shown. Test
samples were classified using the LFDA-GMM algorithm (r = 70, knn = 7,
using training samples per class that constitute 50% of the least populated
class). Decisions of correspondence between Laban Effort qualities were
made using a probability density function of the output of the GMM. The
respective probabilities were used as weightings for the four coordinates in
this space. Clusters of data in the extremes of the octahedron for each
Laban Element-Factor are clearly visible, while some samples remain not
clearly distinguishable as pertaining to a specific class.

the introduction of kinematic influences in both calibration and
testing of the classifier, as the temporal nature of kinematic arti-
facts would have not been included in the training or testing
data. This however warrants further investigation to develop bet-
ter strategies of implementing MoBI approaches to capture neural
mechanisms behind general movements.

Overall, our results show the feasibility of inferring the
expressive component of movements (according to the
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Laban categorization) from scalp EEG, especially when those
components are imagined as subjects perform unscripted natural
body movements. These results may have implications for
the study of movement training, disease and brain-computer
interfaces for restoration of expressive movements.
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