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Symmetry of learning rate in 
synaptic plasticity modulates 
formation of flexible and stable 
memories
Youngjin Park1, Woochul Choi1,2 & Se-Bum Paik   1,2

Spike-timing-dependent plasticity (STDP) is considered critical to learning and memory functions in 
the human brain. Across various types of synapse, STDP is observed as different profiles of Hebbian 
and anti-Hebbian learning rules. However, the specific roles of diverse STDP profiles in memory 
formation still remain elusive. Here, we show that the symmetry of the learning rate profile in STDP is 
crucial to determining the character of stored memory. Using computer simulations, we found that an 
asymmetric learning rate generates flexible memory that is volatile and easily overwritten by newly 
appended information. Moreover, a symmetric learning rate generates stable memory that can coexist 
with newly appended information. In addition, by combining these two conditions, we could realize 
a hybrid memory type that operates in a way intermediate between stable and flexible memory. Our 
results demonstrate that various attributes of memory functions may originate from differences in the 
synaptic stability.

Since Hebb established the concept of activity-dependent synaptic modulation1, synaptic plasticity of neural cir-
cuits has been considered the key mechanism of learning and memory function. Based on this dogma, there has 
been a number of efforts to explain the fundamental mechanism of memory—from molecular scale synaptic 
changes2 to population scale memory traces in neural circuits3. Extensive research has been done to examine the 
process of memory allocation4–6, how existing memories can be manipulated7–9, and how synaptic changes can 
form a specific type of memory10. A recent study also provided evidence of the link between synaptic changes and 
memory formation11. Despite such progress and findings, one important question still remains to be answered: 
What is the specific mechanism by which neural plasticity forms different types of memory?

Memory can be categorized into two types: flexible and stable forms of memory. The common ground in the 
dichotomous classifications is that the former decays quickly and is easily replaced by new input, whereas the 
latter decays relatively slowly and is robust against newly appended input12, 13. An intriguing finding from a recent 
study of the primate caudate nucleus, is that flexible and stable memories can be encoded in the same system14, 15.  
This finding raises the argument that flexible and stable memory might be formed in the same neural circuit, 
and may not require a completely different mechanism of memory formation. Although a number of theoretical 
models have been proposed for simulating memories with either flexible or stable features, little is known how to 
realize both types of memory in the same circuit.

Spike-timing-dependent-plasticity (STDP) is considered a key mechanism for memory formation in neu-
ral networks16–18 in which synaptic strength is updated according to the exact timing of pre- and postsynap-
tic spikes19–21. Diverse profiles of Hebbian and anti-Hebbian STDP have been observed across various types of 
post-synaptic cells22, 23 and synapses24–28. It has been reported that they can also change dynamically depending 
on the pre- and postsynaptic activity pattern29, synaptic cooperativity30, and synaptic strength at the moment19, 20.  
Computational models using STDP have successfully reproduced certain features of neuronal memory and 
memory circuits such as the assembly of inter-neural connectivity, pattern of sequential neural firing and noise 

1Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 
34141, Republic of Korea. 2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and 
Technology, Daejeon, 34141, Republic of Korea. Correspondence and requests for materials should be addressed to 
S.-B.P. (email: sbpaik@kaist.ac.kr)

Received: 18 October 2016

Accepted: 6 June 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-4078-305X
mailto:sbpaik@kaist.ac.kr


www.nature.com/scientificreports/

2Scientific Reports | 7: 5671  | DOI:10.1038/s41598-017-05929-2

robustness31–33. However, the mechanism for achieving flexible and stable memory characteristics has not been 
successfully explained based on these STDP rules.

Here, we introduce a novel model that asserts that the mathematical ‘stability’ of the synaptic learning rule 
would determine the characteristic of a memory stored in a neural network. Our hypothesis is that alteration of 
the learning rate symmetry in STDP can differentially regulate the synaptic stability so that it leads to generation 
of either flexible or stable memories. To test our idea, we designed a computer simulation using a model feed-
forward network to implement two types of symmetry profiles for learning rate: asymmetric learning rate STDP 
(AR)34, 35 and symmetric learning rate STDP (SR) as examples of two different profiles of synaptic stability. In 
this model, we defined “memory” as the ability of a system to retrieve consistent response spike patterns when a 
pre-trained input pattern was received repeatedly. Then we examined the performance of the system in terms of 
memory “sustainability”—how long the stored memories could last—and “appendability”—how robustly the pre-
viously stored memory could survive when new information was appended to memory. Our results showed that 
the difference in the synaptic stability profile could determine the characteristics of stored memory. Ultimately, 
we were able to implement a hybrid type of memory from the precise control of learning rate symmetry, which 
exhibited intermediate properties between flexible and stable memories. Our results may provide new insight for 
the role of STDP learning rate profile in memory formation.

Results
Symmetric and asymmetric learning rate models of STDP.  In a spike-timing-dependent-plasticity 
(STDP) model, change of synaptic strength or weight (w) depends on relative timing of pre- and postsynaptic 
spikes, Δt = tpost − tpre. For example, spikes of Δt > 0 leads to long term potentiation (LTP), while spikes of Δt < 0 
leads to long-term depression (LTD) (Fig. 1a). For properly scaled synaptic modulation, the learning rate Δw is 
considered a function of synaptic strength w (Fig. 1b); so that any particular synapses could not become exces-
sively strong16, 19, 20, 34. Here, we consider two models of learning rules—namely, asymmetric and symmetric rate 
STDP (Fig. 1b,c) where the weight-dependent scaling of learning rate for LTP and LTD is asymmetric or sym-
metric, respectively. First, asymmetric rate STDP (Fig. 1b) is a typically accepted form of learning rate model, and 
is sometimes called multiplicative weight dependence in theoretical studies34, 35. In this model, the learning rate 
Δw is biased towards positive (LTP) for weak synapses (w ≈ 0) and is biased towards negative (LTD) for strong 
synapse (w ≈ 1), so that weak synapses are likely to strengthen while strong synapse are easily weakened. On the 
other hand, in the symmetric rate STDP model (Fig. 1c), Δw is maximum around the mid-range of w (≈0.5) for 

Figure 1.  Weight-dependent learning rules: (a) A model of spike-timing-dependent plasticity (STDP). Synaptic 
strength change (Δw) depends on the relative spike timing between pre- and postsynaptic neurons (Δt). 
Spikes of Δt > 0 leads to long term potentiation (LTP), while spike of Δt < 0 leads to long-term depression 
(LTD). (b) Asymmetric learning rate (AR) model: Learning rates for LTP (red) and LTD (blue) are asymmetric 
for strong and weak synapses. (c) Symmetric learning rate (SR) model: Learning rates for LTP (red) and LTD 
(blue) are symmetric for strong and weak synapses. (d) Instability of the synapses (Δw2) for AR and SR models. 
(e,f) Weight density function for AR and SR was predicted from Boltzmann distribution (colored lines), and 
simulated using a single synapse model (histograms).
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both LTP and LTD, and decreases as w increases to ‘1’ or decreases to ‘0’. In this instance, any synapses, once they 
become very weak or strong by learning, tend to retain their synaptic weights.

To predict the characteristics of each learning rule, we defined the ‘instability’ of the synapses as follows.

∑ ∆~Synaptic instability w( ) , (1)2

Synaptic instability indicates how much the synapse changes from the weight dependent learning rule, thus 
it is a function of the current value of synaptic weight. From the equations of AR and SR learning rate models in 
Fig. 1b,c, we mathematically calculated the synaptic instability (Fig. 1d). Then, in order to calculate the probability 
distribution of the synaptic state, we approximated the density function of w using the Boltzmann distribution 
of ∆w, by assuming that change of w can be approximated as a binary random-walk process with noisy inputs as

β− ∆~p e , (2)w( )2

The estimated model probability distribution predicted that each synapse in the SR model converges to ‘0’ 
or ‘1’, while in the AR model it converges to 0.5. (Fig. 1e,f, colored lines). We verified this theoretical prediction 
with a model simulation of a single synapse (see Methods for details). In the simulation, an input neuron was 
connected to an output neuron and the two neurons were driven by 10 Hz random Poisson spike trains. Then 
spike pairs were generated randomly to input and output neurons for LTP and LTD, and the synaptic weight was 
updated by a given STDP rule. As a result, the simulated probability density function well matched the theoretical 
predictions (Fig. 1e,f, histograms). To summarize, each synapse in the SR model is stable at ‘0’ or ‘1’, while in the 
AR model, it is stable at 0.5. Due to this difference in instability profile in the learning rule, the SR model will try 
to retain synaptic weights located at ‘0’ and ‘1’, thus preserving memories well. On the other hand, synapses in the 
AR model will try to converge at 0.5, thus tending to erase stored memory.

Both symmetric and asymmetric learning rate models can learn input spike patterns.  Using 
MATLAB, we constructed a model neural network where both input and output layers were composed of 50 
leaky integrate-and-fire model neurons (Fig. 2a). Feedforward connections between the two layers were mod-
elled as sparse-and-random synaptic connections, with connection probability of 0.2 between all pairs of input 
and output neurons. Next, as a simulation of arbitrary information given to the system, we designed “input spike 
patterns” consisted of 50 input neurons with a 100 ms time window. Every 50 input neurons fired exactly once 
with random timing within 100 ms such that the firing rate of each neuron was 10 Hz (Fig. 2b). Throughout the 
study, we used this temporal spike pattern to train our model network. As a simulation of learning and memory 
processes, we generated the same input patterns 1000 times (100 s in total) to train the network (Fig. 2c). The syn-
aptic weight of each connection was updated using the STDP rules of either asymmetric or symmetric learning 
rate. For consistency between asymmetric and symmetric learning rate model simulations, all the parameters 
including the structure of random initial connectivity, synaptic weights, and input patterns were kept identical 
so that the difference in output activity was induced only from different learning rate profiles (Fig. 1b,c). After 
the pattern training process, in both the AR and SR models, we observed that the synaptic weights had bimodal 
distribution, similar to other traditional STDP learning systems16, 35 (Supplementary Fig. 1).

After training session of each network, we tested to see if the trained pattern was memorized so that the 
network could selectively respond to the pattern (Fig. 2d). We observed that both asymmetric and symmet-
ric learning rate model networks could induce a consistent output spike pattern for the trained input; thus 
could distinguish the trained and untrained input patterns (Fig. 2e). To evaluate quantitatively how consist-
ently the network responded to each trained pattern, we measured the “memory index” as an averaged pair-
wise cross-correlation between binary patterns of output firings for repeated trials (see Methods for details). 
As a result, for both asymmetric and symmetric learning rate models, the memory indices for trained pattern 
were significantly higher than those of untrained patterns, or randomly-ordered series of patterns (Fig. 2f and 
Supplementary Fig. 2) (Mann-Whitney U-test, p < 10−16 for both AR and SR models). We repeated the same 
simulation with different initial weights and confirmed that the trained and untrained patterns were consistently 
distinguishable regardless of the initial conditions (Supplementary Fig. 3). This result indicates that both learning 
rate models are capable of training networks to memorize and identify temporal spike patterns.

Then, to investigate how the trained output pattern varies depending on the input pattern36, we examined var-
iation in the response pattern of the output neurons, which indicates a set of neurons consistently respond (above 
80% chance) to a trained input (Fig. 2d, output pattern). We extracted 100 “output patterns” from 100 different 
input patterns, and calculated the pairwise correlations within 100 output patterns (Fig. 2g). Then, the distribu-
tion of pairwise correlation across different inputs was compared to that within the same input. In both the AR 
and SR models, we found that the response correlation for different inputs (Fig. 2h, orange) was significantly 
lower than that for same inputs (Fig. 2h, blue) (Mann-Whitney U-test, p < 10−16 for both AR and SR models). 
Therefore, we concluded that output patterns after training for different inputs are readily distinguishable in our 
model, whereas output patterns after training for the same inputs are fairly consistent.

Symmetric learning rate model can form stable memory.  The amount of memory decaying over 
time is a distinct factor in determining the degree of memory stability12. To test the decaying characteristics of 
each model after training with a particular input pattern, we introduced a 5-Hz Poisson noise input to the net-
work as simulation of spontaneous neural activity in the network (Fig. 3a, decaying session). During the decaying 
session, we measured the memory index for every 100 s, to estimate the temporal degradation of memory (Fig. 3a, 
test session). As a result, we observed that the responses of the AR model after the decaying session were notice-
ably disturbed, indicating that the stored memory pattern was being erased, while that of the SR model remained 
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nearly intact (Fig. 3b). Thus, the estimated memory index of the AR model decreased significantly whereas the SR 
model did not show a noticeable drop in the index.

To quantify how much the initial memory was being preserved at each moment during the decaying session, 
we investigated the time-course of the memory index change (Fig. 3c). As expected, the memory decay over 
time appeared significant only in the AR model where the initial value of memory index quickly dropped as 
soon as the noise was introduced. Then we calculated the ratio of indices before the decaying session (MI0) and 
after 800 s of decaying (MI800). The ratio of the SR model, MI800/MI0 = 0.8848 was significantly higher than that 
of the AR model, 0.2452 (Mann-Whitney U-test, p < 10−16). We repeated the same simulation under different 
conditions of noise level, and confirmed that the observed difference between the AR and SR models was fairly 
consistent (Supplementary Fig. 4). To investigate how the SR model preserves old memories at the synaptic level, 

Figure 2.  Asymmetric learning rule (AR) and symmetric learning rule (SR) models for volatile/non-volatile 
memory: (a) A feedforward network model for memory: Input neurons (Nin = 50) were sparsely connected 
to output neurons (Nout = 50) with connection probability of 0.2. (b) Model input spike patterns: Each input 
neuron generates a spike at random timing within a 100-ms window. (c) Memory training and test scheme: 
In training sessions, a particular input pattern (P1) is fed into a network 1,000 times, for 100 s. (d) In each test 
session, the consistency of network response for trained and untrained patterns were estimated for 20 repeated 
inputs of identical patterns. (e) Response consistency of AR and SR models after training for one input pattern: 
Both AR and SR systems generated consistent firing patterns for trained input patterns, and inconsistent 
patterns for untrained input patterns. (f) Memory performance of the AR and SR models for 100 input patterns: 
Both AR and SR networks showed significantly higher memory indices for trained input patterns than for 
untrained input patterns (Mann-Whitney U-test: *p < 10−16, n = 100). Error bars represent the standard 
deviation. (g) To examine how the trained output pattern varies depending on the input pattern, 100 identical 
networks were trained from 100 different input patterns. The output pattern for each input was measured, 
and then pairwise correlations between them were calculated. (h) Distribution of the pairwise correlation for 
different and same inputs. The response correlation for different inputs (orange) was significantly lower than 
that for the same inputs (blue) in both AR and SR cases (Mann-Whitney U-test: *p < 10−16, n = 4950).
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we examined synaptic weight changes during the decay process (Supplementary Fig. 5). During the decaying ses-
sion, a bimodal distribution of the synaptic weights was sustained in the SR but not in the AR model. Given that 
synaptic weights hold memory information in this system, sustained bimodal weights in the SR model would be 
more likely to preserve old memory. Overall, these results indicate that the SR model can encode non-volatile or 
stable memory, while the AR model encodes more volatile or flexible memories.

Symmetric learning rate model can append new memories.  The ability to collect multiple memories 
is also a crucial feature of stable memory. For this, newly appended memories must not degrade previously stored 
memories. To test if this memory accumulation can be achieved in our models, both AR and SR networks were 
trained with multiple input patterns provided consecutively (Fig. 4a). First, we trained the network to memorize 
a pattern P1 for 100 s (training session), then we retrained the network with another pattern P2 (appending 
session). We tested the memory performance of the network response to P1 and P2, for every 100 s during the 
appending session. We first observed that both asymmetric and symmetric rate models showed a consistent 
response pattern for P2 after appending, confirming that the pattern P2 was memorized (Fig. 4b, bottom). In 
the AR model, however, the network response to P1 was noticeably altered, indicating that the previously stored 
memory was disturbed by the newly appended memory (Fig. 4b, top left). On the other hand, in the SR model, 
the response activity to pattern P1 was observed to be consistent even after appending (Fig. 4b, top right), sug-
gesting that the information of both P1 and P2 was memorized in the circuit. For further quantitative analysis, we 
measured the instantaneous values of memory index, for every 100 s during the appending session (Fig. 4c). As 
expected, the memory index for P1 in the AR model decreased rapidly as soon as the training of P2 started, while 
that in the SR system changed only slightly.

We repeated the same test for multiple inputs. We sequentially gave seven different input spike patterns, each 
for 200 s, to both the AR and SR models. Then we assessed the memory index of each pattern during training 
(Fig. 4d). In the AR model, the trace of old patterns rapidly decayed, to be replaced by newly appended mem-
ories. The memory index of the pattern P1 after appending six different new patterns (P2-P7) was markedly 
reduced (Fig. 4d, left and Fig. 4e, left). The condition became indistinguishable from that of an untrained pat-
tern (Mann-Whitney U-test, p = 0.2232). On the other hand, in the SR model, the memory of old pattern was 
preserved. The memory index of the pattern P1 after training of P2–P7 was reduced to some extent, but still 
significantly higher than that for untrained input (Mann-Whitney U-test: *p < 10−16) (Fig. 4d, right and Fig. 4e, 
right). Therefore, we confirmed that the memory of P1 in the AR model was lost after training with new patterns, 
whereas the memory of P1 remained after the accumulation of new memories in the SR system. This also indi-
cates that the memory in the SR model network cannot be easily erased, because it will accumulate all the input 
patterns that the capacity of the system allows. To investigate how memories are allocated in the synapses of the 
network during this process, we measured the ratio of synaptic weight, which converges to ‘0’ or ‘1’, and indicated 
the information contained (Supplementary Fig. 6). As the number of appending patterns increased, in the SR 
model, the ratio of synaptic weights converged to either ‘0’ or ‘1’ monotonically increased, while the ratio of con-
verged weights of AR model remained constant (≈0.4) through appending session. This result shows that, in the 
SR model, new inputs were stacked in available synapses that did not contain previous information, while in the 
AR model, new inputs were overwritten on synapses storing previous memories.

Linear combination of two learning models generates a hybrid memory.  Next, we tested to see if 
we could create a different type of memory system by combining the AR and SR models. For this, we linearly inte-
grated two STDP kernels, taking the weighted summation of the asymmetric and symmetric learning rate profiles 
(Fig. 5a), with a parameter α as the proportion of symmetric rate STDP in the linear combination. By regulating 
α, we could control the properties of new memory, making them closer to AR (α = 0) or SR (α = 1) models. As a 

Figure 3.  Comparison of AR and SR models for decaying by noise (a) Test scheme of memory decay: After 
100 s of training, 5-Hz Poisson spikes were introduced to the networks for 1000 s to erase the stored memory. 
In decay sessions, we estimated the memory index every 100 s. (b) Response of AR and SR models after 1000 s 
of decay: The response pattern of the AR model became inconsistent output firing after the decay session, while 
the SR model showed consistent output firing even after decaying. (c) The time course of the memory index 
during the decay session: Memories in the AR model decayed rapidly, while those of the SR model did not show 
noticeable decay. The memory index ratio (MI800/MI0) of SR was significantly higher than that of AR (Mann-
Whitney U-test: *p < 10−16, n = 100). Shaded area and error bars represent the standard deviation.
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result, for 0 < α < 1, we could create a new type of memory that decayed slower than AR but faster than in the SR 
model, and that had an intermediate feature of memory appendability between that in the AR and SR models. We 
refer to this type of memory as “hybrid memory.”

First, to examine the decay properties of a hybrid memory (α = 0.5), the network was tested in a decaying 
session (5 Hz Poisson noise, 1000 s) after training of an input pattern, as previously. Once every 100 s during 
the decaying session, we measured the memory index. As expected, the hybrid network showed intermediate 
characteristics in the memory decay test: the stored memory decayed faster than in the SR, but slower than in the 
AR models (Fig. 5b). In addition, as α increased, the ratio of the memory indices, MI800/MI0 increased linearly 
(Fig. 5c). This suggests that the transition from AR to SR model could be continuous.

Figure 4.  Comparison of AR and SR models for appending new memories: (a) Test scheme for appending 
memory: After 100 s of training with pattern P1, another input pattern P2 was trained for 500 s to test the 
ability of each model to append memory, and the memory indices for P1 and P2 were measured before and 
after each appending session. (b) The response of each model to old and new input patterns: The AR model 
lost P1 memory after appending P2 (left), while the SR model did not lose P1 memory even after appending 
new memory (right). (c) Memory index change during appending session: In the AR model, the memory 
index for the old pattern (P1) decayed fast as the memory of the new pattern (P2) formed. In the SR model, 
the memory index for P1 slightly decreased but was kept as high as that of the newly formed memory of P2 
(Mann-Whitney U-test: *p < 10−16, **p < 10−4, ***p < 0.01, n = 100). (d) Memory index change for appending 
multiple patterns: Different temporal patterns (P1-P7) were sequentially introduced to the model networks: In 
the AR model, old memories rapidly decayed as soon as new patterns were introduced. In the SR model, both 
old memories and new memories were kept together, well above the response level for the untrained inputs. (e) 
P1 memory index after appending six new patterns. In the AR model, the memory index of P1 was remarkably 
decreased, indistinguishable from that of an untrained pattern (Mann-Whitney U-test, p = 0.2232, n = 100). 
On the other hand, in the SR model, the memory index of the P1 after training was still significantly higher 
than that of an untrained input (Mann-Whitney U-test: *p < 10−16, n = 100). Error bars represent the standard 
deviation.
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Figure 5.  A hybrid memory model: (a) Hybrid learning rule was defined as the weighted sum of AR and SR 
models, and the portion of SR was denoted by α. (b) Temporal decay of the memory in the hybrid model was 
tested as in Fig. 3c. The hybrid model with α = 0.5 showed intermediate characteristics between the AR and SR 
models (orange line). The error bars represent the standard deviation for 100 trials. (c) Modulation of memory 
decay for various values of α: As α increased, the ratio of memory indices (MI800/MI0) increased linearly, 
suggesting that the characteristics of the hybrid model make a linear transition from the AR to the SR model. 
(d) The decay of old memory with newly appended memory in the hybrid model was tested as in Fig. 4c. The 
memory index in the hybrid models with α = 0.5 and 0.99 were intermediate values between those of the AR 
and SR models, but showed nonlinear transition as α varied. (e) The proportion of old memory was maintained 
as α varied: As α increased from 0 to 0.99, the ratio of memory indices (MI800/MI0) increased linearly. After this, 
the ratio abruptly increased as α changed from 0.99 to 1 (Wilcoxon signed rank test: *p < 10−9, n = 100). The 
data point at α = 1 was excluded from the linear regression (dashed line). The error bars represent the standard 
deviation.
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Similarly, we also examined the memory appending feature of the hybrid model. With models of various α, 
we trained the network with a pattern P1 for 100 s, and then trained with another pattern P2 for 1000 s, while 
estimating the memory indices of pattern P1 for every 100 s. Different from the memory decay feature, the hybrid 
memory showed a nonlinear transition from AR to SR model. As we increased α from 0 to 1, the profile of the 
memory index of the seed pattern P1 in the hybrid memory model, differed only slightly from that of the AR 
model, up to a fairly high value of α (≈0.9) (Fig. 5d). For a very high value of α (near 1), the profile of the memory 
index suddenly transitioned to that of the SR model (Fig. 5d, α = 0.99). To examine this transition quantitatively, 
we measured the ratio of memory indices MI800/MI0 while varying α. As α increased from 0 to 0.99, MI800/MI0 
slightly increased, but suddenly spiked when α increased from 0.99 to 1 (Fig. 5e, Wilcoxon signed rank test, 
p < 10−9). This implies that, the memory appending feature may not be consistent with the memory decaying 
feature in the model. For quantitative analysis on this nonlinear transition for varied α, we fitted each decay curve 
in Fig. 5b,d to an exponential function and examined the fitted parameters (Supplementary Fig. 7). As a result, we 
found that the decay rate, amplitude, and asymptote of the fitted curves showed a linear change for α < 0.9, and 
then spiked nonlinearly, near α = 1. Therefore, we concluded that the hybrid model showed a linear transition 
in its memory feature in a large regime of parameters, and became nonlinear only near α = 1 (like the pure SR 
model), which showed a stable memory characteristic.

Discussion
In this study, we introduced our hypothesis that the stability profile of the synaptic learning rule would determine 
the characteristic of a memory stored in a neural network, and showed that our simulated results supported this 
idea. The SR model retained encoded memories without being affected by noise or new memories and did not 
lose its ability to learn new information. On the other hand, the AR model continuously replaced stored memo-
ries with newly encoded inputs, and the hybrid model showed intermediate properties between those of the SR 
and AR models. In the current study, we focused on comparing SR and AR models to illustrate our theoretical 
idea regarding the effect of the synaptic stability and the STDP profile on memory function. However, these mod-
els are two extreme cases of our conceptual model, whereas the most generalized form of our theoretical model 
is the hybrid case with characteristics of both models. In addition, considering that (1) stability and flexibility are 
both basic properties of memory circuits, (2) the relative degree of stability and flexibility may vary from circuit 
to circuit, we may also suggest that our hybrid model is a reasonable design for describing memory characteristics 
of various circuits. For these reasons, we suggest that the hybrid model is the most realistic form of STDP that we 
may expect to observe in the experimental data. Various local neural circuits involved in memory function may 
have different properties in terms of stability and flexibility. This can be readily assessed by our hybrid model, and 
an experimental study may be able to observe various STDP profiles in local circuits, providing a good match to 
our hybrid model. In addition, these results may account for the mechanism of selectively controlled memory 
storage in the brain that, in turn, allows adaptation to both fast-changing and long-lasting environments.

One promising candidate with which to test this idea is the basal ganglia system, where flexible and stable 
value information is coded distinctively in the caudate nucleus subregions14, 15. Previous studies reported that 
flexible and stable value information are coded distinctively in the caudate nucleus subregions: the caudate “head” 
responded to flexible values, whereas the caudate “tail” was more sensitive to stable values. More interestingly, 
the neurons in the caudate “body” responded to both flexible and stable values in a mixed manner. This finding 
implies that fast-changing and long-lasting memories can potentially be formed in very similar neural circuits, 
and our model can provide a plausible explanation for the formation of flexible and stable memories within local 
neural circuits. This experimental observation can be readily reproduced in our model network in which the 
STDP learning rate symmetry profile gradually varies depending on where a neuron is located in the caudate 
nucleus. Using a hybrid STDP model, even the intermediate memory property of the caudate “body” can be 
readily realized.

Our finding that STDP symmetry is a potential key determinant of memory type can be explained in terms of 
synaptic strength stability. A number of theoretical circuit studies propose that distribution of synaptic strength 
tends to become bimodal during learning16, 35, 37, 38, and that the bimodally converged synapses are thought to play 
an important role in memory storage. In our model simulations, we confirmed that synapse strengths converged 
to either minimum or maximum value during the learning process, indicating that information is stored in these 
converged synapses (Supplementary Figs 1 and 3). In the SR model, the weight of a synapse is bi-stable at its min-
imum and maximum due to its stability profile; thus, a converged synapse cannot easily escape from its converged 
weight value (Supplementary Fig. 5). Notably, the network can store new information until every single synaptic 
connection is converged to minimum or maximum, and thus the number of available synaptic connections in 
the network will determine the memory capacity of the system. On the other hand, due to the synaptic stability 
profile of the AR model34, 35, 39, converged synapse strength could easily decay toward the mid-range value of 
weight by noise or other inputs, similar to the decay of stored memory in previous simulation studies on memory 
lifetime40, 41.

It is also notable that, even though we used a spike-pair-based model, our model does not require any particu-
lar type of STDP model. Our model idea is simply that memory performance depends on the STDP instability 
profile, regardless of the specific details of the type of STDP model. For this reason, we chose the spike-pair-based 
model as the simplest form of STDP, but adequate to generate different profiles of synaptic stability. We confirmed 
that our main result is consistent even with different types of STDP models such as the voltage-based model 
(Supplementary Fig. 8), as long as the profile of synaptic stability is designed similarly.

One of the distinctive features of our simulation is that the measured memory performance in terms of con-
sistency of output spike pattern, which is assumed to be the formation of a memory engram, was compatible with 
previous observations. In fear-conditioning experiments8, 42, a consistent formation of neural firing pattern was 
reported in mice that showed well trained freezing behavior. Thus, in our model, a consistent firing pattern of 
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output neurons approximates the selective firing of neurons or the structure of an engram in the hippocampus 
or lateral amygdala. In this way, we could quantitatively simulate the process of memory formation, decay and 
modulation, in terms of firing pattern consistency, and could also estimate the “sustainability” and “appendabil-
ity” of stored memory.

Although we successfully showed the characteristics of memories formed with different STDP learning rate 
profiles, a number of additional studies ought to be conducted to confirm the biological validity of the model. 
Firstly, for simplicity, the model network used in this study does not contain any inhibitory interactions. Probably, 
lateral inhibition plays a crucial role in competition between neuronal assemblies during memory formation43–45. 
Although we focused on the effect of different STDP learning rate symmetry in the current study, we will extend 
our work to consider a more complete scenario on the mechanism of dynamic memory formation by including 
lateral inhibition, neural competition and synchronized neural activities. Secondly, in the simulations, we intro-
duced some amount of noise fluctuation in the neural membrane potential which facilitated spike generation in 
the initial stage of learning by stochastic resonance. Stochastic resonance allowed initiation of synapse strength 
modulation by STDP that required output spikes induced by input spikes. Considering the fact that the amplitude 
of noise used in our simulation was higher than that reported in experiments46, noise may not be the only source 
of initiation of synaptic modulation. For example, another possible candidate is spontaneous gamma oscilla-
tion47–49, commonly observed across various brain regions. It is known that the amplitude and phase of gamma 
oscillation can be dynamically modulated by various network properties, such as theta frequency rhythm or local 
inhibition level. Therefore, we believe that the introduction of spontaneous gamma oscillation to the network 
may play a role in the initiation of spike-timing-dependent synaptic modulation by stochastic resonance, as well 
as dynamic control of learning and memory. Realization of this scenario will also be an important part of our 
follow-up studies. Lastly, in this case we manually balanced the network activity, but doing so was limited to a 
specific range of input firing rates. In order to make the system stable for any arbitrary input, we believe a home-
ostatic plasticity mechanism50 should be applied to the system in future studies.

Although one of the key components of our model, the symmetric learning rate profile, is yet to be explicitly 
observed in experiments, our results can still be valid not only with SR and AR models, but with any other plas-
ticity model that could generate a stable and an unstable condition of learning. The bottom line of the SR model 
is that the synapses become stable as synaptic strength becomes either very strong or very weak. This condition 
can be achieved by various factors, such as neuromodulator that affects to LTP and LTD simultaneously51, 52, 
gain modulation or controlled excitability53 by feedback loop that temporally inhibits spike generation of target 
neurons with recently strengthened synapses. These scenarios can be validated experimentally, based on our 
theoretical prediction.

Overall, we propose a simple but powerful model that explains important features of memory formation. We 
believe that our model can shed light on the study of how memory is formed, erased and controlled.

Methods
Single Neuron Model.  All simulations were performed using MATLAB codes. For a single neuron sim-
ulation, we used a leaky-integrate-and-fire neuron model. The membrane voltage of neuron j at time t can be 
updated by:

= − + − +( ) ( )C
dV t

dt
g E V t g t E V t I

( )
( ) ( ) ( ) , (3)

j
L L j j syn j noise

where C is membrane capacitance, gL is leak conductance, EL is resting potential, and Esyn is reversal poten-
tial. We used the commonly accepted values for physiological parameters (C = 1 μF, gL = 0.4 μS, EL = −65 mV, 
Esyn = −5 mV, dt = 1 ms). A Gaussian noise current, Inoise is given to each neuron with mean 0 and standard devi-
ation 1.2 nA. Voltage gated channel conductance gj is determined by the following equation

∑τ
= − +

∈

dg t

dt

g t
c w S t

( ) ( )
( ),

(4)
j j

syn
syn

i input
ij i

where Si(t) denotes the spike train of presynaptic neuron i, and wij means synaptic weight between pre- and 
post-synaptic neuron. Time constant τsyn determines the decay speed of EPSP and csyn implicates the size of 
the excitatory postsynaptic conductance evoked by an input spike. When Vj reaches Ethreshold = 55 mV, an action 
potential is generated immediately and Vj is reset to resting potential EL. We used the commonly accepted values 
for these parameters (τsyn = 3 ms, csyn = 0.12 μS ms−1, dt = 1 ms).

Mathematical Model of Synaptic Plasticity.  The update of the synaptic weight is determined by the 
spike timing interval Δt = tpost − tpre as in the following equations:

ε

ε
∆ =

⋅ ∆ >

⋅ ∆ ≤

τ

τ

+ +
−∆

− −
−∆

+

−

w
w k e t

w k e t

( ) 0, LTP

( ) 0, LTD (5)
ij

ij
t

ij
t

where k and τ are parameters that determine the amplitude and decay of STDP kernel, and ε+(w) and ε−(w) 
denote weight-dependent learning rates for positive and negative values of Δt. We set k+ = 0.06, k− = −0.09, 
τ+ = 3 ms, τ− = 15 ms. To make w stay in range wmin < wij < wmax, we implemented three different learning rate 
profiles: asymmetric (AR), symmetric (SR), and hybrid. The AR model, frequently called the multiplicative learn-
ing rate34, 35, is defined as
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ε

ε

= −

= −
+

−

w w w
w w w

( )
( ) (6)

AR ij ij

AR ij ij

max

min

where wmax = 1 and wmin = 0. In this model, the weight change (Δw) is maximum at w = 0 for LTP and w = 1 for 
LTD.

On the other hand, the SR model uses a two-sided, linear-bound method as in

ε ε= = ⋅ − −+ −w w w w w w( ) ( ) 2 min( , ) (7)SR ij SR ij ij ijmax min

The hybrid model uses a linear combination of εAR and εSR as

ε αε α ε α= + − < <w w w( ) ( ) (1 ) ( ), 0 1, (8)HY ij SR ij AR ij

where α denotes the proportion of the symmetric rate STDP rule.
The synaptic instability (Fig. 1d) was defined as

∑ ε ε= ∆ ++ −~Synaptic instability w( ) ( ) ( ) , (9)2 2 2

The learning rates of LTP and LTD were estimated separately, due to the asymmetry of the AR model.
The probability density function of w was approximated using the Boltzmann distribution of ∆w, by assuming 

that change of w can be approximated as a binary random walk process with noisy inputs as

β− ∆~p e , (10)w( )2

Model Simulation of a Single Synapse.  We designed a single synapse model that consisted of one 
presynaptic neuron, one postsynaptic neuron, and their connection (Fig. 1e). The synaptic weight between 
the pre- and postsynaptic neuron was initialized to a random value between ‘0’ and ‘1’. Two neurons were 
driven by 10 Hz random Poisson spike trains for 1000 s. Then spike pairs to the input and output neurons for 
LTP and LTD were generated randomly, and the synaptic weight was updated by the given STDP rule, either 
AR or SR. We examined the probability distributions in 10,000 trials of how weights changed after sufficient 
time (1000 s).

Model Neural Network.  In this study, the model network we used consists of two layers, 50 excitatory 
input neurons, and 50 output neurons, with sparse random feedforward connections. The connection probabil-
ity between each input and output neuron was set to 0.2. Initially, the synaptic weights or connection strength 
between input and output neurons were randomly sampled from normal distribution, with mean 0.5 and stand-
ard deviation 0.05.

Model Input Pattern for Memory Training.  To train the network, we designed “input spike patterns” 
consisting of 50 input neurons with a 100 ms time window. Every 50 input neurons fired exactly once with a ran-
dom timing within 100 ms such that the firing rate of each neuron was 10 Hz. Training for each pattern was done 
for 100 s by feeding 1000 successive identical patterns with no delay.

Test of Memory Performance.  To confirm the network had “memorized” a trained pattern, we tested 
the response of the network with a trained and an untrained pattern. Each test input pattern was given repeat-
edly (20 times), and we represented firings of output neurons as a binary number—if it fires at least once, then 
‘1’—to simply indicate if a neuron is involved in the memory pattern. Even if an output neuron fired more 
than once per trial, we counted it as ‘1’ (fire). When there was no firing at all during one trial, we counted 
it as ‘0’ (not fired). Then we calculated the memory index from these 20 binary response vectors. The mem-
ory index was defined as the average pairwise cross-correlation between output neuronal firing for repeated 
inputs as

∑=
⋅

∈
MI

N
S S
N

1 ,
(11)pair m n

m n

firing, [1:20]

where Sm denotes the mth binary vector of output firing, Npair is the number of all possible pairs, 20C2 = 190, and 
Nfiring is the number of output neurons fired at least once during 20 repetitions of input. Thus, the memory index 
is normalized in the range from 0 to 1.

Test of the Variation of Output Pattern.  To examine how the output pattern varies depending on the 
input pattern, we defined the “output response pattern” as a set of neurons that consistently (above 80% chance) 
respond to a trained input. Thus, this “output pattern” represents a set of neurons involved in memory after 
the training. We compared this output pattern within the same input and across different inputs. From “100 
different input patterns” and “100 same input patterns”, we trained the 100 identical networks and got 100 
output patterns in the form of binary vectors. Then we calculated the pairwise correlations within 100 output 
patterns (total 4950 pairs). The response correlation “within the same input” and “across different inputs” was 
compared (Fig. 2h).
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Test of Memory Decay.  To simulate the temporal decay of memory with background noise, a 5-Hz Poisson 
random spike train was given to the trained network for T seconds. To quantify the amount of memory main-
tained in the network, the ratio between the memory index at t = T and at t = 0 was estimated as

= =

=

MI
MI

Maintained memory ratio ,
(12)

t T

t 0

where t denotes the time in the decay session.
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