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Background. +ere is a poor prognosis for diffuse large B-cell lymphoma (DLBCL), one of the most common types of non-Hodgkin
lymphoma (NHL). +rough gene expression profiles, this study intends to reveal potential subtypes among patients with DLBCL by
evaluating their prognostic impact on immune cells. Methods. Immune subtypes were developed based on CD8+ T cells and natural
killer cells calculated from gene expression profiles. +e comparison of prognoses and enriched pathways was made between immune
subtypes. Following this validation step, samples from the independent data set were analyzed to determine the correlation between
immune subtype and prognosis and immune checkpoint blockade (ICB) response. To provide a model to predict the DLBCL immune
subtypes,machine learningmethodswere used.+e virtual screening andmolecular dockingwere adopted to identify smallmolecules to
target the immune subtype biomarkers. Results. A training data set containing 432 DLBCL samples from five data sets and a testing
dataset containing 420 DLBCL samples from GSE10846 were used to develop and validate immune subtypes. +ere were two novel
immune subtypes identified in this study: an inflamed subtype (IS) and a noninflamed subtype (NIS).When compared with NIS, IS was
associated with higher levels of immune cells and a better prognosis for immunotherapy. Based on the random forest algorithm, a robust
machine learningmodel has been established by 12 hub genes, and the area under the curve (AUC) value is 0.948.+ree small molecules
were selected to target NIS biomarkers, including VGF, RAD54L, and FKBP8. Conclusion. +is study assessed immune cells as
prognostic factors in DLBCL, constructed an immune subtype that could be used to identify patients who would benefit from ICB, and
constructed a model to predict the immune subtype.

1. Introduction

DLBCL, responsible for nearly 40% of non-Hodgkin lym-
phoma, is a hematological cancer of B cells [1, 2]. Data on the
global epidemiology of DLBCL are scarce, but it is estimated
that 7 out of 100,000 people in America suffer from this
disease [3]. For patients with DLBCL, chemotherapy agents
are the first treatment choice [1]. Although about 65% of
DLBCL patients could survive longer than 5 years [4], more
than 30% of DLBCL patients still suffer from relapse and
ineffective chemotherapy agents [5]. Considering that there
are limited treatment options [6], key biomarkers and
therapeutic targets are urgently needed.

Recent studies have revealed that the tumor microenvi-
ronment (TME) plays a critical role in tumor initiation/pro-
gression and response to therapies [7]. Among the components
of TME are tumor cells, stromal cells, extracellular matrix, and
immune cells such as T cells [8]. As DLBCL is a result of ab-
normal B-cell development, its malignant cells may also con-
tribute to the dysregulated TME by altering those cytokines that
normally control proliferation [9]. As an example, about 30% of
DLBCL samples exhibited the loss of HLA-I and CD58 on the
surface, which are crucial in the recognition ofmalignant cells by
T cells and natural killer cells [10]. +e analysis of TME could
explore the relationships of its components with prognosis,
making treatment planning in DLBCL more personalized.
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PD-L1-positive malignant cells can suppress immune
surveillance through a variety of mechanisms, one of which
involves the decreased T-cell activity by the PD-1/PD-L1
pathway [11]. Compared with the PD-1-negative subgroup,
the DLBCL subgroup with PD-L1+ has an unfavorable
prognosis and a reduced overall survival (OS) [12]. An
evaluation of the efficacy of pembrolizumab (PD-1 antibody)
in combination with R-CHOP in untreated patients with
DLBCL demonstrated a 90% overall response rate and a 77%
complete response rate. [13]. An additional study revealed
that out of five relapsed DLBCL patients, two of them
achieved complete remissions through anti-PD-1 therapy
and one of them achieved partial remission through anti-
PD-1 therapy [14]. +ere are currently several monoclonal
antibodies being developed and evaluated for the treatment
of DLBCL that target the PD-1/PD-L1 pathway [5].

Using 432 samples of DLBCL collected from five data
sets in the current study, we identified two immune sub-
types. In the training and testing data sets, we have analyzed
the association between immune subtypes and prognosis,
immune cells, and immune pathways. Using the random
forest algorithm, 12 genes were selected for the construction
of the machine learning model to predict immune subtypes
for patients with DLBCL. +e machine learning model was
further tested through the use of an independent data set.
We constructed a 12-gene panel to predict the prognosis of
DLBCL patients and validated the prediction using a vali-
dation data set of DLBCL patients.

2. Materials and Methods

2.1. Data Collection and Identification of Immune Subtypes.
+e training set consisted of 432 DLBCL samples and
GSE11318 (N� 37) [15], GSE21846 (N� 29) [16], GSE23501
(N� 69) [17], GSE32918 (N� 249) [18], and TCGA-DLBCL
(N� 48). For the validation of immune subtypes, the 420
DLBCL samples fromGSE10846 were chosen as the data set to
use for testing [19]. A summary of the demographic data of
these DLBCL samples is listed in Table 1.+e effect of immune
subtypes on immune checkpoint blockade (ICB) response was
studied using 65 tumor samples from GSE35640 [20]. All of
these samples were retained, including the RNA expression
matrix, clinical parameters, and survival data.+emutations of
DLBCL samples from TCGA-DLBCL were downloaded from
the R package “TCGAmutations”. Tumor mutational burden
(TMB) was calculated by dividing the number of non-
synonymous mutations by 38, where 38 is the estimate of the
exome size. By using the “GSVA” package, the proportion of 28
types of immune cells was obtained by the expression matrix
[21]. According to the values of natural killer cells as well as
CD8 T cells, immune subtypes can be determined.

2.2. Differentially Expressed Gene (DEG) Identification and
Gene Set Enrichment Analysis (GSEA). We determined the
log2FoldChange (FC) values between the inflamed subtype
(IS) and noninflamed subtype (NIS) in each training data set
using the R language package “limma” [22]. +en, according
to p value< 0.05 and |log2FoldChange|> 0.5 as the

threshold, we used the “RobustRankAggreg” package to find
the common and robust DEGs between NIS and IS samples
[23]. +e package RobustRankAggreg (RRA) could detect
genes and proteins that rank consistently better than ex-
pected. It could also calculate a significance score for each
gene/protein. +is method was found to be robust to out-
liers, noise, and errors [23].+is method was also extensively
investigated and used for selecting DEGs in previous articles
[24, 25]. In addition, we performed the enrichment analysis
according to the log2FoldChange value of robust DEGs. +e
parameters of GSEA analysis were set as “minSize� 1”,
“maxSize� 1000”, and “nperm� 500”.

2.3. Gene Selection by Cox Regression Analysis and Random
Forest. A univariate Cox regression analysis was performed
on the expression profiles of robust DEGs to identify
prognostic genes, and immune subtype-related biomarkers
were selected from robust DEGs by a cut-off of p value
< 0.05 in the univariate Cox regression analysis. Random
forest was trained in each training dataset to calculate the
importance value of each gene. +e top 5 downregulated
genes and top 5 upregulated genes with the highest mean
value of importance were selected.

2.4. �e Construction of the Immune Subtype Classifier.
+ree machine learning algorithms were used in this study,
including random forest (RF), support vector machine
(SVM), and artificial neural network (ANN). An automatic
tuning process was used to adjust the parameters in a 5-fold
cross-validation loop. In each loop, parameter values were
chosen using a random search with 15 iterations, and model
performance was assessed. +e best classifier was selected by
the area under the curve (AUC) value from 5-fold cross-
validation. +e prediction performance was further evalu-
ated by the AUC value from the testing data set.

2.5. Statistical Analyses. R language software was used to
analyze the data. +e difference in continuous data across
groups was analyzed using the t-test. +e Kaplan–Meier
(KM) and log-rank analyses were used to analyze survival
curves. In this study, p value < 0.05 was considered to be
statistically significant.

2.6. Molecular Docking. Virtual screening and molecular
docking were computational methods to identify potential
small molecules that could target proteins [26]. A list of 1604
small-molecule drugs approved by the FDA was selected and
downloaded from the ZINC15 database [27]. +e protein
structures of three selected proteins (VGF, RAD54L, and
FKBP8) were obtained from AlphaFold [28]. AutoDock Vina,
a virtual screening software, was used to select the small
molecule with the lowest binding energy with the protein [29].
+en, AutoDock, a semiflexible molecular docking software,
was used to identify the binding pose of the selected small
molecule with the protein [30]. After molecular docking,
PyMOL software was used to visualize the binding structures
of small molecules and proteins after docking.
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3. Results

3.1. Identification of Immune Subtypes. +e study flow di-
agram is shown in Figure 1. In GSE32918, 12 immune cell
types were protective (Cox coefficient < 0) and 2 immune
cells were hazardous (Cox coefficient > 0, Figure 2(a)). In
GSE11318, natural killer T cells were found to be sig-
nificantly positively related to prognosis. In GSE23501,
immature B cells were found to be significantly positively
related to prognosis. In TCGA-DLBCL and GSE21846,
none of the immune cells had a significant impact on
prognosis. +e immune cell data from different data sets
were then combined. In the combined data set, activated
CD8 T cells, CD56 bright natural killer cells, effector
memory CD8 T cells, natural killer cells, natural killer
T cells, T follicular helper cells, and type 1 T helper cells
had a lower p value (p value <0.01) with prognosis.

As two cytotoxic effector cells of the immune system,
activated CD8 T cells and natural killer cells were chosen
because they have been implicated in cancer immuno-
therapy. An association between the number of natural
killer cells and the number of activated CD8 T cells was
significant in the combined data set (correlation coefficient:
0.41; p value < 0.0001; Figure 2(b)). Using coordinate axes
and diagonal, we obtained two stable immune subtypes: the
inflamed subtype (IS) and the noninflamed subtype (NIS).
Samples from IS had more CD8 T lymphocytes along with
higher levels of natural killer cells that were both above the
diagonal (Figure 2(c)). In contrast, the NIS samples were
below the diagonal and had lower levels of activated CD8
Tcells and natural killer cells. Using K-M analysis, we were
able to determine the correlation between immune sub-
types and survival. +e overall survival of patients in NIS
was significantly shorter than that of patients in subtype IS
(Figure 2(d)). In the testing data set, two immune subtypes
were derived by the same method (Figure 2(e)). +e NIS
and IS were statistically different in terms of overall sur-
vival, with IS having a better prognosis and NIS suffering
from a worse prognosis (Figure 2(f )). Comparing the
percentage of pathological stages between the two immune
subtype groups is not significant (p value � 0.145, Sup-
plementary Table 1).

3.2. Comparison of Immune Cells and Immune Function
among the Immune Subtypes. +e combined training data
set indicated that the IS was more likely to show infiltration
of most types of immune cells, such as T cells in the TME
compared with the NIS (Figures 3(a)). However, B cells
containing activated B cells (p value < 0.01), immature
B cells (p value� 0.01), and memory B cells (p value� 0.63)
were higher in the NIS. For a majority of immune functions,
they were enriched in the IS (Figures 3(b)). But the B cell
receptor signaling was higher in the NIS (p value <0.01),
which is consistent with the results of immune cell infil-
tration. In the testing data set (GSE10846), the same results
were observed. For example, greater levels of most immune
cells (Supplementary Figure 1(a)) and immune functions
(Supplementary Figure 1(b)) were found in the IS. But the
NIS expressed more B cells and B cell receptor signaling than
the IS.

Besides, we also calculated the TMB distribution be-
tween the two immune subtypes (Supplementary Figure 2).
Although the TMB value appears higher in the NIS, the
difference in the TMB value between the two immune
subtypes was not significantly different. +e expression
values of PD-1 and PD-L1 were compared between the two
immune subtypes in each data set. In Supplementary Fig-
ure 3, the PD-1 expression value was found to be signifi-
cantly higher in the IS than NIS at GSE10846, GSE11318,
GSE21846, GSE23501, and GSE32918 (p value < 0.05). In
Supplementary Figure 4, the PD-L1 expression value was
found to be significantly higher in the IS than NIS at
GSE10846, GSE23501, GSE32918, and TCGA-DLBCL (p
value < 0.05).

3.3. Identification of DEGs and Enrichment Analyses. In each
training data set, the log2FoldChange values for each gene
were obtained by using the “limma” package. +us, the
DEGs lists that contained gene names, log2FoldChange
values, and p values were obtained. However, the potential
DEGs that are crucial for DLBCL development will be hugely
reduced if the DEGs lists from different data sets are directly
merged. +us, the RRA method was applied to combine the
results from the five data sets with minimal bias. 2409 DEGs

Table 1: Additional clinical information DLBCL patients from GSE11318, GSE21846, GSE23501, GSE32918, and TCGA-DLBCL.

Clinical information GSE11318
(N� 37)

GSE21846
(N� 29)

GSE23501
(N� 69)

GSE32918
(N� 249)

TCGA-DLBCL
(N� 48)

GSE10846
(N� 420)

Gender

Male (N� 20)

Not available

Male (N� 50) Male (N� 144) Male (N� 22) Male (N� 224)

Female
(N� 17)

Female
(N� 19)

Female
(N� 105) Female (N� 26)

Female (N� 172)
Not available

(N� 24)
Median age (years) Not available Not available 66 69 57 62

Overall survival status Not available

Dead (N� 25) Dead (N� 13) Dead (N� 137) Dead (N� 5) Dead (N� 165)

Alive (N� 4) Alive (N� 56) Alive (N� 112) Alive (N� 43)
Alive (N� 249)
Not available

(N� 6)
Median overall survival
time (months) Not available 18 22 48 13 28
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(1591 upregulated and 818 downregulated) between IS and
NIS were calculated by the RRA method. +e robust DEGs
were plotted in the heatmap according to the log2Fold-
Change value (Supplementary Figure 5).

To obtain the enriched pathways, the GO-BP, GO-CC,
GO-MF, REACTOME, and KEGG enrichment analyses were
applied. For GO-BP analysis, the upregulated genes in the NIS
were related to metabolic pathways such as “catabolic pro-
cess”, “organonitrogen-compound-metabolic process”, and
“cellular catabolic process” (Supplementary Table 2). +e
upregulated genes in the IS were associated with immune
pathways such as “response-to-external stimulus”, “defense
response”, and “positive regulation of adaptive immune re-
sponse” (Supplementary Table 3). For GO-CC analysis, the
upregulated genes in the NIS were related to “cell junction”,
“anchoring junction”, and “nucleolus”.+e upregulated genes
in the IS were associated with “extracellular space” and
“extracellular matrix”. For GO-MF analysis, the upregulated
genes in the NIS were related to “RNA binding”, “Poly-A-
RNA binding”, and “structural molecule activity”. +e
upregulated genes in the IS were associated with “receptor
binding”, “identical protein binding”, “transition metal-ion
binding”, and “cytokine activity”. For KEGG analysis, the
upregulated genes in the NIS were mainly related to “ribo-
some”, “hypertrophic-cardiomyopathy-HCM”, and “adhe-
rens junction”. +e upregulated genes in the IS were
associated with immune pathways “natural-killer-cell-medi-
ated cytotoxicity” and “complement and coagulation cas-
cades”. For REACTOME analysis, the upregulated genes in
the NIS were related to metabolic pathways. +e upregulated
genes in the IS were enriched in immune pathways “innate
immune system”, “interferon-alpha-beta signaling”, and
“chemokine-receptors-bind-chemokines”.

3.4. Gene Selection and Construction of the Immune Subtype
Classifier. A univariate Cox regression analysis was per-
formed to further narrow down the 2409 DEGs. In total, 623
genes were found to be associated with prognosis, 157 of
which were associated with poor prognosis and 466 of which
were associated with good prognosis. +e importance of
these 623 genes was evaluated by using the random forest
algorithm based on the importance evaluator. +e top five
most important genes in GSE11318 were FASLG, CCR5,
GZMK, TMEM155, and GIMAP4 (Figure 4(a)). FGL2,
CPVL, ITK,DUSP3, and FKBP8 comprised the top five genes
in GSE21846 (Figure 4(b)). TNFSF13B, SH2D1A, RARRES3,
CD2, and GZMK ranked as the top 5 important genes in
GSE23501 (Figure 4(c)). In the analysis of GSE32918, LAP3,
RARRES3, GZMK, IL2RB, and FCER1G were the top five
genes involved (Figure 4(d)). +e top 5 genes in the TCGA-
DLBCL were FCER1G, SFXN3, CFB, TNFSF13B, and STOM
(Figure 4(e)). +e top 6 upregulated DEGs with the greatest
mean importance value (GZMK, FCER1G, RARRES3,
TNFSF13B, SH2D1A, and CCR5) and the top 6 down-
regulated DEGs with the highest importance value (VGF,
RAD54L, TTC27, PAQR4, AP1S1, and FKBP8) were chosen
for model creation (Figure 4(f)).

+e expression values of these 6 upregulated (GZMK,
FCER1G, RARRES3, TNFSF13B, SH2D1A, and CCR5) and 6
downregulated DEGs (VGF, RAD54L, TTC27, PAQR4,
AP1S1, and FKBP8) in the IS and NIS from the testing data
set are shown in Supplementary Figure 6. Furthermore, K-M
survival curves were created to analyze the relationships
between the expression levels of the 12 genes and OS. In the
combined training data set, upregulated genes were asso-
ciated with a better prognosis, while downregulated genes
were associated with a worse prognosis (Figure 5). As shown

Construction of immune
subtypes on GSE11318,
GSE21846, GSE23501,
GSE32819, and TCGA-

DLBCL

Differentially
expressed

genes

Construction of
Machine learning

Models for immune
subtype Prediction

Survival analysis
of immune cells

Virtual screening
and molecular

docking of genes

Validation of subtypes
and machine learning
models on GSE10846

Univariate cox
regression

analysis

Important genes
by Random

Forest

12 genes with the
highest importance

values

Validation of machine
learning and subtypes
on ICB-treated cohort

(GSE35640)

Figure 1: +e flowchart of this study.
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Figure 2: Continued.
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Figure 2: Identification of immune subtypes in the diffuse large B-cell lymphoma (DLBCL) cohorts. (a) +e calculated hazard ratios and p

values of immune cells among DLBCL training cohorts (GSE11318, GSE21846, GSE23501, GSE32819, TCGA-DLBCL, and their merged
cohort). (b) +e correlation value of natural killer cells and activated CD8 T cells in the merged cohort. (c) In the training data sets, the
samples were divided into inflamed subtype (IS) and noninflamed subtype (NIS) based on the diagonal line. IS had higher levels of natural
killer cells and activated CD8 Tcells. (d) Kaplan–Meier curves of OS for patients in the IS and NIS in the training data set. (e) In the testing
data set (GSE10846), the samples were divided into the IS and NIS based on the diagonal line. +e IS had higher levels of natural killer cells
and activated CD8 T cells. (f ) Kaplan–Meier curves of OS for patients in IS and NIS in the testing dataset.
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Figure 3: Continued.
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in Supplementary Figure 7, OS curves for TNFSF13B, VGF,
RAD54L, and FKBP8 in the testing data set were noticeably
different. +e correlations of 12 genes with immune cells are
plotted in Supplementary Figure 8. GZMK, FCER1G,
RARRES3, TNFSF13B, SH2D1A, and CCR5were found to be
positively correlated with immune cells such as T cells, and
these genes were negatively correlated with B cells. In
contrast,VGF, RAD54L, TTC27, PAQR4,AP1S1, and FKBP8
were found to be negatively correlated with immune cells
such as T cells, and these genes were positively correlated
with B cells.

As shown in Table 2, random forest (RF) yields an AUC
of 0.908, support vector machine (SVM) yields 0.907, and
artificial neural network (ANN) yields 0.898. +e random
forest was selected since it had the highest AUC value. +e
constructed random forest model reached an AUC of 0.948
in the testing data set (Figure 6(a)). Based on the expression
data of GSE35640, the immune subtype of cancer patients
who received the treatment of immunotherapy was pre-
dicted. We found that the response rate to immunotherapy
for the IS was higher than the NIS (0.57 vs 0.19)
(Figure 6(b)). Consequently, the constructed model can

serve as a useful tool to select patients who are likely to
benefit from immunotherapy.

3.5. Virtual Screening and Molecular Docking Analysis.
According to the virtual screening results from AutoDock
Vina, the small molecules with the lowest free energy for
each protein were selected. ZINC242548690,
ZINC29416466, and ZINC203686879 were selected to target
VGF, RAD54L, and FKBP8, respectively. Next, AutoDock
and PyMOL were used to dock and visualize small molecules
and proteins. +e binding poses of protein-molecule com-
plexes were ranked by the binding free energy. +e 3D
images of binding poses with the lowest energy are shown in
Figure 7. In addition, 2, 1, and 2 H-bonds were found among
these three protein-molecule complexes.

4. Discussion

+e DLBCL is an aggressive, clinically, and genetically
heterogeneous disease. From the origin cell, it can be further
classified into transcriptionally defined activated B cells
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Figure 3: +e merged training cohort showed heterogeneity of immune infiltration among noninflamed subtype (NIS) and inflamed
subtype (IS). (a) Higher abundance of immune cells such as activated CD4+ T cells, activated CD8+ T cells, and natural killer cells were
observed in the IS, while the higher abundance of B cell types containing activated B cells (p value < 0.01), immature B cells (p value� 0.01),
andmemory B cells (p value� 0.63) were observed in the NIS. (b) Formost types of the immune process, they were higher in the IS. But the B
cell receptor signaling process was higher in the NIS (p value < 0.01).
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Figure 4: +e top 12 most important genes were selected for the construction of machine learning models on the training sets. +e top 10
most important genes were selected by a random forest model on the expression data from GSE11318 (a), GSE21846 (b), GSE23501 (c),
GSE32918 (d), and TCGA-DLBCL (e). +e top 6 upregulated and top 6 downregulated genes in the inflamed subtype (IS) with the highest
mean importance value were selected for model construction (f).
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Figure 5: Continued.
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(ABCs) and germinal center B cells (GCBs) [31]. DLBCL
subtypes have been or will be taken into consideration for
the treatment of DLBCL. A prior study, for example, per-
formed a thorough genetic analysis to identify five distinct
DLBCL molecular subtypes [31]. +e purpose of this study
was to analyze the immune subtypes of DLBCL based on
specific immune cells and to evaluate the reliability of the
findings. Based on CT8 T cells and natural killer cells, two
distinct subtypes were identified in our study: the inflamed
subtype (IS) and the noninflamed subtype (NIS). +e IS was
associated with immune cells such as Tcells. But the NIS was
associated with B cells and B-cell-related pathways.

Furthermore, survival analysis showed that IS had a better
prognosis than the NIS.

Several studies have revealed that the TME plays a
significant role in the ICB therapy response rate [32]. In this
work, supervised machine learning approaches were used to
build models that could predict DLBCL patients’ immune
subtypes. +e impact of immune subtypes on ICB re-
sponsiveness was then proven.We discovered that the IS had
a greater response rate to immunotherapy than the NIS (0.57
vs 0.19). As a result, our machine learning model may
provide a method for selecting DLBCL patients for ICB
therapy.
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Figure 5: Analysis of the relationship between 12 selected genes and diffuse large B-cell lymphoma (DLBCL) overall survival prognosis
based on the Kaplan–Meier plotter in the training set. (a–f) Kaplan–Meier plots of survival analysis of 6 upregulated genes. (g–l)
Kaplan–Meier plots of survival analysis of 6 downregulated genes.
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For the NIS patients, six genes (VGF, RAD54L, TTC27,
PAQR4, AP1S1, and FKBP8) were selected as the subtype
biomarkers. Since three of them (VGF, RAD54L, and
FKBP8) showed notable differences in prognosis from the
testing data set, they were selected as the target proteins to
identify the potential small-molecule drugs. Based on the
virtual screening and molecular docking analysis, three
small molecules were finally selected as the novel thera-
peutic drugs for NIS patients. +e NIS might be sensitive to
three selected small molecules: ZINC242548690,
ZINC29416466, and ZINC203686879. ZINC242548690
(digoxin) is a cardiac glycoside, but many studies suggested
it could increase the effect of anticancer therapy [33].
ZINC29416466 (saquinavir) is an available human im-
munodeficiency virus protease inhibitor and could inhibit
proteasome activity in mammalian cells as well as act on the

HIV-I protease [34]. Saquinavir was found to induce ap-
optosis in human cancer cells and could become a new class
of cytotoxic chemotherapy drugs [34, 35]. ZINC203686879
(velpatasvir) is one of the hepatitis virus inhibitors [36],
and studies are needed to validate the effect of velpatasvir
on tumor cells. +is study aims to provide novel therapies
to the need for personalized and precise treatment for
DLBCL patients.

+ere are certain limitations to our research. In vitro and
in vivo testing should be done on the effects of
ZINC242548690, ZINC29416466, and ZINC203686879 on
DLBCL tumor development. Additionally, the immune cells
in this study were solely predicted by the R GSVA package.
+ere will be a more precise evaluation of immune cells if
experiments or multiple bioinformatics methods can be
conducted.

Table 2: +e AUC value results from machine learning models by 5-fold cross-validation in the training data set. +e parameter of the
machine learning model with the highest value was selected for the prediction model construction.

Type mtry C Decay ROC Sens Spec
Random forest 2 NA NA 0.908 0.807 0.817
Random forest 3 NA NA 0.907 0.821 0.805
Random forest 4 NA NA 0.902 0.807 0.805
Random forest 6 NA NA 0.901 0.821 0.811
Random forest 5 NA NA 0.899 0.814 0.799
SVM NA 0.25 NA 0.907 0.793 0.817
SVM NA 0.5 NA 0.904 0.8 0.817
SVM NA 1 NA 0.901 0.771 0.835
SVM NA 2 NA 0.899 0.8 0.83
SVM NA 4 NA 0.897 0.807 0.835
ANN NA NA 0.9 0.898 0.786 0.83
ANN NA NA 0.7 0.898 0.793 0.842
ANN NA NA 0.8 0.897 0.793 0.842
ANN NA NA 0.6 0.896 0.786 0.836
ANN NA NA 0.5 0.895 0.786 0.83

AUC = 0.948
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Figure 6: +e validation of the random forest model by independent testing data sets. (a) +e area under the curve (AUC) value of the
constructed random forest model on the testing data set (GSE10486). (b)+e validation of correlation of the predicted immune subtype with
immune checkpoint blockade (ICB) drug response.
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5. Conclusion

Our study discovered the correlations of immune cells with
prognosis. Based on the CD8 T cell and natural killer cells,
DLBCL samples were divided into NIS and IS. Multiple
cohorts evaluated and confirmed the associations of im-
mune subtypes with prognosis and ICB therapy respon-
siveness. In conclusion, we constructed an accurate and
robust machine learning model that may facilitate the
prediction of immune subtypes and DLBCL patient se-
lection for ICB treatment.
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Supplementary Materials

Supplementary Figure 1. +e testing cohort showed het-
erogeneity of immune infiltration among the NIS and IS. (a)
Higher abundance of immune cells such as activated CD4+
T cells, activated CD8+ T cells, and natural killer cells were
observed in the IS, while higher abundance of B cell types
containing activated B cells (p value� 0.02), immature
B cells (p value� 0.65), and memory B cells (p value� 0.39)
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Figure 7: 3D structures of proteins (blue color) with small molecules (red color). (a-b) Schematic of intermolecular interaction of the
binding mode of VGF protein with ZINC242548690. (c-d) Schematic of intermolecular interaction of the binding mode of RAD54L protein
with ZINC29416466. (e-f) Schematic of intermolecular interaction of the binding mode of FKBP8 protein with ZINC203686879.
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were higher in the NIS. (b) For most types of the immune
process, they were higher in the IS. But the B cell receptor
signaling process was not significantly different between the
two subtypes (p value� 0.53). Supplementary Figure 2.
Boxplot distribution of tumor mutational burden (TMB)
values between inflamed subtype (NIS) and inflamed sub-
type (IS) from TCGA-DLBCL. Supplementary Figure 3.
Boxplot distribution of expression data of PD-1 between
inflamed subtype (NIS) and inflamed subtype (IS) from six
data sets. Supplementary Figure 4. Boxplot distribution of
expression data of PD-L1 between inflamed subtype (NIS)
and inflamed subtype (IS) from six data sets. Supplementary
Figure 5. Identification of differentially expressed genes
(DEGs) between inflamed subtype (NIS) and inflamed
subtype (IS) by expression profiling of TCGA-DLBCL,
GSE21846, GSE32918, GSE11318, and GSE23501 data sets.
+e significantly upregulated and downregulated DEGs were
shown in a heatmap by log2FoldChange values. Red rep-
resents higher expression and green represents lower ex-
pression in IS samples. Supplementary Figure 6. Boxplot
distribution of expression data of 12 selected genes and
between inflamed subtype (NIS) and inflamed subtype (IS)
from the testing set (GSE10846). Supplementary Figure 7.
Analysis of the relationship between 12 selected genes and
diffuse large B-cell lymphoma (DLBCL) overall survival
prognosis based on the Kaplan–Meier plotter in the testing
set (GSE10846). (a–f) Kaplan–Meier plots of survival
analysis of 6 upregulated genes. (g–l) Kaplan–Meier plots of
survival analysis of 6 downregulated genes. Supplementary
Figure 8. Correlation analysis of 12 genes with immune cells
in GSE10846. Supplementary Table 1. Analysis of the cor-
relation of immune subtype with tumorigenesis-related
clinical information, such as stages (GSE10846). Supple-
mentary Table 2. +e enriched GO-BP, GO-CC, GO-MF,
KEGG, and REACTOME pathways associated with DEGs of
the NIS predicted by GSEA analysis. Supplementary Table 3.
+e enriched GO-BP, GO-CC, GO-MF, KEGG, and
REACTOME pathways of the IS predicted by GSEA analysis.
(Supplementary Materials)
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