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T cell exhaustion and a failure in antigen
presentation drive resistance to the graft-versus-
leukemia effect
Meng Zhou1, Faruk Sacirbegovic1, Kai Zhao1, Sarah Rosenberger1 & Warren D. Shlomchik 1,2,3,4✉

In hematopoietic cell transplants, alloreactive T cells mediate the graft-versus-leukemia

(GVL) effect. However, leukemia relapse accounts for nearly half of deaths. Understanding

GVL failure requires a system in which GVL-inducing T cells can be tracked. We used such a

model wherein GVL is exclusively mediated by T cells that recognize the minor histo-

compatibility antigen H60. Here we report that GVL fails due to insufficient H60 presentation

and T cell exhaustion. Leukemia-derived H60 is inefficiently cross-presented whereas

direct T cell recognition of leukemia cells intensifies exhaustion. The anti-H60 response is

augmented by H60-vaccination, an agonist αCD40 antibody (FGK45), and leukemia apop-

tosis. T cell exhaustion is marked by inhibitory molecule upregulation and the development of

TOX+ and CD39−TCF-1+ cells. PD-1 blockade diminishes exhaustion and improves GVL,

while blockade of Tim-3, TIGIT or LAG3 is ineffective. Of all interventions, FGK45 adminis-

tration at the time of transplant is the most effective at improving memory and naïve T cell

anti-H60 responses and GVL. Our studies define important causes of GVL failure and suggest

strategies to overcome them.
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A llogeneic hematopoietic stem cell transplantation
(alloSCT) can cure patients with hematologic neoplasms,
most commonly acute myeloblastic leukemia (AML).

Much of the efficacy of alloSCT is due to alloreactive αβT cells in
the donor graft, which can kill recipient leukemia cells, thereby
mediating the graft-vs-leukemia (GVL) effect1. Unfortunately,
alloreactive T cells also attack normal host (recipient) tissues,
causing graft-vs-host disease (GVHD)2–4. When donors and
recipients are MHC-matched, alloreactive T cells target minor
histocompatibility antigens (miHAs), which are the peptide
products of nonsynonymous polymorphisms that distinguish the
donor and host5. Alloreactive T cells that recognize miHAs
expressed by leukemia cells can mediate GVL.

Despite alloreactive T cells developing in all recipients of T cell-
replete grafts, relapsed malignant disease remains the greatest
single cause of post-transplant mortality6. Unfortunately, there
has been little progress in reducing relapse, especially of myelo-
blastic leukemias7,8. A barrier to making progress has been an
incomplete understanding of the biology of relapse7.

Several nonexclusive mechanisms could contribute to GVL
failure. Leukemia clones resistant to T cell killing could emerge
under immune selection. This has been documented in HLA-
mismatched transplants wherein relapsed leukemic cells can lose
the targeted unshared HLA allele9,10. Relapsed leukemia samples
from alloSCT recipients can have lower levels of HLA expression
relative to pre-transplant specimens, and this could have been a
consequence of immune selection11,12. HLA could be increased in
relapse specimens by IFN-γ13, consistent with mouse models14.

Alternatively, or in addition, alloreactive T cells could fail to
mount a response of sufficient magnitude and duration to com-
pletely clear or suppress leukemia cells. In one extreme, T cells
could retain their intrinsic ability to be activated post-transplant
but, with the elimination of miHA-bearing host hematopoietic
cells, there could be insufficient miHA presentation by antigen
presenting cells (APCs) to sustain them15,16. In the other extreme,
T cells could be exhausted and unable to mount a strong response
even with quality antigen presentation. Given the importance
IFN-γ may have in promoting GVL against AML11,13,14, T cell
exhaustion, which results in low IFN-γ production17, would be
anticipated to diminish GVL.

To fully understand mechanisms of leukemia relapse post-
alloSCT it is necessary to unequivocally identify GVL-inducing
miHA-reactive T cells. This has previously not been possible in
polyclonal mouse models and with human samples from alloSCT
recipients because in these situations alloreactive T cells target
many miHAs, most of which are unknown, and GVL-inducing
T cells cannot be easily tracked. Moreover, even if all miHA-
reactive T cells could be specifically identified, it would difficult to
know which specificities are critical for GVL.

To address these limitations, we used a tractable mouse model
wherein GVL is exclusively mediated by polyclonal alloreactive
CD8 cells that target the mouse miHA H6018. H60 is pre-
dominantly expressed on hematopoietic cells19, including leuke-
mia cells, and therefore represents an ideal type of miHA that has
been proposed as a clinical target5,20,21. H60 reactive T cells are
specific in that they only mediate GVL against H60+ and not
H60− leukemia cells18. In these studies a clinically relevant model
of blast crisis chronic myelogenous leukemia (BC-CML) created
by co-transducing H60-expressing mouse bone marrow (BM)
with retroviruses that express cDNAs encoding the human bcr-
abl and NUP98/HOXA9 translocations was used18,22. These are
bona fide oncogenes, representative of the classes of molecular
drivers of AML23. Along with gene-modified leukemias, gene-
deficient and transgenic donors and recipients, we use these tools
to dissect and therapeutically address mechanisms of GVL failure.
We show here that GVL fails due to insufficient antigen

presentation, and the development of T cell exhaustion. The
former could be improved by H60-vaccination while the effect of
T cell exhaustion was mitigated by an agonist antibody to CD40
given at the time of transplant and by PD-1-blockade. Taken
together these data provide new insights into GVL failure and
chart a path for improving adoptive immunotherapies in the
future.

Results
A tractable GVL system. To create a population of trackable
donor CD8 cells reactive against a miHA expressed by leukemia
cells, we vaccinated C3H.SW (H-2b) or B6 (H-2b) mice against
the Kb-restricted mouse miHA H6019 using an antibody against
DEC205 which was modified to express the H60 epitope
LTFNYRNL (DEC-H60) with an agonist antibody against CD40
(FGK45)18. CD8 memory cells (TM) reactive against H60 (TMH60)
were mostly CD62L+CD44+ central memory cells (TCM) with
fewer CD62L−CD44+ effector memory cells (TEM). In most
experiments, B6.H60 mice (congenic for H6018) were irradiated
and reconstituted with C3H.SW or B6 T cell-depleted BM
(referred to as BM), with CD8+CD44+ TM from H60-vaccinated
C3H.SW or B6 donors, with or without H60+ BC-CML18

(referred to as BC-CML). The number of transferred CD8+ TM

was adjusted to give a defined number of TMH60 (between 3.5 and
10 × 103), but H60 tetramer-positive (TetH60+) cells were not
sort-purified. While a mix of both TCM and effector memory TEM

TetH60+ cells were transferred, most expansion was from the TCM

TetH60+ cells (Supplementary Fig. 1).

BC-CML cells outstrip the anti-H60 T cell response. To define
the kinetics of BC-CML and TetH60+ T cell expansion, we
sacrificed cohorts 7, 14, and 21 days post-transplant in the C3H.
SW→B6.H60 system. TetH60+ cells outnumbered BC-CML cells
at day +7 and were roughly equivalent at day +14 (Fig. 1). There
was no further increase in TetH60+ T cells after day +14, with or
without BC-CML, whereas BC-CML cells continued to expand in
spleen and were stable in the BM. Therefore, despite abundant
antigen in the form of H60+ BC-CML cells, the anti-miHA T cell
response flattens. These data were compatible with GVL being
limited by the emergence of GVL-resistant clones or by a failure
in the T cell response.

Immune selection does not account for GVL resistance. To
address whether alloimmunity selects for GVL-resistant BC-CML
cells, we performed in vivo CTL assays on nonselected BC-CML
and relapsed BC-CML (Fig. 2a). Relapsed BC-CML cells were
harvested from B6.H60 mice that had been transplanted with BC-
CML cells and TMH60 25-28 days prior. Nonselected BC-CML
cells were harvested from B6.H60 mice transplanted with BC-
CML cells without TMH60. Nonselected (cell tracker violet-
labeled), relapsed (DeepRed-labeled) and control H60−Kb−/−

(unlabeled) BC-CML cells were injected into B6 mice that had or
had not been immunized with DEC-H60 and FGK45 seven days
prior. When analyzed 18 h later, fresh and relapsed BC-CML cells
were equally killed by anti-H60 effectors (Fig. 2b, c).

We also compared killing of SIINFEKL-pulsed BC-CML cells
by OT-1 transgenic T cells to account for possible selection of
leukemias with reduced H60 expression. Unpulsed and
SIINFEKL-pulsed unselected and relapsed BC-CML cells were
transferred into B6 mice that had been seeded with OT-1 cells
and vaccinated with an anti-DEC205 antibody modified to
express ovalbumin and FGK45 seven days prior. Again, relapsed
BC-CML cells were not resistant to T cell killing relative to
unselected BC-CML cells (Fig. 2d, e). These data indicate that in
our model immune selection does not account for GVL
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resistance. We therefore further investigated the anti-H60 CD8
response.

Ineffective antigen presentation limits GVL. Because H60 is
mostly expressed by hematopoietic cells, effective antigen pre-
sentation may become limiting as host hematopoietic cells die
from radiation and T cell killing15. Conversely, H60 would
become increasingly available from expanding BC-CML cells;
however, how well BC-CML cells directly stimulate T cells or
whether their miHAs are effectively cross-presented by donor-
derived cells was unknown. To measure antigen presentation at
day 14 post-transplant, (when TetH60+ cells peak; Fig. 1), we
infused congenic CD45.1+ C3H.SW TMH60 14 days after B6.H60
mice were transplanted with C3H.SW BM and CD45.2+ TMH60,
with or without BC-CML. As a positive control for the capacity of
day 14 (D14) TMH60 to respond to H60, some mice were also
immunized with DEC-H60 and FGK45 (design, Fig. 3a). By day
+21, CD45.1+ D14 TMH60 had undergone little expansion,
nowhere near that of TMH60 infused on day 0 (Fig. 3b, c). Immu-
nization with FGK45+DEC-H60 increased D14 CD45.1+TetH60+

progeny more than 10-fold (with or without BC-CML) indicating
that D14 cells can be activated with effective antigen presentation.
Importantly, D14 TMH60 combined with FGK45+DEC-H60
reduced BC-CML numbers in spleen and BM relative to infusion of
only TMH60 (Fig. 3d).

Surprisingly, FGK45 alone augmented the anti-H60 response,
even in the absence of BC-CML, indicating that there were
sources of H60 not being effectively presented (Fig. 3g, h). FGK45
combined with D14 CD45.1+ TMH60 also improved GVL
(Supplementary Fig. 2A). GVL promotion by FGK45 was not
due to a direct action on BC-CML cells as FGK45 did not reduce
BC-CML numbers in RAG2−/−γc−/− mice transplanted with
BC-CML cells and no T cells (Supplementary Fig. 2B).

The addition of DEC-H60 to FGK45 consistently led to a
greater increase of D14-derived TetH60+ cells in BM and
expansion of day 0 (D0)-derived TetH60+ cells enumerated on
day +21 (Fig. 3g). We therefore performed experiments wherein
transplanted mice received D14 TMH60 alone, with DEC-H60 or
with DEC-H60+ FGK45 (Supplementary Fig. 2C). DEC-H60
alone augmented expansion of D14 TMH60, though not as
effectively as FGK45+DEC-H60, indicating that both antigen
and suboptimal APC activation limit H60-reactive T cell
expansion.

To determine whether FGK45 was acting on donor and/or
residual host-derived APCs we compared its effect in mice
transplanted with wild type (wt) or CD40−/− BM using the
B6→B6.H60 system as C3H.SW CD40−/− mice were not available.
Irradiated B6.H60 mice were reconstituted with B6 or B6 CD40−/−

BM. On day +14 all mice received B6 CD45.1 TMH60 and a cohort
from each group was treated with FGK45. FGK45 had less of an
impact on TetH60+ expansion in recipients of B6 CD40−/− BM,
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indicating that FGK45’s greatest activity is on donor APCs cross-
presenting host H60 (Supplementary Fig. 2D). Because mice did
not receive day 0 TMH60 there was likely a substantial number of
residual recipient APCs, which may explain the activity of FGK45
in recipients of CD40−/− BM.

To determine whether donor dendritic cells (DCs) were
essential, B6.H60 mice were transplanted with wt B6 CD45.2
TMH60 (to enhance the clearance of recipient APCs) and BM from
B6 mice that express the diphtheria toxin receptor (DTR) under
control of the CD11c gene (CD11c-DTR24) or B6 CD40−/− BM.
Beginning on day +10, a cohort of CD11c-DTR BM recipients
was injected with diphtheria toxin (DT) every other day to
deplete donor-derived DCs. On day +14, all mice received B6
CD45.1+ TMH60, with or without FGK45 (design, Supplementary
Fig. 2E). FGK45 was again less effective in recipients of B6
CD40−/− BM (Fig. 3i). Importantly, donor DC-depletion
completely prevented FGK45’s augmentation of the TetH60

response, indicating that donor DCs that cross-present recipient
H60 were the major FGK45 targets (Fig. 3i).

Effect of leukemia-derived H60 on the anti-H60 response. It
was surprising that insufficient H60 presentation limited the
activation of H60-reactive T cells in mice with a substantial bur-
den of H60+BC-CML. To test how efficiently leukemia-derived
miHAs are cross-presented, irradiated B6 mice were reconstituted
with C3H.SW BM, C3H.SW TMH60 and B6 H60+Kb−/− BC-CML
cells. At day +13 post transplantation, TetH60+ cells were few
relative to similarly transplanted B6.H60 recipients and similar to
control mice transplanted with H60−Kb−/− BC-CML cells
(Fig. 4a), indicative of inefficient cross-presentation.

To determine how well leukemia cells directly stimulate
alloreactive T cells, irradiated B6 beta-2-microglobulin-deficient
(β2M−/−) mice were reconstituted with B6 β2M−/− BM, wt
H60+ BC-CML, and B6 TMH60. In such mice only BC-CML cells
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were MHCI+ and capable of stimulating TMH60. At day +10 post-
transplant we could not detect CD8+TetH60+ cells whereas there
was a large TetH60+ response in control B6.H60 recipients
(Fig. 4b).

To test whether leukemia cells need to be killed for their
miHAs to be cross-presented we transplanted B6 mice with
CD45.2+ C3H.SW BM, Kb−/−H60+ BC-CML along with C3H.
SW CD4 cells, which mediate GVL in this model25. On day +14,
mice received CD45.1+ TMH60 and FGK45. Despite significant
CD4-mediated GVL, there was little TetH60+ expansion (Fig. 4c).

It was possible that the magnitude or timing of CD4+ T cell
killing was suboptimal for effective cross-presentation. We

therefore engineered H60+Kb−/− BC-CML cells to express an
inducible caspase 9 (iCasp9)26. Treatment of mice harboring
these leukemias with AP20187 (chemical induced dimerization;
CID) rapidly induced apoptosis (Supplementary Fig. 3).
Irradiated B6 or B6 Kb−/− mice (to restrict H60 presentation to
donor cells) were reconstituted with C3H.SW BM and
H60+Kb−/− iCasp9 BC-CML. Twelve to 14 days post-transplant,
a cohort was injected with CID. On day +14, all mice received
C3H.SW TMH60 and FGK45 (design, Fig. 4d) to measure cross-
presentation. On day +21 there was robust TetH60+ T cell
expansion in CID-treated B6 and B6 Kb−/− recipients and
significant expansion even in untreated mice, likely due to
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spontaneous iCasp9 dimerization (Fig. 4e). Therefore, leukemia-
derived antigens can be cross-presented by donor-derived APCs,
but only after substantial leukemia apoptosis.

T cell exhaustion contributes to GVL failure. While DEC-H60
and FGK45 induced expansion of TMH60 infused on day +14,
they less effectively stimulated the progeny of TMH60 infused on
day 0 (Fig. 3c, g). Moreover, a smaller fraction of day 0 TMH60

progeny produced IFN-γ with peptide restimulation (Fig. 3e,
f, h), characteristic of T cell exhaustion. We therefore further
analyzed TMH60 progeny from B6.H60 mice transplanted with
C3H.SW BM and TMH60, with or without H60+ BC-CML. By
days +21–25, TetH60+ cells from BM and spleen had uniformly
upregulated PD-1 and most progeny expressed Tim-3, TIGIT and
LAG3, all associated with exhaustion (Fig. 5a, b and Supple-
mentary Fig. 4A). They also had reduced IFN-γ production
relative to fresh TMH60 and to TetH60+ cells harvested at day +7
post-transplant (Fig. 5c and Supplementary Fig. 4B, C).

Eomes and Blimp-1 were high in TetH60+ cells, again consistent
with an exhaustion phenotype (Fig. 5d). Importantly, relative to
mice transplanted without leukemia, TetH60+ cells from mice
transplanted with BC-CML had more characteristics of
exhaustion–increased inhibitory molecule expression, increased
Blimp-1 and Eomes and reduced IFN-γ production–indicating
that rather than being stimulatory, BC-CML cells augment
exhaustion (Fig. 5a–d). This effect required cognate TCR:MHCI
contact as Kb−/− H60+BC-CML did not intensify exhaustion
(Fig. 5e). H60+PD-L1/L2−/− BC-CML induced similar exhaustion
as did H60+PD-ligand-intact BC-CML indicating that antigen
exposure and not PD-ligands promote exhaustion (Fig. 5f).

TetH60+ cells isolated post transplantation had metabolic
characteristics of exhaustion27. Freshly isolated TMH60 had low-
level 2-NBDG uptake and low mitochondrial mass and
mitochondrial membrane potential as expected for quiescent
cells (Supplementary Fig. 4D, E). In contrast, on day +7 post
transplantation, splenic and BM TetH60+ cells had increased
glucose uptake and mitochondrial mass, with a majority of cells
also having bright TMRE staining, consistent with active
respiration (Supplementary Fig. 4D, E). By day +21, however,
TetH60+ cells had lost mitochondrial mass, with few being
TMRE-bright (Fig. 5g and Supplementary Fig. 4D, E). The
presence of BC-CML led to a modest increase in mitochondrial
mass, but without a consistent change in mitochondrial
depolarization (Fig. 5g).

Inhibition of PD-1 but not Tim-3, LAG3 or TIGIT, improves
GVL. Given the evidence for T cell exhaustion, we investigated

whether post-transplant PD-1 blockade would improve TMH60

performance. Irradiated B6.H60 mice were reconstituted with
C3H.SW BM, C3H.SW TMH60, and B6.H60 BC-CML. α-PD1 or
an isotype control was begun on day +7 to avoid adverse effects
of PD-1 blockade on early T cell activation28. α-PD1 reduced the
percentage of BC-CML cells in blood on day +14 and their
numbers in spleen and BM on day +21. α-PD1 also increased the
number of TetH60+ cells in BM (Fig. 6a, b). Importantly, in α-
PD1 treated mice TetH60+ cells produced more IFN-γ and had a
reduced expression of TIGIT (Fig. 6b–d). The increase in IFN-γ
production with in vitro stimulation reflected increased in vivo
IFN-γ production as MHCII expression on BC-CML cells, which
is IFN-γ-regulated14, was higher with PD-1-blockade (Fig. 6e).
We next tested blockade of Tim-3, TIGIT and LAG3, alone or

in combination with α-PD1 (design, Supplementary Fig. 5A). In
all experiments α-PD1 improved GVL, increased the number of
BM TetH60+ cells, the percentage of IFN-γ+TetH60+ cells in both
BM and spleen, and decreased expression of Tim-3 and TIGIT
(Fig. 6f–i; Supplementary Fig. 5). However, blockade of LAG3
(Fig. 6f), Tim-3 or TIGIT (Supplementary Fig. 5B, F) did not
augment GVL, even in combination with α-PD1 under conditions
in which α-PD1 was only partially effective. TIGIT-blockade
diminished the number of TetH60+ cells while increasing the
percentage that produced IFN-γ (Supplementary Fig. 5G, H),
perhaps by depleting cells with the highest TIGIT expression.
LAG3-blockade increased the percentage of TetH60+ cells that
produced IFN-γ but did not blunt the upregulation of Tim-3 or
TIGIT (Fig. 6h, i).

α-CD40 at time of transplantation improves GVL. Given how
effectively FGK45 promoted the activation of TMH60 infused on
day +14, we tested FGK45 in combination with TMH60 infused on
day 0 in the C3H.SW→B6.H60 system. Day 0 FGK45 dramati-
cally reduced BC-CML numbers in spleen and BM at day +21,
coincident with an increase in the number of BM TetH60+ cells
(Fig. 7a, b). FGK45 increased IFN-γ production by TetH60+ cells
with fewer expressing high levels of TIGIT, PD-1 and Tim-3
(Fig. 7c, d). Consistent with the increase in IFN-γ+ cells, MHCII
expression was higher in BC-CML cells harvested from FGK45-
treated mice (Fig. 7e).

FGK45 primarily acted on recipient cells as there was no
reduction in GVL in recipients of CD40−/− BM (Fig. 7f). It was
possible that FGK45 increased direct presentation of Kb:
LTFNYRNL; alternatively or in addition it could have improved
cross-presentation. To address this, we made mixed BM
chimeras in which recipient APCs could directly present H60
([B6.H60+ B6]→B6 chimeras) or only cross-present H60 ([B6.
H60 Kb−/−+ B6]→B6 chimeras). After 8 weeks, these chimeras

Fig. 3 TMH60 given at time of transplant fail due to a lack of effective antigen presentation. Experimental scheme (a). B6.H60 mice were irradiated and
reconstituted with C3H.SW BM, C3H.SW CD45.2+ TMH60 (containing 104 TetH60+ cells) with or without BC-CML. At day 14 post-transplant, fresh C3H.
SW CD45.1+ TMH60 (containing 104 TetH60+ cells) were infused. Some mice also received DEC-H60+ FGK45 to further activate H60-reactive T cells.
Mice were sacrificed on day 21 post-transplant for analysis of BC-CML and TMH60 progeny in spleen and BM. b Representative TetH60 staining of
splenocytes at day 21. Shown are TetH60+ cells from day 0- (CD45.2+) and day 14-derived (CD45.1+) TMH60. Quantification of day 0 and day 14 TMH60

progeny in spleen and BM are in c. Total numbers of BC-CML in spleen and BM are in d. Representative flow cytometry (e) and quantification of IFN-γ
expression (f) of D14 CD45.1+ and D0 CD45.2+ TetH60+ cells harvested at day +21. Data are pooled from 3 independent experiments with 14 mice per
group (d), or representative of 3 independent experiments (4–5 mice per group) with similar results (b, c, f). g, h Mice were transplanted as in panel A.
Fourteen days post-transplant, mice were injected with fresh C3H.SW CD45.1 TMH60 with DEC-H60 and FGK45 or FGK45 alone. The total number of day
0 TMH60 progeny (CD45.2+) and day 14 TMH60 progeny (CD45.1+) in spleen and BM were quantitated (g), and the percentages of these that are IFN-γ+
are shown in h. Data are representative of two independent experiments with 4 mice per group. i B6.H60 mice were irradiated and reconstituted with B6
(CD45.2+) TMH60 (containing 104 TetH60+ cells) and donor BM from B6 CD11c-DTR or B6 CD40−/− mice. At day +14, 5 × 104 fresh B6 CD45.1+ TMH60

were infused, with or without FGK45. A cohort of CD11c-DTR BM recipients was injected with DT every other day from day 10 to day 20. Mice were
sacrificed at day +21 and TMH60 progeny in spleen and BM were quantitated (n= 4 per group). For all panels, data were analyzed by an unpaired Student
two-sided t-test. Bars are mean values ± SEM, *P < 0.05; **P < 0.01; ***P < 0.001; and ns not significant.
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were reirradiated and retransplanted with B6 CD40−/− BM and
B6 TMH60, with or without FGK45 (design, Supplementary
Fig. 6A). FGK45 only augmented the TetH60+ response in the
(B6.H60+ B6)→B6 chimeras in which H60 was directly
presented whereas there was no effect in (B6.H60 Kb−/−+
B6)→B6 chimeras wherein FGK45 could only promote H60
cross-presentation by B6 Kb-intact APCs (Fig. 7g). Nonetheless,
TetH60+ cells ultimately expanded even in the (B6.H60 Kb−/−+
B6)→B6 chimeras, confirming that cross-presentation does take
place16. With only H60 cross-presentation, markers of exhaustion
were reduced, suggesting that the intensity of miHA exposure
drives exhaustion (Supplementary Fig. 6B, C).

Although recipient DCs are not required for GVHD in models
wherein host hematopoietic cells are essential29,30, it was possible
that FGK45’s activity was reliant on DCs. To test this we first
crossed B6.H60 mice to B6 CD11c-DTR mice24 and then made
B6.H60 CD11c-DTR→B6 Kb−/− BM chimeras in which the only
host cells that can present H60 are derived from the B6.H60
CD11c-DTR BM. These chimeras were DT- or PBS-treated,
reirradiated, and transplanted with C3H.SW BM and TMH60, with
or without FGK45. FGK45 augmented the TetH60 response in
both PBS- and DT-treated mice (Fig. 7h). Nonetheless, DT-treated
mice that received FGK45 generated modestly fewer TetH60+ cells,
suggesting that DCs, though not required, are FGK45 targets.
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While an ideal target miHA would be hematopoietically-
restricted, as is H60, some miHAs may also be expressed in other
tissues. We previously showed that TMH60 cause little GVHD
even in B6 actH60 mice, which express H60 ubiquitously driven
by an actin promoter18. We therefore explored the impact of
FGK45 on TMH60 and on GVL in actH60 recipients. Irradiated
actH60 mice were reconstituted with C3H.SW BM, C3H.SW
TMH60 and B6.H60 BC-CML. One group was treated with FGK45
on day 0 and mice were sacrificed on day 18. FGK45 dramatically
reduced the number of BC-CML cells in BM and spleen (Fig. 7i).
While the number of TetH60+ cells was not increased, there was
an increase in the IFN-γ+ fraction in spleen and a reduction of
TIGIT expression in both spleen and BM, indicative of improved
T cell fitness (Fig. 7j–l).

We next focused on how day 0 FGK45 alters TetH60+ T cell
activation (design, Supplementary Fig. 7A). By day +3, TetH60+

cells from FGK45-treated mice had increased expression of
CD25, 4-1BB, GITR and OX40 (Fig. 8a). At day +4, a greater
fraction had diluted CFSE (Fig. 8b). However, a greater fraction
of TetH60+ cells from FGK45-treated mice were annexin V+ and
7-AAD+ (Fig. 8c), suggesting that increased proliferation
primarily drives the FGK45 effect. By days +7 and +14,
FGK45 treatment yielded a 5-10-fold increase in TetH60+ cells
with no change in their IFN-γ production (Fig. 8d). However,
TetH60+ cells from FGK45-treated mice had lower expression of
PD-1, Tim-3 and TIGIT, with an increase in EomeslowTbethigh

cells (Fig. 8e, f and Supplementary Fig. 7B, C) that have been
reported to have a greater proliferative capacity31.

Exhaustion of naïve alloreactive progeny. We used donor TMH60

in our experiments so as we could track all GVL-inducing T cells.
While TCM share much with naïve T cells (TN), we also explored
exhaustion and the impact of FGK45 on H60-reactive progeny of
CD8+ TN. Irradiated B6.H60 mice were reconstituted with C3H.
SW BM and CD8 cells from unvaccinated donors. One group
received FGK45 on day 0 and mice were sacrificed on days +7
and +14 for analysis. Although we did not sort TN, spontaneous
TM do not mount an anti-H60 response18; therefore, all TetH60+

cells were derived from TN. By day +7, FGK45 increased TetH60+

cells in spleen and BM by ~100-fold (Fig. 9a, b). By day +14,
there were more TetH60+ cells in spleen but not in BM (Fig. 9c).
FGK45 reduced, but did not prevent, alloreactive T cell exhaus-
tion. In spleen, IFN-γ production was similarly low in both
groups; however, at day +14 more IFN-γ+TetH60+ cells were
present in the BM of FGK45-treated mice. Consistent with this,

FGK45 reduced the expression of PD-1, TIGIT and Eomes on
TetH60+ cells.

FGK45 also had a strong effect on TetH60- cells in recipients of
CD8 cells from unmanipulated C3H.SW donors (Supplementary
Fig. 8). At day +7, FGK45 had increased the number of TetH60-

CD8 cells in both BM and spleen more than 10-fold, coincident
with a large increase in the fraction of cells that expressed PD-1,
TIGIT and Tim-3. By day +14, the numbers of TetH60- CD8 cells
were more similar in FGK45-treated and untreated mice as were
the frequencies of cells expressing PD-1, TIGIT and Tim-3.
Taken in the context of the increase of H60-reactive cells in the
same FGK45-treated mice, these data suggest that FGK45 also
accelerated the proliferation of donor CD8 cells reactive against
miHAs other than H60.

FGK45 also promoted GVL mediated by H60-reactive progeny
of CD8+ TN. To assure that only H60-reactive T cells mediated
GVL we used the B6→B6.H60 system. Irradiated B6.H60 mice
were reconstituted with B6 BM and CD8 cells and B6.H60 BC-
CML, with or without FGK45. FGK45 reduced the number of
BC-CML cells and increased the number of TetH60+ CD8 cells
(Fig. 9d). FGK45 decreased the expression of TIGIT and Eomes
on TetH60+ cells, suggestive of improved T cell fitness. While the
fractions of IFN-γ+TetH60+ cells were similar in untreated and
FGK45-treated mice, BC-CML MHCII expression was higher in
FGK45-treated mice, indicative of greater in vivo IFN-γ exposure.

FGK45 similarly improved GVL mediated by CD8 cells
responsive against miHAs other than H60. Irradiated B6 mice
were reconstituted with B6 BC-CML and C3H.SW BM and CD8
cells. One group was treated with FGK45 on day 0. At day +18,
FGK45 reduced BC-CML cells in spleen and BM by ~100-fold.
While we could not track CD8 cells targeting a specific miHA,
FGK45 increased the IFN-γ+ fraction of CD8 cells and reduced
the frequency of CD8 cells with an exhaustion phenotype
(Fig. 9e).

TOX+ and TCF-1+ alloreactive T cells develop post-transplant.
We also explored whether the sustained availability of alloantigen
in the transplant environment induces expression of TOX, a
transcription factor recently shown to contribute to T cell
exhaustion32–37. We further investigated whether a TCF-1+

subpopulation of TetH60+ cells emerged. Such cells have been
proposed as precursors of exhausted T cells32,34–39.

Irradiated B6.H60 mice were reconstituted with C3H.SW BM
and CD8 cells from either unmanipulated C3H.SW donors
(referred to as TN) or TM from H60-vaccinated C3H.SW mice
(TN). Cohorts were also injected with FGK45. TOX was

Fig. 4 Leukemia apoptosis promotes miHA cross-presentation. a–c Panels show experimental designs, representative flow cytometry and quantitation of
TetH60+ cells. a To test whether BC-CML-derived H60 can be cross-presented, B6 mice were irradiated and reconstituted with C3H.SW BM, H60+Kb−/−

BC-CML and C3H.SW TMH60. As a positive control for TetH60+ expansion, irradiated B6.H60 mice were reconstituted with H60+ BC-CML with BM and
TMH60 from C3H.SW or B6 mice. As a negative control, irradiated B6 mice were reconstituted with C3H.SW BM, H60−Kb−/− BC-CML and C3H.SW
TMH60. At day +13, few TetH60+ cells could be detected in recipients of H60+Kb−/− BC-CML, and their number was similar to that in recipients of
H60−Kb−/− BC-CML. (b)To determine whether the H60+ BC-CML can directly stimulated TMH60 in vivo, irradiated B6 β2M−/− were reconstituted with
B6 β2M−/− BM, B6 TMH60 and H60+Kb+/+ BC-CML or H60+Kb−/− BC-CML as a negative control. As a positive control, irradiated B6.H60 mice were
reconstituted with B6 BM, B6 TMH60 and H60+ BC-CML cells. At day +10, TetH60+ cells were not detectable in blood in both Kb+/+ and Kb−/− H60+ BC-
CML recipients. c To test whether GVL can increase cross-presentation, irradiated B6 mice were reconstituted with C3H.SW BM, CD45.2+ C3H.SW CD4
cells and H60+Kb−/− BC-CML cells. At day +14 post transplant, CD45.1+ C3H.SW CD8+ TMH60 cells were transferred to recipients with FGK45 to
promote cross-presentation. Mice were sacrificed on day +21 and TetH60+CD45.1+ cells were enumerated. As a positive control, irradiated B6.H60 were
reconstituted with C3H.SW BM and Kb+/+H60+ BC-CML with C3H.SW CD45.1+ TMH60 cells and FGK45 infused on day +14. For a–c, data are
representative of two independent experiments with 3–4 mice per group. d, e Design (d). B6 and B6 Kb−/− mice were irradiated and reconstituted with
C3H.SW BM and iCasp9 B6.H60Kb−/− BC-CML. CID was given on days +12–14 to induce BC-CML apoptosis. On day +14, C3H.SW CD45.1+ TMH60 cells
were injected with FGK45. Mice were sacrificed on day +21 and TetH60+ cells in spleen and BM were quantitated (e). Data are combined from two
experiments (7–9 mice per group). For all panels, data were analyzed by an unpaired Student two-sided t-test. Bars are mean values ± SEM. *P < 0.05;
**P < 0.01.
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Fig. 5 H60+ BC-CML cells contribute to exhaustion through cognate interactions. a–d B6.H60 mice were irradiated and reconstituted with C3H.SW BM,
C3H.SW TMH60, with or without B6.H60 BC-CML. Mice were sacrificed 21–25 days post-transplantation for analysis. The expression of PD-1, Tim-3, TIGIT,
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a and b, respectively. c Representative flow cytometry (left panels) and quantitation of IFN-γ expression (right panels). d Eomes and Blimp-1 expression in
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t-test. Bars are mean values ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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uniformly induced in all TN or TMH60-derived TetH60+ cells in
spleen (Fig. 10a, b; Supplementary Fig. 9A) and BM (Supple-
mentary Fig. 9B), with higher TOX MFIs in TMH60 progeny. TOX
expression correlated with PD-1 levels and TetH60 binding.
FGK45 reduced TOX MFIs, especially in spleen, and reduced the
frequency of TetH60+ cells with high MFIs for both TOX and PD-
1 (Fig. 10b and Supplementary Fig. 9B). TOX expression in TN-
derived TetH60-negative cells was bimodal, with discrete popula-
tions of PD-1highTOXhigh and PD-1lowTOXlow cells (Supplemen-
tary Fig. 9C, D). FGK45 increased the frequency of TetH60-PD-
1highTOXhigh cells in spleen, perhaps by enhancing alloreactive
CD8 cell expansion.

TetH60+TCF-1+ cells emerged in all groups by day+ 7
(Fig. 10c, d; Supplementary Fig. 9E, F). These were CD39low

with lower expression of KLRG-1, Tim-3, and PD-1 and higher
expression of Ly108 (slamf6), relative to TCF-1− cells. This
phenotype closely matches that of CD8+ T cells identified as
precursors for exhausted T cells in chronic LCMV infection
and in tumor models34–37,39. CD39−TCF-1+ cells comprised
a smaller fraction of TetH60+ progeny of TMH60 than of
TetH60+ progeny of CD8 cells from unvaccinated donors, and
this frequency was not affected by FGK45, suggesting that TN

may be more prone to develop into TCF-1+ cells. In contrast,
FGK45 reduced the fraction of TN-derived TetH60+ cells that

a b

dc e

f g h

i

TIGIT-APC

Spleen

FMO

Untre

Isotype

α-PD-1

%
 o

f m
ax

Day 14 Day 21 Day 21

αPD-1

Iso
typ

e
Unt

re
0

1

2

3

4

5
%

B
C

-C
M

L 
in

 b
lo

od
 * ns

αPD-1

Iso
typ

e
Unt

re
105

106

107

108

109
** ns

# 
of

 B
C

-C
M

L 
in

 s
pl

ee
n

αPD-1

Iso
typ

e
Unt

re
105

106

107

108

** ns

# 
of

 B
C

-C
M

L 
in

 B
M

αPD-1

Iso
typ

e
Unt

re
105

106

107

# 
of

 T
et

H
60

+  
in

 s
pl

ee
n ns ns

αPD-1

Iso
typ

e
Unt

re
105

106

107

**

ns

# 
of

 T
et

H
60

+  
in

 B
M

αPD-1

Iso
typ

e
Unt

re
0

10

20

30

40

50 **

ns

%
IF

N
-γ

+  
of

 T
et

H
60

+ 
in

 s
pl

ee
n

αPD-1

Iso
typ

e
Unt

re
0

500

1000

1500
T

IG
IT

 M
F

I (
sp

le
en

) ** ns

αPD-1

Iso
typ

e
Unt

re
0

500

1000

1500

T
IG

IT
 M

F
I (

B
M

) 

** ns

αPD-1

Iso
typ

e
Unt

re
0

20

40

60

80 ***

ns

%
 M

H
C

II+  
of

 G
F

P
+ C

D
11

b
–

in
 s

pl
ee

n

αPD-1

Iso
typ

e
Unt

re
0

20

40

60

80 ***
ns

%
 M

H
C

II+  
of

 G
F

P
+ C

D
11

b
- i

n 
B

M

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
103

104

105

106

107

108

109

# 
of

 B
C

-C
M

L 
in

 s
pl

ee
n 

*
ns

*

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
103

104

105

106

107

# 
of

 B
C

-C
M

L 
 in

 B
M

 

**
ns

**

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
105

106

107

# 
of

 T
et

H
60

+ 
in

 s
pl

ee
n 

**
**

ns

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
105

106

107

# 
of

 T
et

H
60

+  
in

 B
M

ns
ns

***

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

10

20

30

40

50

%
IF

N
-γ

+
of

 T
et

H
60

+ 
in

 s
pl

ee
n 

***
*

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

10

20

30

40

50 **
**

%
IF

N
-γ

+
of

 T
et

H
60

+ 
in

 B
M

 

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

1000

2000

3000

4000

T
im

-3
 M

F
I (

sp
le

en
)

***

ns
***

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

1000

2000

3000

4000

5000

T
im

-3
 M

F
I (

B
M

)

***

ns
***

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

1000

2000

3000

4000

T
IG

IT
 M

F
I (

sp
le

en
) ***

ns
***

Iso
typ

e

αPD-1

αLA
G3

αPD-1
/L

AG3
0

1000

2000

3000

4000

T
IG

IT
 M

F
I (

B
M

)

***
ns

***

Fig. 6 Anti-PD-1 mAb treatment augments TMH60-mediated GVL. B6.H60 mice were irradiated and reconstituted with C3H.SW BM, B6.H60 BC-CML,
and C3H.SW TMH60. From days +7 to +19 post transplantation, mice were treated with α-PD1 or an isotype control. Mice were sacrificed on day +21 for
analysis of BC-CML and TetH60+ cells. The percentages of BC-CML in blood and the total number of BC-CML cells in spleen and BM at day +21 are shown
in a. Total numbers of TetH60+ in spleen and BM, and the percentage of these that are IFN-γ+ in spleen are in b. c, d Representative flow histograms (c)
and quantification of TIGIT expression on TetH60+ cells in spleen and BM (d). (e) The percentages of BC-CML cells that are MHCII+. (f) Mice were
transplanted as in a–e except mice were treated with α-PD1, α-LAG3, both, or isotype control. Total number of TetH60+ (g) and the percentage of these
that were IFN-γ+ (h) in spleen and BM. (i) MFI of Tim-3 and TIGIT on TetH60+ cells in spleen and BM. Data from (a) are from one experiment. Additional
independent experiments comparing PD-1 blockade to isotype are in experiments analyzing LAG-3 blockade (f, g) and Tim-3 and TIGIT blockade
(Supplementary Fig. 5, b, h). In sum, 22 mice received an isotype control and 17 received PD-1 blockade alone. An additional 14 mice received PD-1
blockade with another blocking agent. Experiments testing blockade of Tim-3, TIGIT and LAG3 were single experiments. For all panels, data were analyzed
by an unpaired Student two-sided t-test. Bars are mean values, ± SEM. *P < 0.05; **P < 0.01; and ***P < 0.001.
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were CD39−TCF-1+ perhaps by reducing antigen exposure by
creating a more effective response. In TN-recipients a
substantial fraction of TetH60-negative cells also differentiated
into TCF-1+ CD39lowKLRG1lowTIM3lowLy108highPD-1low cells
(Fig. 10e, f). It is likely that these cells were alloreactive and that
the generation of TCF-1+ cells is not restricted to those reacting
to H60.

Discussion
A barrier to reducing leukemia relapse post-alloSCT has been an
incomplete understanding of the mechanisms of GVL failure.
Polyclonal T cell systems and human studies have been limited by
the inability to track GVL-inducing T cells, which we addressed
by developing a model wherein GVL is exclusively mediated by a
defined population CD8 cells reactive against H60. This
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permitted us to unambiguously identify and manipulate these
cells to test hypotheses on the mechanisms underlying leukemia
relapse. We found that GVL was limited by both ineffective
antigen presentation and the development of T cell exhaustion.
Importantly, we demonstrate clinically applicable strategies that
enhance antigen presentation, diminish exhaustion and, critically,
augment GVL. And we for the first time describe the develop-
ment of TCF-1+ alloreactive T cells derived from both TM and
TN, which could be the precursors of terminally differentiated
exhausted T cells, which may fuel alloimmune responses that
persist with chronic antigen.

As recipient hematopoietic cells were eliminated, effective antigen
presentation declined despite a growing mass of H60-bearing BC-
CML cells which, rather than stimulating T cells, contributed to their
exhaustion. Antigen presentation was improved by FGK45 and
DEC-H60 immunization acting through donor DCs. It was sur-
prising that leukemia-derived antigen was so ineffectively cross-
presented, even when leukemia cell death was induced by allor-
eactive donor CD4 cells. In contrast, caspase-9-induced leukemia
apoptosis timed with T cell infusions and FGK45 improved antigen
presentation and alloreactive T cell activation. In sum these data
highlight strategies to enhance the efficacy of donor leukocyte
infusions, which as currently applied, have limited efficacy.

However, even with vaccination or induction of leukemia
apoptosis, there was less expansion of TMH60 infused at day 14
than of TMH60 infused at day 0. This highlights how conducive
the peri-transplant period is for T cell activation, an environment
that was further improved by FGK45. The principle impact of day
0 FGK45 was to increase H60-reactive T cell division driven by
recipient APCs directly presenting H60. CD40 engagement on
APCs upregulates MHCI, CD80 and CD86 and ligands for the
TRAF-binding TNF-receptor family members 4-1BB, OX40 and
GITR40–42, which we found to be upregulated on TetH60+ cells
from FGK45-treated mice. IL-2Rα expression was also increased
on TetH60+ cells. In sum, these effects could have created a feed-
forward process that drove expansion of TetH60+ cells. CD40
activation also promotes DC survival43 which could have pro-
longed direct presentation of H60 by host APCs. Further deli-
neation of the relative impacts of each of these mechanisms will
be the subject of future work.

T cell exhaustion and a role for PD-1 in suppressing alloreactive
T cell responses have been previously reported12,44–50. However,
unlike most prior work, we were able to specifically track alloreactive
T cells, and in GVL models, those that definitively mediate GVL.
This enabled us to make additional contributions towards under-
standing exhaustion and how to mitigate it. Exhausted TetH60+ cells
expressed high levels of Eomes and Blimp-1 and lost mitochondrial
mass and mitochondrial membrane potential. Taken together, the

phenotypic, transcription factor and metabolic features of exhausted
T cells in our experiments suggest that alloreactive T cell exhaustion
in alloSCT is similar to that in chronic viral infections17,27,31,51,
which is driven by antigen exposure. Consistent with this, BC-CML
increased exhaustion via direct antigen presentation and not
through expression of PD-L1/L2. We also add to prior studies by
demonstrating that PD-1 is the dominant inhibitory checkpoint as
blockade of Tim-3, TIGIT and LAG3 did not augment GVL, though
LAG3-blockade increased the fraction of TetH60+ cells that pro-
duced IFN-γ, consistent with studies in chronic viral infection52.

We also for the first time demonstrate the generation of
TCF-1+ miHA-reactive T cell progeny of both CD8+ TN and
TMH60. These cells share phenotypic properties of TCF-1+ pre-
cursors of exhausted cells described in other models wherein there
is also sustained antigen presentation, including being CD39low-

TIM-3lowLy108+32,34–39. In our experiments their frequency was
reduced by FGK45 administration, suggesting that by boosting the
alloresponse, FGK45 accelerated H60 clearance. It is tempting to
hypothesize that these TCF-1+ cells are important for GVHD
maintenance, just as they sustain antiviral and antitumor responses.
That alloreactive TMH60 progeny were less likely to develop into
TCF-1+ cells could in part explain why TM induce less GVHD.
These questions will need to be addressed in future studies.

Our studies suggest clinically applicable strategies for improving T
cell immunotherapies. We targeted a hematopoietically-restricted
miHA, a class of antigens which has been suggested to be ideal
immunotherapy targets5,20,21 as CD8 cells that recognize these do
not cause GVHD53. Our results are also applicable to T cell
immunotherapies that target other types of antigens that are
restricted to hematopoietic or leukemia cells54–59. MiHA-specific
T cells are most potent when given at the time of transplant, when
miHAs can be directly presented by recipient APCs. Their effect is
augmented by early PD-1 blockade, and more dramatically, by anti-
CD40, which we found to be safe and which has been used in the
clinic60,61. This is in contrast to safety-driven designs wherein T cells
are infused remote from transplant when the major source of
hematopoietic antigen is leukemia cells, which we demonstrate
promote exhaustion and which are poor sources of cross-presented
antigen. If anti-leukemia T cells are infused remote from transplant
or when antigens are restricted to leukemia cells, their efficacy would
be enhanced by antigen immunization with anti-CD40 as an adju-
vant. This approach may also improve the efficacy of adoptive T cell
immunotherapies against solid tumors, wherein professional APC
presentation of neoantigens is likely to be very limited62. In patients
with overt leukemia an alternative to immunization would be
therapies that spare T cells but lead to rapid leukemia apoptosis to
promote cross-presentation, such as gemtuzumab, an anti-CD33
immunotoxin63.

Fig. 7 Treatment with anti-CD40 mAb on day 0 augments TMH60-mediated GVL. (a–e) B6.H60 mice were irradiated and reconstituted with B6 BM, B6.
H60 BC-CML, and B6 TMH60, with or without FGK45 administered on day 0. Mice were sacrificed on day +21 for analysis of BC-CML and TetH60+ cells.
Total numbers of BC-CML cells and the percentages of these that are MHCII+ in spleen and BM are in a and e, respectively. The total number of TetH60+

cells (b), the percentage of IFN-γ–producing TetH60+ cells (c), and the expression of PD-1, Tim-3, and TIGIT on TetH60+ cells (d) in spleen and BM are
shown. For a–c, and e, data are pooled from two independent experiments with 7–8 mice per group. Panel d is representative of two experiments with 3–4
mice per group. (f) Same experimental design as in (a), except donor BM was from B6 or CD40−/− mice. Total numbers of BC-CML cells in spleen and
BM are shown. Data are from one experiment (3–4 mice per group). (g) B6.H60+ B6→B6 and B6.H60Kb−/−+ B6→B6 BM chimeras were reirradiated
and reconstituted with B6 CD40−/− BM and B6 TMH60 with or without FGK45. Shown are the percentages of TetH60+ cells in blood at day +14, and total
numbers of TetH60+ at day +21 in spleen and BM. Data are representative of two experiments with 3–4 mice per group. (h) B6.H60 CD11c.DTR+→B6
Kb−/− BM chimeras were irradiated and reconstituted with B6 BM and B6 TMH60 with or without FGK45 on day 0 (untreated; untre). Mice received DT on
day −2 and day 0 to deplete recipient DCs and were sacrificed 7 days post-transplant and numbers of TetH60+ in spleen and BM cells were determined.
Data are representative of 2 experiments (4–5 mice per group). (i–l) Irradiated B6 actH60 mice were reconstituted with B6.H60 BC-CML, C3H.SW BM
and TMH60, with or without FGK45. Mice were sacrificed on day 18. Shown are number of BC-CML cells (i) and TetH60+ cells (j) in spleen and BM, the
frequency of TetH60+ cells that were IFN-γ+ (k) and the TIGIT MFI of TetH60+ cells (l). Panels i–l are from single repetition with 3–4 mice per group. For all
panels, data were analyzed by an unpaired Student two-sided t-test. Bars are mean values ± SEM, *P < 0.05; **P < 0.01; and ***P < 0.001.
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Methods
Mice. C57BL/6J (CD45.2; H-2b), B6.SJL-Ptprca Pepcb/BoyJ (CD45.1, H-2b), B6
CD11c-DTR24, B6 CD40−/−, B6 beta-2-microglobulin-deficient (β2M−/−), B6
ubiquitin-GFP transgenic and B6 RAG−/− and C3H.SW (H-2b; H60−) mice were
purchased from Jackson Labs (JAX) and were bred at the University of Pittsburgh
(Pitt). B6 Kb−/− mice were purchased from Taconic. OT-1 RAG1−/− and B6-
Rag2tm1Fwa II2rgtm1Wjl (RAG2−/−γc−/−) mice were provided by Fadi Lakkis (Pitt).

B6.H60 mice were originally obtained from Derry Roopenian (JAX) and were bred
at Pitt. B6.H60Kb−/− and B6.H60-CD11c.DTR mice were generated at Pitt. C3H.
SW CD45.1+ mice were generated by crossing C3H.SW mice to B6.CD45.1+ mice
(>10 generations). Animal breeding and experiments were performed in a specific
pathogen-free animal facility in compliance with a protocol approved by Institu-
tional Animal Care and Use Committee of the University of Pittsburgh, and we
complied with all the ethical regulations.
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Fig. 8 Anti-CD40 increases stimulatory and decreases inhibitory receptors on TetH60+ CD8 cells. a–c B6.H60 mice were irradiated and reconstituted with
B6 BM and CFSE-labeled B6 TMH60, with or without day 0 FGK45. Cohorts were sacrificed 3 days (a–c) or 7 and 14 days post transplant (d–f) to assess
proliferation, death and phenotypes of TetH60+ cells in spleen. FGK45 increased TetH60+ T cell expression of 4-1BB, IL-2Rα, OX-40 and GITR (a) and their division
index (b) but increased apoptosis (c). Total numbers of TetH60+ cells and the percentages of these that are IFN-γ+ in spleen and BM are shown in d. FGK45
reduced expression of PD-1, Tim-3 and TIGIT at days +7 and +14 (e). FGK45 also increased the fraction of cells that were Tbethigh and Eomeslow (f). Panels
a–d are pooled from two independent experiments (7–9 mice per group). Panels e, f are representative of two experiments (4–5 mice per group per experiment).
For all panels, data were analyzed by an unpaired Student two-sided t-test. Bars are mean values ± SEM. *P<0.05; **P<0.01; and ***P <0.001.
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Leukemia induction. BC-CML cells were generated as previously described25.
Briefly, BM from 5FU-treated mice underwent two rounds of spin-infection with two
MSCV2.2-based retroviruses—one encoding bcr-abl (coexpressing a nonsignaling
human nerve growth factor receptor; NGFR) and a second expressing the NUP98/
HOXA9 fusion cDNA (co-expressing GFP). iCasp9 B6.H60Kb−/− BC-CML was

generated by spin-infection of B6.H60Kb−/− BM with bcr-abl and NUP98/HOXA9
retrovirus with an additional retrovirus encoding an iCasp-9 inducible suicide gene
linked via a cleavable 2A-like sequence to a truncated human CD19 marker gene26

(gift from Cliona M. Rooney; Baylor College of Medicine). Multimerization and
activation of iCasp9 was achieved by in vivo treatment with AP20187 (Clontech).
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Fig. 9 Anti-CD40 augments the anti-miHA response of naïve CD8 cells. (a–c) Irradiated B6.H60 mice were reconstituted with C3H.SW BM and C3H.SW
CD8 cells from unmanipulated donors (referred to as naïve T cells; TN), with or without FGK45 administered on day 0. Representative TetH60 staining is in
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a–c are representative of 2 experiments (n= 4 or 5 per group). d FGK45 augments TN CD8-mediated GVL. B6.H60 mice were irradiated and reconstituted
with BC-CML, B6 BM and B6 CD8 cells from unmanipulated donors, with or without FGK45. Mice were sacrificed on day +16. The numbers of BC-CML
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one experiment (four mice per group). e FGK45 augments GVL that targets other miHAs. Irradiated B6 mice were reconstituted with B6 BC-CML, C3H.SW
BM and CD8 cells, with or without FGK45. Mice were sacrificed on day +18. Shown are numbers of BC-CML cells, percentages of donor Ly9.1+CD8+ cells
that were IFN-γ+ or PD-1+Tim-3+ and the MFIs of TIGIT and Eomes on donor CD8 cells. Data are from single experiment (4–5 mice per group). All panels
were analyzed by an unpaired Student two-sided t-test. Bars are means ± SEM. *P≤ 0.05; **P≤ 0.006; ***P≤ 0.007.
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Vaccination. To create CD8+ H60-reactive memory T cells (TMH60) or effectors
(Teff), C3H.SW or B6 background mice were injected with 50 μg anti-DEC205-H60
(a construct encoding an antibody against DEC-205 modified to express the
LTFNYRNL epitope from H60;18 laboratory-prepared) and 50 μg of an agonist
antibody against CD40 (FGK45; laboratory-prepared). TMH60 were harvested
3 months after vaccination. To generate OT-1 Teff, B6 mice were injected with

50 μg anti-DEC-OVA16 (laboratory-prepared) and 50 μg FGK45 after adoptive
transfer of 105 OT-I Rag1−/− splenocytes.

Cell purifications. T cell purifications from lymph node (LN) and spleen cells
were performed using EasySep negative selection reagents according to the
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manufacturer’s instructions (StemCell Technologies). Cell purities were >90% with
<2% of contaminating CD4 cells. CD8+ memory T cells (TM) were isolated from
H60-vaccinated mice by first using EasySep CD8 negative selection kit. Cells were
then stained with antibodies against CD8 and CD44, followed by sorting on a
FACS Aria (BD-Biosciences). Donor BM in all experiments was depleted of T cells
using anti-Thy1.2 microbeads (EasySep) and is referred to as BM.

Bone marrow transplantation. All transplants were performed according to
IACUC-approved protocols. All irradiation was from a cesium source. B6.H60
mice were irradiated with 900 cGy and reconstituted with 5 × 106 C3H.SW or B6-
background BM cells, TMH60 from C3H.SW or B6 mice, with or without BC-CML
cells. TMH60 were not sorted for TetH60+ cells. 200 μg of anti-NK1.1 (PKC136; lab-
prepared) was given i.p. on days -2 and -1 in experiments with Kb−/− BC-CML to
diminish NK cell-mediated killing of Kb− cells. In some experiments, fresh con-
genic TMH60 were transferred to recipient mice at day +14 post BMT, following
treatment with DEC-H60 (50 μg/mice), FGK45 (50 μg/mice) or both.

BM chimeras. To create B6.H60 CD11c.DTR→B6 Kb−/− BM chimeras, B6 Kb−/−

mice received 2 × 500-cGy fractions (separated by 3 h) followed by reconstitution
with 107 B6.H60+/−CD11c.DTR+/− BM. To create mixed BM chimeras, donor
BM from B6.H60Kb−/− or B6.H60 mice were mixed in a 1:1 ratio with B6 BM to
reconstitute irradiated B6 mice. Donor BM reconstitution was verified 8 weeks after
transplantation by flow cytometric analysis of peripheral blood.

In vivo CTL assay. To create BC-CML that had escaped a GVL response, B6.H60
mice were irradiated and reconstituted with C3H.SW BM, B6.H60 BC-CML and
C3H.SW TM containing 104 TMH60. When relapsed BC-CML was harvested more
than 50% of splenocytes were BC-CML cells. Fresh BC-CML cells were isolated
from irradiated B6.H60 mice that were reconstituted with B6.H60 BC-CML and
C3H.SW BM alone. Fresh and relapsed BC-CML cells were subjected to in vivo
CTL assays as follows. To test killing directed against H60, fresh and resistant
H60+ BC-CML and negative control H60−kb−/− BC-CML were injected i.v. into
B6 mice that had been vaccinated 7 days prior with DEC-H60 and FGK45. To test
killing directed to SIINFEKL, B6 mice were seeded with OT-1 cells followed by
vaccination with DEC-OVA and FGK45. Seven days later, fresh and relapsed BC-
CML cells that were or were not pulsed with SIINFEKL were injected into OT-1-
seeded or unmanipulated B6 mice. Different BC-CML cells were distinguished by
cell trace violet (CTV) and cell tracker DeepRed (CTR; ThermoFisher) staining.
Mice were sacrificed 18 h later for BC-CML enumeration.

Tetramer, antibodies, and other reagents. H60 tetramers were produced by the
NIH tetramer facility. Antibodies (Ab) and sources are as follows. Antibodies
specific for CD44 (IM7), CD62L (MEL-14), CD45.1 (A20), CD45.2 (104), CD11b
(M1/70), H2-Kb(AF6-88.5), I-A/I-E (M5/114.15.2), ICAM-1 (YN1/1.7.4), PD-1
(29F.1A12), Tim-3 (RMT3-23), TIGIT (1G9), 4-1BB (17B5), OX-40 (OX-86), IL-
2Rα (PC61), TNF-α (MP6-XT22) KLRG1 (2F1), Ly108 (330-AJ) and Blimp-1
(5E7) were from BioLegend. GITR (DTA-1) and IFN-γ (XMG1.2) were from BD
Biosciences. Eomes (Dan11mag), T-bet (4B10), TOX (TXRX10) and CD39
(24DMS1) were from ThermoFisher. CD8α (53-6.7) was laboratory prepared.
LAG3 (4-10-C9) was provided by Dario Vignali and Creg Workman (Pitt).

Propidium iodide (Sigma) or Fixable Viability Dye eFluor 780
(ThermoFisher) were used to exclude dead cells. T cell restimulations were
performed using the H60 peptide LTFNYRNL (Genescript) for 5 h. GolgiStop
(BD Biosciences) was added for the final 3 h. Intracellular cytokine staining was
performed using the BD Cytofix/Cytoperm kit. Transcription factor and Annexin
V staining was performed using the FoxP3 staining (ThermoFisher) and Annexin
V (BioLegend) kits, respectively. For metabolism assays cells were pulsed with 50
mM 2-NBDG (ThermoFisher) in FBS-free media for 30 min at 37 °C. Cells were
surface stained and loaded with MitoTracker DeepRed or TMRE
(ThermoFisher). For antibody blocking experiments, BC-CML-bearing mice
were injected with 200 μg/mouse αPD-1 (RMP1-14, BioLegend), 200 μg/mice
αLAG3 (C9B7W;64 gift of Dario Vignali and Creg Workman), 200 μg/mice
αTim-3 (RMT3-23, BioLegend), 500 μg/mice αTIGIT (10A7, Genentech) or

respective murine or rat isotype controls (BioXCell), i.p. three times per week for
2 weeks starting from day 7 post BMT. Diphtheria toxin (DT) was from List
Biological Laboratories. Flow cytometry was performed on a BD LSR II (BD) and
data was analyzed using FlowJo (v10.5.3).

Statistical analysis. Bars on scatter plots are mean values. Statistical significance
was calculated using an unpaired Student two-sided t-test (GraphPad Prism)
except in CTL assays wherein a paired two-sided t-test was employed to compare
fresh and relapsed BC-CML cells in the same mice.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all of the data supporting the findings of this study are available
within the paper and its supplementary information files. Raw data are included in the
Source data file. Source data are provided with this paper.
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