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Abstract: This Commentary is intended to start a discussion in the field of calcifica-
tion/ossification related to osteogenesis. It highlights that two types of bone formation,
static osteogenesis (SO) and dynamic osteogenesis (DO), are temporally followed by each
other in bone histogenesis and bone lesion repair. Moreover, they also represent the
common denominator in the pathological processes of both calcification and peculiar
ossifications, such as heterotopic ossification and the formation of supernumerary skele-
tal segments. The final objective is to propose a different interpretation of certain bone
alterations/pathologies, attributable to the two peculiar osteogenesis patterns (SO and
DO), occurring in both physiological and pathological conditions. From these reflections,
new approaches in the definition of diagnosis and therapies of certain alterations could
be derived.
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1. Introduction
In the various processes involving calcification, particularly ossification, under both

physiological and pathological conditions (frequently associated with aging and/or differ-
ent diseases), it is often possible to identify a common denominator. This is represented
by the set of two processes, temporally successive to each other, which are named static
osteogenesis (SO) and dynamic osteogenesis (DO), respectively [1].

Among the possible causes at the origin of pathological calcification/ossification
events, just to give some examples of anomalies, are the following: (a) heterotopic ossifica-
tion occurring in soft tissues in which bone does not normally form [2,3]; (b) supernumerary
skeletal segments (together with body asymmetry, hypertrophy or hypotrophy) in both
the axial and appendicular skeleton [4–6]; (c) segmentation defects during spine organo-
genesis [7]; (d) human facet joint osteoarthritis (FJOA), a degenerative spine disorder in
aging [8]; (e) osteogenesis imperfecta (OI), an inherited disorder that prevents normal bone
formation by making bones extremely brittle, caused by gene mutations [9,10].

As mentioned, these different types of anomalies share the same osteogenesis pathways.

2. Structural and Functional Differences Between SO and DO
Regarding osteogenesis, the first thing to state is that there is no unique process

of bone formation. In fact, two different pathways of bone formation can occur on the
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basis of the following: (1) function to be performed, (2) time of occurrence, (3) types of
osteoblasts involved (in relation to arrangement, polarization, motion), (4) conditioning
factors to which different types of osteoblasts are sensitive (endothelial-derived cytokines vs.
mechanical loading). It is important to underline that, both in physiological conditions and
bone healing, SO and DO take place temporally one after the other during intramembranous
ossification [1,11]. In particular, static osteogenesis is laid down by stationary osteoblasts
(arranged in cords) and provides the preliminary rigid scaffold on which later dynamic
osteogenesis, laid down by movable osteoblasts (arranged in laminae), produces mature
bone tissue capable of meeting both the mechanical and metabolic skeletal needs (Figure 1).
As a consequence of the two types of osteogenesis, the histology of the derived bone
tissue is very different: woven-fibered bone containing haphazardly distributed globous
osteocytes in SO and lamellar bone containing almond-shaped osteocytes ordered in planes
in DO (Figure 2).
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Figure 1. Histological section of an intramembranous ossification center showing a cord of stationary
osteoblasts that provide the preliminary rigid scaffold (colored blue). Note the laminae of movable
osteoblasts on the surfaces of pre-existing bone laid down by SO.

An additional diversifying aspect between SO and DO is the speed at which they take
place: in SO the bone matrix is generally produced very rapidly, while in DO the events
proceed over a longer period of time. Thus, the former rapidly allows for the production
of a preliminary network of trabecular woven bone (surrounding wide primitive vascular
spaces), which has a supporting function for subsequent lamellar bone apposition that
needs more time to reach more organized bone texture [1,11].
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Figure 2. Histological section showing, as a result of the intramembranous ossification process,
woven-fibered bone containing haphazardly distributed globous osteocytes (by SO) surrounded by
the black dotted line, and lamellar bone containing almond-shaped osteocytes ordered in planes (by
DO) indicated by black arrows.

The functional meaning of the two types of osteogenesis in terms of resistance to
mechanical load is also relevant. SO produces bad-quality bone, whereas DO produces
good-quality bone that is resistant to mechanical loading. These different features depend
on both bone cellularity and the collagen arrangement of the bone matrix: high cellularity in
woven texture by SO and fewer osteocytes located in planes in lamellar texture by DO [11]
(Figure 3).
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Figure 3. Schematic drawing of cellularity and texture in SO vs. DO. The core of preliminary
trabeculae is formed by highly cellular woven bone by SO in which globous osteocyte lacunae are
present. The lamellar bone by DO, surrounding the core, has fewer osteocyte lacunae of ellipsoidal
shape located in planes. In the two inserts, SEM micrographs of lamellar bone (top) and woven bone
(bottom) are shown. Red circles = vessels.

Another point worthy of discussion is the role of SO/DO in endochondral ossifica-
tion, in order to understand whether the occurrence of SO and DO represents a universal
osteogenic principle or is restricted to intramembranous contexts. In actual fact, in our
specific study on endochondral ossification, SO never seems to take place [12]. Indeed, the
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osteoblasts in contact with the remnants of calcified cartilage are directly arranged in mov-
able laminae and all appear to be functionally polarized in the same direction (i.e., toward
the calcified cartilage). Moreover, the osteocytes inside the bone surrounding the calcified
cartilage are never grouped inside confluent lacunae. This means that, in endochondral
ossification, dynamic osteogenesis is not preceded by static osteogenesis. Hence, these ob-
servations on endochondral ossification confirm the hypothesis that dynamic osteogenesis
needs a rigid mineralized surface to occur and that static osteogenesis only occurs in soft
tissues where a rigid framework is lacking. This aspect is also in line with more recent
observations by other authors [13,14].

3. Abnormal Processes of Ossification/Calcification
Considering the cases in which abnormal processes of ossification or calcification

can occur, as far as heterotopic ossification (HO) is concerned, in a 2008 [2] description of
a clinical case of HO in the scapulo-humeral region concomitant with keloid formation,
we clearly demonstrated from the simple histological observations of the ectopic tissue
(texture organization and shape/distribution of the cells) that the pattern of HO formation
retraces the ontogenetic steps that normally occur along with intramembranous ossification:
formation of woven-fibered bone by SO, which is the first to be formed, constituting the
core of primary spongiosa, and lamellar bone later laid down by DO on primary core [2]
(Figure 4). The same evidence was later reported by Ranganathan and colleagues in 2015 [3],
where the authors indicated four classes of islands of HO within soft tissues of the hip,
including the “early” histological heterotopic ossification corresponding to onset of bone
tissue formation of our SO, with respect to more “mature” evolution of HO corresponding
to successive formation by means of our DO. As far as the etiology is concerned, although
the onset of the various forms of HO is still unclear, several authors suggest taking into
consideration inflammatory triggers and the tissue environment, both closely related to the
vascular context [15,16].

Biomolecules 2025, 15, x FOR PEER REVIEW 4 of 8 
 

osteogenic principle or is restricted to intramembranous contexts. In actual fact, in our 

specific study on endochondral ossification, SO never seems to take place [12]. Indeed, the 

osteoblasts in contact with the remnants of calcified cartilage are directly arranged in mov-

able laminae and all appear to be functionally polarized in the same direction (i.e., toward 

the calcified cartilage). Moreover, the osteocytes inside the bone surrounding the calcified 

cartilage are never grouped inside confluent lacunae. This means that, in endochondral 

ossification, dynamic osteogenesis is not preceded by static osteogenesis. Hence, these ob-

servations on endochondral ossification confirm the hypothesis that dynamic osteogene-

sis needs a rigid mineralized surface to occur and that static osteogenesis only occurs in 

soft tissues where a rigid framework is lacking. This aspect is also in line with more recent 

observations by other authors [13,14]. 

3. Abnormal Processes of Ossification/Calcification 

Considering the cases in which abnormal processes of ossification or calcification can 

occur, as far as heterotopic ossification (HO) is concerned, in a 2008 [2] description of a 

clinical case of HO in the scapulo-humeral region concomitant with keloid formation, we 

clearly demonstrated from the simple histological observations of the ectopic tissue (tex-

ture organization and shape/distribution of the cells) that the pattern of HO formation 

retraces the ontogenetic steps that normally occur along with intramembranous ossifica-

tion: formation of woven-fibered bone by SO, which is the first to be formed, constituting 

the core of primary spongiosa, and lamellar bone later laid down by DO on primary core 

[2] (Figure 4). The same evidence was later reported by Ranganathan and colleagues in 

2015 [3], where the authors indicated four classes of islands of HO within soft tissues of 

the hip, including the “early” histological heterotopic ossification corresponding to onset 

of bone tissue formation of our SO, with respect to more “mature” evolution of HO corre-

sponding to successive formation by means of our DO. As far as the etiology is concerned, 

although the onset of the various forms of HO is still unclear, several authors suggest 

taking into consideration inflammatory triggers and the tissue environment, both closely 

related to the vascular context [15,16]. 

 

Figure 4. Histological section (A) of HO showing the two types of bone tissue coexisting in a trabec-

ula: lamellar bone (by DO) covering both sides of the more deeply located woven-fibered bone (by 

SO) is delimitated by dotted red lines. In the two types of bone tissue, the microscopic arrangement 

is due to different disposition and morphology of osteocytes (globous or almond-shaped, sketched 

in (B)). (B): Globous osteocytes between the two red dotted lines; almond-shaped osteocytes above 

and below the lines. 

Abnormal ossifications may also occur in association with very peculiar pathologies 

like cutis marmorata telangiectatica congenita, whose pathophysiology is unknown, though 

Commented [EE11]: Please check that intended 

meaning has been retained. 

Commented [M12]: Please confirm if the italics 

are necessary; if not, please remove them. The 

following highlights are the same. 

Figure 4. Histological section (A) of HO showing the two types of bone tissue coexisting in a trabecula:
lamellar bone (by DO) covering both sides of the more deeply located woven-fibered bone (by SO)
is delimitated by dotted red lines. In the two types of bone tissue, the microscopic arrangement is
due to different disposition and morphology of osteocytes (globous or almond-shaped, sketched
in (B)). (B): Globous osteocytes between the two red dotted lines; almond-shaped osteocytes above
and below the lines.

Abnormal ossifications may also occur in association with very peculiar patholo-
gies like cutis marmorata telangiectatica congenita, whose pathophysiology is unknown,
though it is proposed by some authors to be autosomal-dominant with low penetrance
and multifactorial [17,18]. In a case report of cutis marmorata telangiectatica congenita [4],
a supernumerary bone segment was observed in the skeleton of the foot; the abnormal
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morphological aspect of the supernumerary metatarsal bone can be explained by the up-
or down-regulation of SO and DO, which affect the diaphyseal cortex, resulting in the
bone being both thicker and with an osteoporotic-like aspect, due to enormous cavities
which impart a spongy architecture to “compact” bone. In particular, the larger exter-
nal diaphyseal size is based on the fact that the periosteal bone apposition, due to the
succession of SO (first) and DO (later), was more intense than normal; in parallel, the
endosteal bone resorption did not occur. As a consequence, the cortex of the supernu-
merary metatarsal bone was found to be incomparably thicker than normal, as result of
peculiar modeling; this fact is in line with the limb hypertrophy. Moreover, the osteopenic
appearance of the diaphyseal cortex is due to an unbalanced remodeling, viz, the fact
that the first stage of bone remodeling (i.e., bone resorption) not only took place in an
abnormal overwhelming manner but was also not followed by the successive stage of bone
remodeling (i.e., bone deposition), normally occurring by DO. As a result, the cortex of the
supernumerary metatarsal achieved a trabecular osteoporotic microarchitecture. Obviously,
other causes could explain the abnormal development of supernumerary metatarsal bone,
such as alterations of the angiogenesis of the metaphyseal bones as observed by Pasteels
and colleagues [19].

Regarding segmentation defects during spine organogenesis [7], alterations of ossifica-
tion can depend on multiple factors, some of which occur very early, such as disruption or
injury to (i) the somitic mesoderm during gastrulation, (ii) the somites during segmentation
or (iii) the sclerotomal precursors during the membranous phase that could unilaterally
decrease the ability of the sclerotome to contribute to the formation of the vertebra. Al-
though disordered ossification was originally proposed as a cause, the presence of these
malformations in embryos from 7 to 11.5 weeks of gestation suggests that ossification is
likely affected only at a later time [20–22]. In agreement with this suggestion, other authors
observed that the failure of bone formation can be due to a deficiency of ossification due to
a lack of vascularization [23]. In this regard, we have shown the onset of SO to be closely
related to the location of blood vessels and to the presence of endothelial-derived cytokines,
which are conditioning factors to which stationary osteoblasts are sensitive [1,11].

As far as human facet joint osteoarthritis (FJOA) is concerned, this pathology is relevant
among the degenerative spine disorders and it is highly prevalent in aging populations,
and considered a major cause of chronic lower back pain. In FJOA, the remodeling of
the subchondral trabecular bone compartment is characterized by a peculiar increase
in trabecular number [8]; this observation can be explained with the formation of new
trabeculae by the recruitment of osteoprogenitor cells by endothelial-derived growth factors,
which typically trigger static osteogenesis (in contrast to mechanical stresses which trigger
dynamic osteogenesis). The same authors also commented that a histological analysis of
osteocyte lacunae in healthy and osteoarthritic specimens could provide further support
for the role of static osteogenesis in the pathogenesis of FJOA.

Last but not least, osteogenesis imperfecta (OI), a rare genetic syndrome involving
skeletal fragility and increased exposure to bone fractures [24,25], is another pathology
where static and dynamic osteogenesis explain some of the evidence, as described by
Shapiro et al. in 2020 [9]. Our definitions of “stationary osteoblasts” in static osteogenesis
and “movable osteoblasts” in dynamic osteogenesis correspond to the terms “MOBLs” and
“SOBLs” previously used by Shapiro [10], in relation to the differences in both location
and function of “mesenchymal osteoblasts” (MOBLs), which produce woven bone, with
respect to “surface osteoblasts” (SOBLs), which produce lamellar bone. In fact, after the
production of woven bone by MOBLs, SOBLs continue to secrete lamellar bone near the
woven scaffold. Shapiro and colleagues [9] observed in OI that “the more severe the variant
of OI is, the greater the persistence of woven bone and the more immature the structural
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pattern; the pattern shifts to a structurally stronger lamellar arrangement once a threshold
accumulation for an adequate scaffold of woven bone is has been reached”. Similarly, in
our review in 2021 [11], we correlated SO and DO with the deposition, in succession, of
woven (first) and lamellar (later) bone by MOBL and SOBL, respectively, which occurs in
both normal bone formation and repair of injured or pathological bone. It is interesting to
note that in the less serious variant of OI, the organization of lamellar bone increases, as a
result of increased dynamic osteogenesis.

4. Conclusions
To conclude, it is to be underlined that during histogenesis or the remodeling of hard

tissues, physiological calcification is strictly related to the two processes of osteogenesis (SO
vs. DO), also differently involved in various anomalies of ossification and bone pathologies.
While various differences between the two types of osteogenesis are already well known
(like conditioning factors, speed of occurrence, cellularity, texture and mechanical proper-
ties), the correlated process of calcification is yet to be investigated, and we are currently
studying this intensively to understand whether the signaling pathways underlying calci-
fication are similar or different in static vs. dynamic osteogenesis. Actually, calcification
as well as bone mass is affected by mechanical loading; as previously reported, in bone
formation and healing the first stages of bone deposition produce poor-quality bone due
to inductive stimuli (likely of vascular origin), so that loading appears to be useless or
sometimes even dangerous during static osteogenesis. On the contrary, mechanical loading,
which is known to greatly enhance movable osteoblast activity during DO, becomes very
important soon after the end of the process of bone formation by SO.

Among the previously described differences between the two types of osteogenesis,
as far as the speed of occurrence is concerned, SO and DO differ in the fact that in SO the
bone matrix is generally produced very rapidly, to allow the formation of a preliminary
network of trabecular woven bone, surrounding the vascular spaces; as mentioned before,
this means that the main purpose of SO is precisely to provide a preliminary rigid lattice to
serve as a temporary support for the successive more ordered (viz, formed by lamellar bone)
and slower deposition that characterizes DO. Thereafter, thickening of the SO-trabeculae
by DO occurs and, as a result, narrowing of the primitive vascular spaces, giving rise
to the primary osteons which will subsequently begin to undergo lifelong remodeling
processes to adapt, moment by moment, the structure of the bone to the current metabolic
and mechanical demands of the skeleton.

It could be relevant to explore the circumstances, if any, in which the calcification
process follows different modalities in the two types of physiological osteogenesis and in
the alterations of ossification, regardless of whether they concern heterotopic ossifications,
supernumerary segments and/or anomalies secondary to altered morphogenesis processes
during skeletal organogenesis.

The authors are aware of the complexity of the topic, but hope that the present
“Commentary” can initiate and trigger a profound reflection on the role that calcification
(often, in the context of skeletal tissues, trivialized as a routine event that follows the
production of osseous matrix) may play in the etiopathogenesis of certain bone pathologies
or alterations of morphogenetic processes that lead to congenital or acquired anomalies.

The final aim of our efforts is to start a discussion in the field of osteogenesis-related
calcification/ossification that can trigger ideas and dissemination of results by all those
researchers who share this important topic, in order to propose, based on a different reading
key, new therapeutic strategies for the conditions of alteration of these processes.
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