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Abstract: We demonstrate an electrospray/electrospinning process to fabricate stimuli-responsive
nanofibers or particles that can be utilized as stimuli-responsive drug-loaded materials. A series
of random copolymers consisting of hydrophobic ferrocene monomers and hydrophilic carboxyl
groups, namely poly(ferrocenylmethyl methacrylate-r-methacrylic acid) [poly(FMMA-r-MA)] with
varied composition, was synthesized with free radical copolymerization. The morphologies of
the resulting objects created by electrospray/electrospinning of the poly(FMMA-r-MA) solutions
were effectively varied from particulate to fibrous structures by control of the composition,
suggesting that the morphology of electrosprayed/electrospun copolymer objects was governed by
its composition and hence, interaction with the solvent, highlighting the significance of the balance of
hydrophilicity/hydrophobicity of the copolymer chain to the assembled structure. Resulting particles
and nanofibers exhibited largely preserved responsiveness to reactive oxygen species (ROS) during
the deposition process, opening up the potential to fabricate ROS-sensitive material with various
desirable structures toward different applications.

Keywords: electrospinning/electrospray; ferrocene; amphiphilic polymer; nanofiber/nanoparticle;
ROS responsiveness

1. Introduction

Research on local and temporary drug delivery systems (DDS) has gained considerable momentum
in the development of new drug treatments [1]. As often observed in living organisms, many important
functions are controlled by pulsed or temporarily released biologically active substances, in response
to “demand” at specific times and sites [2,3]. In addition, many biologically active substances are
being developed into more effective and complex treatment methods [1]. These treatment methods are
usually rapidly metabolized in the body and may cause undesirable cytotoxic side effects when in
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large doses [4,5]. Thus, the novelty of a formulation that directly delivers drugs to diseased cells is
identified as an essential factor for realizing the accuracy and specificity of treatment.

Remarkably, stimuli-responsive materials have newly programmable delivery systems where the
release of the loaded drugs can be freely controlled by numerous intra- and extracellular biological stimuli
(e.g., enzyme [6], pH [7], and redox potential [8]) in addition to external activations (e.g., temperature [9],
light [10], and ultrasound [11]). Among them, materials responsive to a chemical stimulus such as reactive
oxygen species (ROS) are ideal carriers because they could result in timely drug release patterns in
specific physiological environments [12]. Ferrocene is a hydrophobic, organic compound used widely in
the production of polymeric nanoparticles, and it allows for reversible self-assembly and controlled drug
release [13]. In particular, with high levels of ROS, the hydrophobic neutral state of the ferrocene molecule
undergoes oxidation and is rapidly converted to a hydrophilic ferrocenium cation, thus triggering drug
release through the hydrophobic-to-hydrophilic transition [14]. Furthermore, in vivo safety of ferrocene
has been demonstrated by clinical trials [15]. Thus, ferrocene-containing materials could be potential
carriers for effective ROS-responsive drug delivery.

Until now, various research has been limited to polymersomes, hydrogels, and micelles [16].
Due to the importance of the fibrous and porous nanoscopic topography of the extracellular matrix
(ECM) in facilitating basic cellular processes, new vehicles with biomimetic nanofiber properties are
being considered [17]. Attractive drug transportation carriers are being progressed with a nanofibrous
structure that enables maximum loading efficiency and low loading loss through uniform dispersion
of drugs into the polymer matrix [1]. This type of nanofiber in sub-micron size can be fabricated with
an electrospinning technique, which is regarded as one of most effective ways to produce incessant
nanofibers from almost any supramolecules, composites, or polymers, which get tangled into a shape
similar to polymers. The chance of using an electrospun nanofiber matrix as a concept to control the
release of a wide variety of drugs, including anticancer drugs and antibiotics, has been explored [18].

The electrospinning technique utilizes interactions between an electrically charged liquid’s surface
and a substrate. When a sufficiently high electric field is applied to a polymer droplet, an electrostatic
repulsion force is generated on the liquid surface, counteracting its surface tension. As a consequence,
the droplets ejected from the tip are stretched out to form nanofibers called electrospun nanofibers.
On the other hand, when a stable liquid droplet on the tip is disintegrated into a number of droplets above
the critical voltage, it is referred to as electrospray [19]. In the electrospray process, micro- or nanoscale
particles are formed through instant and complete evaporation of the solvent during the flight of liquid
droplets to the collector. It is well-known that the determination of electrospinning and electrospray
is highly dependent on viscoelasticity and surface tension of the solution, which are controlled
by its concentration [20]. The electrospray process leads to the formation of micro/nanoparticles,
while the electrospinning process fabricates a fibrous structure. The processing parameters of the
electrospinning/spray techniques have been investigated in various literature, which reports that
solution concentration, applied voltage, solution feeding rate, tip-to-collector distance, and solubility
parameter have varying effects on fiber or particle structure [21–24]. In addition, the interaction
between polymer and solvent molecules, i.e., the type of solvent, largely affect the final morphology
of the electrosprayed/electrospun structure [25]. Eventually, by control of the various parameters
discussed above, the resulting morphology should be effectively controlled. Herein, we combined the
electrospray/electrospinning techniques with stimuli-sensitive materials to fabricate stimuli-responsive
drug-loaded nanofibers or particles. We previously developed ROS-responsive ferrocene nanoparticles
formed by self-assembly of random copolymers consisting of hydrophobic ferrocene monomers
and hydrophilic carboxyl groups, namely poly(ferrocenylmethyl methacrylate-r-methacrylic acid)
[poly(FMMA-r-MA)], with outstanding release performance in ROS environments [13]. In the
attempt to obtain a more efficient and specific system for developing ROS-responsive materials,
ROS-responsive ferrocene polymer fiber (FPF) and ferrocene polymer particle (FPP) were fabricated
with the electrospinning process, as illustrated in Figure 1. Interestingly, the morphologies of the
resulting electrosprayed/electrospun poly(FMMA-r-MA), ranging from particulate to fibrous structure,
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were governed by copolymer composition and its interaction with the solvent, highlighting the
significance of the hydrophilicity/hydrophobicity balance of the copolymer chain to the assembled
structure during the deposition process. The responsiveness to ROS was preserved with the employed
process, further opening up the feasibility to fabricate ROS-sensitive material with the desired structure.
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Figure 1. Schematics showing the synthesis of poly(FMMA-r-MA)) random copolymers and its
use for fabricating a ferrocene polymer fiber (FPF) and a ferrocene polymer particle (FPP) with the
electrospinning process.

2. Materials and Methods

2.1. Materials

Ferrocenylmethyl methacrylate (FMMA, 95%), methacrylic acid (MA, 99%), tetrahydrofuran
(THF, anhydrous, 99.9%) and an inhibitor removal column were purchased from Sigma-Aldrich
(St. Louis, MO, USA). 2,2-azobisisobutyronitrile (AIBN, 99%) was obtained from Daejung Chemical
(Seoul, Korea). Deionized (DI) water was purchased from HyClone (Logan, UT, USA). Hydrogen
peroxide aqueous solution (H2O2, 30%) was obtained from Junsei Chemical (Tokyo, Japan). All solvents
were used as received without any further purification.

2.2. Characterization

The morphologies were examined using field emission scanning electron microscopy (FE-SEM,
SU8010, Hitachi Co., Tokyo, Japan). All SEM specimens were coated with osmium using an ion
coater (E-1045, Hitach, Tokyo, Japan) for 60 s prior to SEM imaging to enhance the conductivity of the
samples. Elemental mapping analysis was accomplished using an energy-dispersive X-ray spectrometer
(EDS, X-MAX 50, Oxford, UK) with the silicon drift detector (SDD) type (50 mm2 collection window).
X-ray photoelectron spectroscopy (XPS) was conducted using a Thermo Scientific K-Alpha instrument
(Waltham, MA, USA) with a monochromated Al Kα X-ray source at a takeoff angle to the substrate
of 45◦. Proton nuclear magnetic resonance (1H NMR, 400 MHz) spectra were recorded on a JEOL
JNM-ECZ400S/L1 spectrometer (JEOL, Tokyo, Japan) using deuterated dimethyl sulfoxide (DMSO-d6)
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as the solvent at 25 ◦C. Molecular weight and dispersity (Ð = Mw/Mn) of the ferrocene-containing
copolymer samples were obtained by size exclusion chromatography (SEC, 1200S/miniDAWN TREOS,
Agilent Technologies, Santa Clara, CA, USA) at a flow rate of 1.0 mL/min at 35 ◦C with THF as the
eluent. To verify the sensitivity to ROS of the electrosprayed particles and electrospun nanofibers,
0.1% hydrogen peroxide (H2O2) was added to the electrospun/electrosprayed samples as an oxidizing
agent in aqueous solution (1 mg/mL) with gentle stirring for 4 h, followed by lyophilization to the
obtained ROS-treated samples. Morphological and compositional changes upon oxidation were
studied using SEM (TESCAN Mira3, Czech Republic) and XPS measurements.

2.3. Synthesis of Poly(FMMA-r-MA)

Ferrocene-containing copolymers were synthesized via radical polymerization, as previously
reported. Prior to polymerization, MA was passed through the inhibitor removal column. As a typical
procedure, FMMA (0.4 mmol) and MA (0.5 mmol) were dissolved in 2 mL of anhydrous THF, followed
by AIBN addition (0.12 mmol). The mixture was then degassed with Ar gas bubbling for 5 min.
The reaction mixture was stirred at 70 ◦C for 24 h for the polymerization reaction, followed by cooling
down to below 25 ◦C and, finally, stored at 4 ◦C before use. Five ferrocene-containing copolymers with
variations of the feed ratio of FMMA and MA monomers were synthesized: Poly C0.5 (molar ratio of
FMMA to MA of 0.4:0.5), Poly C1 (0.4:1), Poly C1.5 (0.4:1.5), Poly C2 (0.4:2), and Poly C2.5 (0.4:2.5).
The composition of the resulting copolymers was quantitatively analyzed with 1H NMR spectra by
integrating the identified peaks as follows: δ = 4.8 (br, 2H, CH2 of FMMA), 4.1–4.4 (br, 9H of FMMA),
3.3–3.7 (br, 20H), 2.5–2.7 (br, 18H), 1.7–2.0 (br, 15H), and 0.8–1.1 (br, 17H) ppm.

2.4. Electrospinning of Ferrocene-Containing Polymers

All ferrocene-containing polymer solutions for electrospinning were prepared in THF with
the concentration of 20 wt% to investigate the electrospinning behavior, depending on copolymer
composition. An electrospinning apparatus (ESR200RD, NanoNC, Seoul, Korea) was equipped with
a 30 kV high-voltage generator and drum-type collector (NNC-DC90H, NanoNC, Seoul, Korea).
The prepared copolymer solution was injected into a plastic syringe containing a metallic needle
(tip gauge: 21), and the injection rate was precisely controlled with a syringe pump. The process
parameters, voltage, tip-to-collector distance, and flow rate were set to 20 kV, 10 cm, and 1 mL/h,
respectively. All electrospinning experiments were performed at room temperature with relative
humidity of approximately 40%.

3. Results and Discussion

3.1. Morphology Studies

The resulting morphology of an electrospun/electrosprayed sample is governed by various
parameters, i.e., concentration of polymer solution, solvent quality, and various spinning process
parameters. Particularly, solvent quality, i.e., the interaction between a polymer chain and solvent
molecules, is a significant factor in determining the morphology. This effect on the final morphology of
electrosprayed particles or electrospun nanofibers was effectively described with the compatibility
of a polymer with different solvents. In electrospinning and electrospraying processes, the applied
electrodynamic force overcomes the surface tension of the polymer solution, and as a result, the
solution droplet is deformed to make Taylor cone-jet. If the applied electric force is sufficiently intense,
a distorted hemispherical liquid drop is formed at the end of the top. Above the critical voltage, a liquid
jet at the end of the capillary disintegrates into a number of small droplets that are sprayed to form
particles or stretched out to form a nanofiber. Solvent quality, i.e., the interaction between polymer
chains and solvent molecules, significantly affects the viscoelasticity of the solution and hence, the
final morphology is also affected.
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The random copolymers consisted of FMMA and MA units with varied compositions, and the
FMMA and MA units were expected to be hydrophobic and hydrophilic, respectively. Therefore,
the compositional variation also systematically controlled the interaction between the copolymer
and the solvents. This effect is clearly observed in Figure 2, showing SEM images of the resulting
morphologies of electrospun/sprayed poly(FMMA-r-MA)s with different compositions. Poly C0.5 units,
having the richest amount of FMMA, exhibited a particulate structure during the process (Figure 2a).
As the amount of MA units increased, the resulting structure, upon electrospinning, changed to a
fibrous structure. Poly C1 with amount of MA double than that of Poly C0.5 exhibited a mixed
morphology of beads and fibers (Figure 2b). Poly C1.5 showed a structure similar to Poly C1, with
irregular and bead-containing fibers (Figure 2c). The solubility parameter of THF was 19.4 MPa1/2,
while that of poly(MA) was 26.7 MPa1/2 [26,27]. Regarding the use of THF to produce poly(FMMA)
and thermodynamic compatibility with other polymers [28,29], it was expected to be a compatible
solvent with poly(FMMA). Hence, MA units in the copolymer chains tended to interact with each
other to assemble into a specific structure. In this process, the relative amount of MA units in the
copolymer chain played an important role: in the solution of Poly C0.5, the amounts of hydrophilic and
hydrophobic components are similar, making the interaction between the copolymer chains balanced.
A relatively large amount of FMMA led to effective interaction of a large portion of copolymer chains
with the solvent molecules and, consequently, particulate morphology was favored. However, when
the portion of MA units in the copolymer chain increased, the copolymers exhibiting unbalanced
composition highly interacted with other copolymer chains in the system. Due to a large portion of MA
units in the copolymer chain in Poly C2.5, the MA units in the copolymer chain likely interacted with
the MA units in other copolymer chains rather than the solvent molecules, leading to the association
of the copolymer chains to form a transient network [30,31], amplifying surface tension enough for
the Poly C2.5 solution to be drawn to a fibrous structure (Figure 2e) [32]. As a consequence, the
structure transformed from bead to nanofiber. Thus, the formation of an irregular bead-containing
fiber structure in Poly C1 suggested that enough MA units existed in the system to withstand the
drawing force applied by the electric field. Therefore, copolymers with larger amounts of the MA unit,
i.e., Poly C1.5, Poly C2, and Poly C2.5, exhibited the fibrous structure (Figure 2c–e). In particular, Poly
C2 showed bead-free nanofibers with excellent size uniformity, compared to Poly 1.5 and Poly 2.5.
These results elucidated that the change of copolymer chain polarity and relative affinity of the solvent
affect electrospray/spinning behavior in a concerted manner and as a consequence, the morphology
was systematically changed.
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Chemical compositions of the resulting particles and fibers were investigated further using EDS
and XPS measurements. Figure 3 shows the EDS results of two representative samples of Poly C0.5
and Poly C2.5. Elemental mapping with SEM images clearly showed homogeneous distributions of
three elements, C, O, and Fe, in the resulting particles and fibers. Quantitative EDS analysis results
are also shown in Figure 3: the concentration of Fe in Poly C2.5 fiber was found to be higher than
that in Poly C0.5, which was expected, as the Poly C2.5 copolymer chain has fewer FMMA units.
Estimated atomic concentrations of Poly C0.5 and Poly C2.5 with the composition obtained from
1H NMR quantitative analyses (Table 1) were 78.4% (C), 17.7% (O), 3.9% (Fe), and 72.2% (C), 25.9% (O),
1.9% (Fe), respectively. Comparing the concentrations obtained from EDS analysis with the theoretical
compositions, the concentration of Fe tended to be higher than its theoretical values. XPS spectra were
also closely examined: the survey spectra shown in Figure 4a,d showed three prominent peaks near
285, 530, and 710 eV, which were assigned to C1s, O1s, and Fe2p, respectively. C1s peaks were closely
examined with the XPS spectra obtained with high resolution (Figure 4b,e). The atomic concentrations
of Poly C0.5 and Poly C2.5 were 79.3% (C), 18.0% (O), 2.7% (Fe), and 73.2% (C), 25.7% (O), 1.1% (Fe),
respectively, in good agreement with the values from the copolymer compositions. Deconvolution of
the C1s peaks revealed that the amount of carbon-forming C-C and C-H bonds in Poly C2.5 was higher
than that in Poly C0.5, which was expected considering the composition of both copolymers. It was
noted that a small amount of Fe(III) was observed in Fe2p multiplex spectra (Figure 4c,f), suggesting
possible oxidation of a small portion of ferrocenyl groups during the electrospinning process.
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Table 1. Characteristics of synthesized poly(FMMA-r-MA) samples.

Sample f FMMA FFMMA
a Mn (g/mol) b Ð b

Poly C0.5 0.444 0.484 11,100 1.75
Poly C1 0.286 0.308 9800 2.15

Poly C1.5 0.211 0.236 11,100 2.03
Poly C2 0.167 0.184 9400 1.81

Poly C2.5 0.138 0.143 13,100 1.91
a Determined with quantitative analyses of 1H NMR spectra; b Determined with SEC analyses with PS standard
samples; f FMMA is a composition of the FMMA monomer in the feed; FFMMA is the actual composition of FMMA in
the copolymer; Mn is average molecular weight; Ð is dispersity (Mw/Mn).
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3.2. Responsiveness on Reactive Oxygen Species

The responsiveness to ROS of the fabricated poly(FMMA-r-MA) particles with Poly C0.5 (FPP) and
fibers with Poly C2.5 (FPF) was examined by observing the changes in dispersibility and morphology
with H2O2 as a ROS source. The FPP sample (Poly C0.5) did not interact with water, but FPF (Poly C2.5)
was dispersed well due to its composition with a high concentration of MA units (Figure 5, left column).
Upon addition of 0.1% H2O2 aqueous solution into each solution, both solutions turned to dark brown
dispersion (Figure 5, right column). This change was known to be due to oxidation of the ferrocene
group (Fe2+) into the positively charged ferrocenium group (Fe3+) by the reactive oxygen [33].

Morphological changes also were examined with SEM studies; Figure 6 shows pristine samples
and samples treated with H2O and H2O2. Both samples did not show any changes upon treatment
with H2O2. However, samples treated with the ROS solution showed significant morphological
changes. In the case of FPP (Poly C0.5), the majority of particles was crushed to much smaller size.
FPF (Poly C2.5) also showed destruction of the long thread-shaped fibers into small debris particles.
Chemical compositions of FPP (Poly C0.5) and FPF (Poly C2.5) samples showed significant changes
upon exposure to the ROS source. Both samples showed almost identical XPS C1s multiplex spectra,
as shown in Figure 7. By deconvolution of the spectra, the carbons with three different bonds were
identified: C–C/C–H, C–COO, and O=C–O. The ratio of integrated intensities of the three carbons was
close to 2:1:1, which matched well with the structure of MA units. Fe2p multiplex spectra also changed
largely upon ROS treatment, as shown in Figure 7c,f. The peaks assigned to Fe(II) almost disappeared,
and only Fe(III) peaks were observed. These results strongly suggested that the ferrocenyl group was
oxidized into the water-soluble ferrocenium group and hence, the ferrocenyl group in FMMA was
removed to form a methacrylic acid unit. As a result, the copolymer chains began to effectively interact
with water molecules, resulting in abrupt swelling and subsequent breaking of particles and fibers into
smaller particles. ROS-responsiveness was not affected by the electrospray/electrospinning process
to fabricate particles and fibers from poly(FMMA-r-MA) copolymers. Therefore, the particles and
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fibers have potential to be utilized as smart ROS-sensitive carriers for efficient drug delivery into target
sites [13].Polymers 2020, 12, x FOR PEER REVIEW 8 of 12 
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4. Conclusions

The morphology of ROS-responsive ferrocene-containing random copolymers, poly(FMMA-r-MA),
was successfully controlled via electrospraying/electrospinning both particulate and fibrous structures
by controlling the balance between hydrophobic and hydrophilic components. The compositional
variation in copolymer structure was achieved by copolymerization of FMMA and MA monomers
with controlled feed amounts. The compositional variation systematically and effectively changed the
interaction between copolymer chains and solvent molecules. When the amount of FMMA units was
large enough to effectively interact with solvent molecules, particulate morphology was observed upon
electrospray of the polymer solution. However, when the portion of MA units becomes larger, the
interaction between MA units becomes significant enough to form a transient network-like structure
and provide enough surface tension for the copolymer solution to be drawn into a fibrous structure
during the electrospray/eletrospinning process. In between the compositions, the hybrid structure of
fiber and particles was observed. Furthermore, the properties of response to ROS were largely preserved
in the electrospraying/electrospinning processes, as confirmed with EDS and XPS studies. Significant
changes in dispersibility, morphology, and chemical composition of poly(FMMA-r-MA) particles and
fibers upon treatment with H2O2 clearly confirmed effective oxidation of Fe(II) to Fe(III) with H2O2

in FMMA units. These results highlighted the potential of biocompatible poly(FMMA-r-MA) as a
ROS-responsive material platform with desirable morphology and structure towards target biomedical
applications where the effective release of a hydrophobic drug with the oxidation with ROS is necessary.
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