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Parasitic Entamoeba spp. can infect many classes of vertebrates including humans and pigs. Entamoeba suis and zoonotic
Entamoeba polecki have been identified in pigs, and swine are implicated as potential reservoirs for Entamoeba histolytica.
However, the prevalence of Entamoeba spp. in pigs in southeastern China has not been reported. In this study, 668 fecal samples
collected from 6 different regions in Fujian Province, southeastern China, were analyzed to identify three Entamoeba species by
nested PCR and sequencing analysis. /e overall prevalence of Entamoeba spp. was 55.4% (370/668; 95% CI 51.6% to 59.2%), and
the infection rate of E. polecki ST1 was the highest (302/668; 45.2%, 95% CI 41.4% to 49.0%), followed by E. polecki ST3 (228/668;
34.1%, 95% CI 30.5% to 37.7%) and E. suis (87/668; 13.0%, 95% CI 10.5% to 15.6%). E. histolytica was not detected in any samples.
Moreover, the coinfection rate of E. polecki ST1 and ST3 was 25.1% (168/668; 95% CI 21.9% to 28.4%), the coinfection rate of E.
polecki ST1 and E. suis was 3.7% (25/668; 95% CI 2.3% to 5.2%), the coinfection rate of E. polecki ST3 and E. suis was 0.3% (2/668),
and the coinfection rate of E. polecki ST1, E. polecki ST3, and E. suis was 4.0% (27/668; 95% CI 2.5% to 5.5%). A representative
sequence (MK347346) was identical to the sequence of E. suis (DQ286372). Two subtype-specific sequences (MK357717 and
MK347347) were almost identical to the sequences of E. polecki ST1 (FR686383) and ST3 (AJ566411), respectively. /is is the first
study to survey the occurrence and to conduct molecular identification of three Entamoeba species in southeastern China. /is is
the first report regarding mixed infections with E. suis, E. polecki ST1, and E. polecki ST3 in China. More research studies are
needed to better understand the transmission and zoonotic potential of Entamoeba spp.

1. Introduction

/e genus Entamoeba comprises many free-living and
parasitic species and can infect all classes of vertebrates and
some invertebrates. Some Entamoeba species (e.g., E. his-
tolytica, E. dispar, E. coli, E. moshkovskii, E. hartmanni, and
E. polecki) have been identified in humans [1–4], and most
are considered harmless, but some of these species still cause
disease. Amoebiasis caused by E. histolytica is the third
leading parasitic disease causing morbidity and mortality in
humans, causing up to 50, 000 deaths per year, just behind
malaria and schistosomiasis [4–7]. /e disease is charac-
terized as amebic colitis and liver abscess in humans and
animals [3, 8]. Although E. histolytica has not been detected
in farmed pigs thus far, and the susceptibility of swine to E.

histolytica infection was revealed only under experimental
conditions, swine have been considered as potential reser-
voirs for E. histolytica [9–12].

Two species, E. suis [13] and E. polecki [14], have been
identified in pigs. E. suis appears to be mostly restricted to
pigs [2, 3, 15, 16] and has been suggested to cause hem-
orrhagic colitis by breaking down the lamina propria [10].
Unlike E. suis, which infects pigs and potentially gorillas
[17], E. polecki can infect many kinds of hosts, including
humans, nonhuman primates, and pigs. /e intraspecific
variation of E. polecki was revealed by molecular analysis of
the small-subunit ribosomal DNA, which showed that E.
polecki could be divided into 4 subtypes (E. polecki ST1–ST4)
[17, 18]. All the subtypes have been found in humans, E.
polecki ST1 and E. polecki ST3 have also been found in pigs,
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and E. polecki ST2 also exists in nonhuman primates [12, 17],
while human cases of E. polecki primarily involve E. polecki
ST4 [19]. For a long time, E. polecki ST4 was only known
from humans. Recently, however, ST4 was found in wild
Celebes crested macaques (Macaca nigra) [20]. Although E.
polecki is considered less pathogenic to humans or animals
in the case of solo infection, coinfections with other path-
ogens, such as Lawsonia intracellularis, may increase the
severity of the disease [3].

Swine husbandry plays an indispensable role in the
animal husbandry in China. Because of the prosperity of
swine husbandry and the high population density in China,
the risk of exposure to zoonotic Entamoeba spp. is inevitable.
However, the molecular epidemiology of Entamoeba spp. in
pigs in southeastern China has not been reported./is study
determined the prevalence of three Entamoeba species in
pigs in southeastern China using molecular detection, de-
termined the genetic identity of these Entamoeba species by
phylogenetic analysis, and evaluated the zoonotic potential
of Entamoeba spp.

2. Materials and Methods

2.1. Study Sampling. A total of 668 fecal samples were
collected from 6 regions in Fujian Province, southeastern
China (Figure 1). All specimens from pigs, including weaned
piglets, suckling piglets, sow, boars, nursery pigs, and fat-
tening pigs, were collected directly from each pig’s rectum or
were immediately collected from the ground after defecation
by the pigs. Fecal samples were marked with the corre-
sponding sex, developmental stage, and origin of the pigs
and then stored at 4°C until DNA extraction (generally
within 48 hours).

2.2. Isolation of Genomic DNA. According to the manu-
facturer’s instructions, genomic DNA was extracted from
approximately 200mg of each fecal samples using a Stool
DNA kit (OMEGA D4015-02), and the DNA was stored at
− 20°C until use.

2.3. PCRAmplificationof Entamoeba spp. /e extracted fecal
genomic DNAwas used to determine the species/subtypes of
Entamoeba spp. by nested PCR targeting the small-subunit
ribosomal RNA (SSU rRNA) gene. /e first set of primers,
E-1 and E-2, and the second set of primers, EH-1 and EH-2,
were used to detect E. histolytica [1]. /e first round of
nested PCR used primers 764–RD3, and the second round of
nested PCR used primers 764–765, to identify E. suis [15].
/e primary PCR for identifying E. polecki was performed
using primer set Epolec F6–Epolec R6, and then the sec-
ondary PCR for subtype-specific characterization of E.
polecki used primers Epolecki 1-Epolecki 2 (ST1) and
EpST3F1-EpST3R2 (ST3) [2, 12].

An amplification reaction volume of 25 μL was used to
perform nested PCR. For E. histolytica, the reaction mixture
of it contained 2.5 μL DNA, 0.4mM of each primers, 1mM
10× buffer (Mg2+ free), 0.2mM dNTP, 1.5mM MgCl2, and
0.375 U Taq DNA polymerase (TaKaRa, R001CM). /e

reaction mixture of E. suis contained 1 μL DNA, 0.5mM of
each primers, 1mM 10× buffer (Mg2+ free), 0.2mM dNTP,
1.5mMMgCl2, and 0.625 U Taq DNA polymerase (TaKaRa,
R001CM). /e reaction mixture of E. polecki was similar to
the reaction mixture of E. suis, except that each primer was
used at 0.2mM.

2.4. Sequencing Analysis and Phylogenetic Analysis. PCR
products were separated using 1.0% agarose gels, stained
with GelStain, and visualized using a UV transilluminator.
/e positive PCR productions were sequenced with the Big
Dye Terminator v3.1 Cycle Sequencing Kit on an ABI
PRISM™ 3730 XL DNA Analyzer (Applied Biosystems,
Foster City, CA, USA). /e accuracy of the sequences was
verified with bidirectional sequencing. /e obtained se-
quences were analyzed using the BLAST program at the
NCBI website. Mega 7.0 (http://www.megasoftware.net/)
software was used to perform phylogenetic analyses by the
neighbor-joining method with the Kimura-2 parameter
model. Bootstrap analysis with 1000 replicates was used to
assess the robustness of cluster formation.

2.5. Data Analysis. SPSS 22.0 (IBM Corp., New York, USA)
was used to analyze the data. /e associations between
infection rates of different sampling areas and the associa-
tions between infection rates of different developmental
stages of pigs were explored using the chi-square test.
Differences were considered statistically significant when
P< 0.05.

3. Results

3.1. Prevalence of Entamoeba spp. A total of 370 of 668
samples (55.4%, 95% CI 51.6% to 59.2%) were positive for
Entamoeba spp. by nested PCR (Table 1). E. suis and E.
polecki were identified in fecal samples, but samples with E.
histolytica were not found in this study./e overall infection
rate of E. polecki ST1 was the highest (302/668, 45.2%, 95%
CI 41.4% to 49.0%), while the overall infection rate of E. suis
was the lowest (87/668; 13.0%, 95% CI 10.5% to 15.6%). /e
coinfection rate of E. polecki ST1 and E. polecki ST3 was the
highest (168/668; 25.1%, 95% CI 21.9% to 28.4%), while the
coinfection rate of E. polecki ST3 and E. suis was the lowest
(2/668; 0.3%).

Analysis of the infection rates of Entamoeba spp. in
different sampling areas showed that there were regional
differences (χ2 �167.453, P< 0.05), with the rates being
much lower in Putian and Longyan than in other regions.

3.2. Distribution of Entamoeba spp. in Different De-
velopmental Stages of Swine. /e detailed data of distribu-
tion of Entamoeba spp. are shown in Table 2. Analysis of the
infection rates of Entamoeba spp. in different developmental
stages showed that there was a developmental stage pre-
disposition to infection with Entamoeba spp. (χ2 � 50.362,
P< 0.05), with the rates being much lower in suckling pigs
than in other developmental stages.
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3.3. Phylogenetic and Sequencing Analysis of Entamoeba spp.
/e positive product of E histolytica was not amplified by
nested PCR in all samples. Representative sequences were
submitted to GenBank under accession numbers MK347346
(E. suis), MK347347 (E. polecki ST3), and MK357717 (E.
polecki ST1). Meanwhile, the three representative sequences
displayed 100% sequence identity to other obtained se-
quences of PCR-positive samples of E. suis and E. polecki ST1
and ST3 in this study. /e sequence of E. suis (MK347346)
was identical to the sequence isolated from pigs
(DQ286372). /e representative sequences of E. polecki ST1
(MK357717) and E. polecki ST3 (MK347347) were almost
identical to reference sequences of E. polecki ST1 (AF149913)
and E. polecki ST3 (LC067574), respectively, and compared
with the corresponding reference sequences, each current
sequence has 1 different substitution. We chose known
sequences [12] to build the phylogenetic tree of the E. polecki
subtypes detected in the current study, and the results
showed that MK357717 shared a common clade with
AF149913 (E. polecki ST1) and MK347347 shared a common
clade with LC067574 (E. polecki ST3) (Figure 2).

4. Discussion

Traditional microscopic examination is the most commonly
used clinical diagnostic tool for examining the presence of
Entamoeba organisms in fresh or fixed stool samples
[1, 7, 21, 22]. However, several distinct Entamoeba spp. with

similar morphological characteristics (for instance, the E.
dispar, a nonpathogenic species, is morphologically identical
to E. histolytica) cannot be distinguished by microscopic
examination alone [1, 2, 4, 7]. /erefore, accurate identifi-
cation of species/subtypes of Entamoebawas performed with
molecular tools including PCR and nucleotide sequencing
[1, 7, 12, 19, 23, 24].

In this study, the prevalence of Entamoeba spp. ranged
from 21.6% to 86.4% in different regions of Fujian Province,
southeastern China, and there were significant differences in
the infection rates in the six areas (P< 0.05). /e causes of
these differences may be related to managing technology,
breeding conditions, health status, and the water sources on
farms. Moreover, the overall infection rate of Entamoeba
spp. in this study is higher (55.4%) than the rate reported in
Korea (5/136, 3.7%) [25], Iran (1/12, 8%; 2/12, 17%; 8% for E.
suis and 17% for E. polecki) [26], Cambodian (24/76, 31.6%)
[27], Germany (267/514, 52%) [28], and eastern China
(45.8%) [12], but it is lower than that reported in Vietnam
(11/12, 91.67%) [29]. /ese differences may be due to the
different geographical variations, climates, and detection
procedures.

/e phylogenetic analysis indicated that the isolates from
the samples for E. polecki were E. polecki ST1 and E. polecki
ST3. Infection with E. polecki ST1 was the most common
(45.2%) in the present study, which was consistent with the
observations reported in Indonesia, Vietnam, and eastern
China [12, 20, 29]. Mixed infections, including infection with
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Figure 1: Sampling areas in Fujian Province, southeastern China.
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E. suis and E. polecki ST1, E. suis and E. polecki ST3, E. polecki
ST1 and E. polecki ST3, and E. suis, E. polecki ST1, and E.
polecki ST3, were observed in the study. /is result suggests
that there is no competitive exclusion among these three
species/subtypes (E. suis, E. polecki ST1, and E. polecki ST3). In
addition, this is the first report regardingmixed infections with
E. suis and E. polecki ST1 and ST3 in China. Infection with E.
histolyticawas not observed in farmed pigs in this study, which
was consistent with the previous research [10–12].

Traditionally, E. suis was considered to be mostly re-
stricted to pigs [2, 3, 15, 16]. However, the sequence of an
Entamoeba isolated from a gorilla (FR686456) was similar to
the sequence of E. suis (DQ286372) with one substitution
[17], so whether E. suis only infects pigs should be verified by
more studies. /e results show that pig infection with
Entamoeba spp. was related to the sampling areas and the
developmental stages of swine (P< 0.05), but this is not in
agreement with the observation made in pigs by Li et al.
(there was no age predisposition in pigs) [12]. /erefore,
more research studies are needed to confirm whether
sampling area and types of swine are risk factors for Ent-
amoeba spp. infection. /ere were only detected three
Entamoeba species (E. histolytica, E. suis, and E. polecki ST1

and E. polecki ST3) in this study, and more research studies
are needed to determine prevalence and genetic identifi-
cation of other species/subtypes in pigs in China in the
future.

5. Conclusion

/epresent study conducted a prevalence survey andmolecular
identification of three Entamoeba species in pigs in southeastern
China. /e overall infection rate of Entamoeba spp. was 55.4%.
E. suis and zoonotic E. polecki ST1 and E. polecki ST3 have been
found in pigs. /us, further attention should be paid to the risk
of the transmission of Entamoeba spp. between animal reser-
voirs and humans. /e statistical analysis (SPSS) suggested that
sampling areas and developmental stages of swine are associated
with swine infection with three Entamoeba species. /is is the
first report ofmixed infectionswithE. suis,E. polecki ST1, andE.
polecki ST3 in China.

Data Availability

/e data used to support the findings of this study are in-
cluded within the article.
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Figure 2: Phylogenetic relationships of Entamoeba polecki isolates identified in this study. /e isolates obtained in this research are
indicated by circles.
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