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A B S T R A C T   

Musculoskeletal biomechanical models have wide applications in ergonomics, rehabilitation, and 
injury estimation. Their use can be extended to enable quantitatively explaining and estimating 
ride comfort for a vehicle’s passenger. A biomechanical model of the upper body in the sagittal 
plane is constructed, which allows for curved motion to simulate the propagation of disturbance 
energy within a seated passenger aboard a moving vehicle. The dynamic predictions of the model 
are validated against experimental results within the literature. Frequency responses show that 
within the vehicular frequency range, the L4L5 and the L5S1 discs in the lower lumbar region are 
susceptible to the highest vibration transmission. It was also found that vibration transmission is 
maximized at around 4.5 Hz. The model provides analytical and geometric intuition into the 
motion of the various segments of the upper body using a few simple geometric assumptions and 
can be employed to develop a quantitative ride-comfort metric, such that the most comfortable 
ride would be that which would induce the least internal motion within the passenger model.   

1. Introduction 

With the rise of autonomous vehicles and automotive manufacturers competing for the vehicle market, ride comfort is continuously 
becoming increasingly important [1]. Several factors affect a passenger’s perception of ride comfort, including non-mechanical aspects 
such as temperature, air quality, or auditory noise [2]. The mechanical factor that impacts ride comfort is known to be vibration [3]. 
The ride comfort indices that are available in the literature have certain shortcomings. Most are subjective, i.e., the same excitation has 
been perceived differently amongst different test subjects. For example, Els [4] showed that ride comfort was felt differently amongst 
various occupations, such that soldiers rarely claimed discomfort, while managers rarely claimed comfort when exposed to the same 
ride conditions. In another instance, Yang et al. [5] demonstrated that the same peak acceleration had resulted in ride evaluations 
ranging from “comfortable” to “very unsatisfactory”, and Oborne [6] argued that experimental ride comfort tests were inconclusive, as 
the same vertical acceleration in both frequency and magnitude content was perceived differently ranging from “almost very good” to 
“more than uncomfortable”. Furthermore, the currently available ride comfort metrics have discrepancies in identifying the agent 
responsible for ride comfort. Amidst the various kinematic input signals, some studies suggest that it is acceleration [7] that mainly 
impacts ride comfort, while others claim it is jerk [8], and a few others argue that it is a combination of both signals [1]. Additionally, 
studies mostly claim vertical motion to be of utmost importance [9], whereas other studies argue longitudinal [10] or lateral [11] 
motion might also be important. There are a few widely established industrial standards for ride comfort, such as ISO2631 [9], BS6841 
[12], and VDI2057 [13], that focus on vertical acceleration as the major responsible agent for ride comfort. While they all agree on the 
trend that increasing acceleration reduces comfort, their zones of comfort do not overlap [4], such that a hypothetical ride that pushes 
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ISO2631 to its threshold of discomfort is considered “very uncomfortable” according to BS6841 and “comfortable” according to 
VDI257. 

To address the issues above, a quantitative ride comfort metric is required that can estimate the effect of input vibrations on the 
passenger’s body. It is hypothesized that having knowledge of the internal dynamics of a passenger’s body enables one to make a ride 
comfort inference according to its dynamic response. A novel ride comfort metric could be introduced that correlates discomfort with 
the motion deviation of the elements within the passenger’s body. In this analogy, the most comfortable ride would be that which has 
induced the least amount of displacement deviation within the passenger body’s internal biomechanics. 

Should such a metric be available, one can quantitatively associate controllable vehicle kinematic signals with ride comfort and 
develop vehicle control algorithms accordingly or design vehicle systems such as seat or suspension to achieve maximum ride comfort. 
This provides the motivation for developing a biomechanical model of a vehicle’s passenger. However, biomechanical models have 
quite diverse applications in injury estimation [14], ergonomics [15] and rehabilitation [16]. Therefore, the use of the proposed model 
would not be restricted to ride comfort assessment. 

Most available passenger biomechanical models have investigated the vertical motion within the body, as it has been argued that it 
is the vertical vibration, also known as the heave motion, that impacts ride comfort the most [9]. Many of them adopt 
lumped-parameter modeling and comprise a few inertial elements connected vertically contiguously with springs and dampers in 
between them where the masses possess vertical degrees of freedom. Gohari and Tahmasebi [17] designed an active suspension control 
strategy that minimized the displacement of the head in a two-degree-of-freedom vertical passenger model. Kuznetsov et al. [18] 
employed ISO2631’s ride comfort metric to optimize a quarter-car suspension system using a one-degree-of-freedom vertical passenger 
model. Using finite element analysis, Dong et al. [19] showed that seat stiffness and sitting posture affect the passenger body’s internal 
dynamic response. Guruguntla and Lal [20] established a ten-degree-of-freedom vertical biomechanical model of the upper body and 
found an optimized set of parameters for their particular model. They asserted that their model replicated real human response to 
vibration better than two, four, or seven-degree-of-freedom models. Cho and Yoon [21] developed a nine-degree-of-freedom passenger 
model to evaluate ride quality that included longitudinal degrees of freedom as well as vertical. They concluded that including the 
backrest support in the model is essential because of its effect on the natural frequencies and argued that simpler one, two, or 
three-degree-of-freedom, vertical-only models did not match experimental vibration transmissibility as well as the sophisticated 
nine-degree-of-freedom model. Mohajer et al. [22] developed an intricate, 28-degree-of-freedom, three-dimensional, non-linear, in
tegrated seat-human biomechanical model and adopted ISO2631 to associate the RMS acceleration of individual body segments with 
an estimation of ride comfort. They concluded that ride comfort had the highest correlation with vertical and longitudinal vibrations 

Fig. 1. Sagittal view of the spinal column and its different sections [27].  
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within the passenger’s body. Liang and Chiang [23] developed a 14-degree-of-freedom biomechanical model of a seated human body 
and stressed that for the responses of a seated body to vertical vibrations to match experimental data, the mathematical modeling must 
be at least two-dimensional within the sagittal plane, which is defined as the longitudinal plane that divides a bilaterally symmetrical 
body into right and left sections. Kim et al. [24] determined the necessary number of lumps to consider in a model that would 
correspond well with experimental tests in terms of vibration transmissibility. Kozawa et al. [25] showed that seated vehicle pas
sengers feel the most discomfort due to the vertical vibrations from the seat’s hip cushion and vertical/longitudinal vibrations from the 
seat’s backrest cushion, and not those that come in through the feet. 

According to the results of this previous research, the proposed biomechanical model need only include the upper body. The upper 
body’s mechanical structure primarily consists of the human spine stretched between the pelvis and the head. Because of the spine’s 
inherently curved, S-shaped geometry [26], even if it is only the vehicle’s vertical vibration input that is to be considered, its me
chanical effects within the body still cannot be properly accounted for using a vertical-only model. Consequently, the model of interest 
needs to encompass the necessary degrees of freedom, but not more, to maintain simplicity and yield physical intuition. 

Based on the reviewed literature, to be able to make inferences on ride comfort as a function of internal displacements within the 
passenger body in response to disturbance vibrations coming from the vehicle, it is necessary to develop a biomechanical model of the 
passenger’s upper body in the sagittal plane that can support curved geometry and motion and also has sufficient degrees of freedom to 
correspond to experimental vibration transmissibility data. 

2. Modeling 

According to Ref. [25], the comfort-determining vibrations lie in the vehicle’s pitching plane, i.e., the plane within which the 
vehicle rotates around its lateral axis. Said plane includes the cruise (longitudinal) and heave (vertical) translations as well as the pitch 
rotation. In the passenger body’s anatomical terms, that plane coincides with the sagittal plane. The spinal column itself is made up of 
three major sections which are distinguished from one another according to changes in the direction of spinal curvature [26]: the 
lumbar spine (lowermost section), the thoracic spine (middle section), and the cervical spine (uppermost section) as seen in Fig. 1. 

The passenger model should account for the most prominent motions in the sagittal plane and the mechanical elements that affect 
them significantly. It should be noted that even though the model at hand is meant for the purpose of assessing a passenger’s internal 
dynamics while aboard a moving vehicle, its design is sufficiently generic to be used in any application that requires a biomechanical 
model of the upper body in the sagittal plane. 

2.1. Building blocks and structure 

Decades-long cohort studies have shown that lower back pain, a medical condition associated with the lumbar spine, is among the 
most common and costly musculoskeletal disorders [28]. Among the three different spinal sections, the lumbar spine bears the highest 
portion of the weight of the upper body, has the largest range of motion [26], and is closest to the load input (hip cushion) for a vehicle 
passenger. It is also evident that the lumbar spine is prone to the highest levels of chronic and acute pain [26]. Thus, the lumbar spine is 
of utmost importance when constructing a biomechanical model of the upper body. The lumbar spine itself comprises five lumbar 
vertebrae, named L1 through L5, that sandwich the intervertebral discs which are named according to the vertebrae to which they are 
attached on either side and provide compliance and damping. The vertebrae are mechanically much harder than the discs [29] and are 
therefore modeled as rigid body inertias while the discs are modeled as springs and dampers. 

The thoracic spine is the middle segmental column of the upper body that is connected to the ribcage and shapes a relatively rigid 
casing around the internal organs. Morita et al. [30] showed that the thoracic range of motion is significantly smaller than that of the 
lumbar. Also, the thorax altogether is one relatively large inertia, almost an order of magnitude more massive than the most massive 
lumbar vertebra [31]. Subsequently, it is reasonable to assume the entire thorax as one rigid body despite entailing 12 of the total 33 
vertebrae in the spinal column [26]. 

The head rests on the neck, which comprises seven cervical vertebrae [26]. Generally, the cervical vertebrae have a significant 
range of rotary motion with respect to one another. However, a vehicle’s passenger would most probably be looking ahead, and the 
motions induced by a vehicle would not be outside a linear range of motion. Thus, one equivalent neck joint is used to adequately 
approximate the cervical spine in this model. 

At the bottom of the passenger model lies the pelvis, which is modeled as a large inertia that serves as the base for the rest of the 
passenger model. 

Another mechanical element in the upper body that could affect internal sagittal motions is the musculature. There is a plethora of 
muscle fibers pulling on various vertebrae, but they are clustered into main muscle groups [32]. In the sagittal plane, muscles are either 
flexors that bend the upper body forward or extensors that bend it backward. Due to the seat’s backrest, in the case of a seated 
passenger, there would generally be no extension motion as a passenger cannot bend backward with the seat’s backrest at their back. 
Therefore, only extensor muscles are of interest. Additionally, the low-amplitude flexion motions of a passenger would generally 
include no active bending, such as the case of intentional, large-scale forward bending. Hence, muscles would be modeled to act only 
passively, which can be approximated by an elastic resistance to tension. Consequently, one local multifidus muscle is considered for 
each lumbar vertebra, and one global longissimus muscle is considered for the thorax. Muscles are attached to the pelvis and passively 
resist forward bending if in tension. 

The only remaining part of the upper body would be the arms. The arms are excluded from the model since the passengers of an 
autonomous vehicle would most likely have their arms rest on their laps, and therefore the arms wouldn’t impact sagittal motions 
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significantly. However, having the arms resting on a steering wheel would somewhat affect the dynamic response of the model, as 
shown by Pranesh et al. [33]. 

Finally, the seat acts as the source of input excitations coming from the vehicle and includes a hip cushion, modeled as a trans
lational point mass plus a spring and a damper, and two backrest cushions for lumbar and thoracic support, which are modeled as 
springs and dampers. These supports exert forces on the passenger model in a direction perpendicular to the seat. 

The planar degrees of freedom within the geometry of the sagittal spine correspond to axial displacement (tangent to the spine 
along the spinal cord), anterior-posterior shear displacement (perpendicular to the spine and the spinal cord), and flexion/extension 

Fig. 2. Schematic of the passenger model.  
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rotation (bending forward or backward) as shown in Fig. 1. These directions constitute the necessary and sufficient degrees of freedom 
for constructing a passenger biomechanical model which can appropriately investigate the propagation of a vehicle’s major input 
vibrations within the body. To sum up, the passenger model would include eight inertias, including the pelvis, the L5 through L1 
vertebrae, the thorax, and the head. In between all these would be elements that provide stiffness and damping. Each inertia has three 
sagittal degrees of freedom, and the hip cushion has one degree of freedom perpendicular to the seat. This results in a 25-DOF model. A 
schematic of the model is shown in Fig. 2. 

The rhombus shapes in Fig. 2 represent 3-directional spring/damper elements, which provide stiffness and damping in all three 
axial, shear, and rotary directions. There is also a distinction between the seat mass, which can only move perpendicular to the hip 
cushion, and the remaining inertias, which can both translate and rotate in the sagittal plane and have a rotational inertia component 
as well as mass. Furthermore, the input signals to the passenger model are heave (vertical Ws), cruise (longitudinal Us), and pitch 
(rotational ωp) velocities, which come from a separate vehicle model and are calculated at the point of contact of the seat with the 
passenger model using velocity transfer from the vehicle’s center of gravity. Also, the seat is allowed to have a backrest inclination 
angle β, which is zero if the seat is upright. 

2.2. Physical assumptions 

There are quite a few challenges in modeling biomechanical systems. These include but are not limited to parts having freeform, 
organic geometries, mechanical elements possessing complicated constitutive behaviors, and their characteristic parameters dis
playing great uncertainty. Thus, making certain modeling assumptions is necessary in developing biomechanical models. The most 
prominent physical assumption in developing the passenger model at hand is perhaps that force-generating elements, i.e., springs and 
dampers, have linear constitutive behaviors. This means that spring forces are proportional to the displacement across the spring, and 
damper forces would be proportional to the relative velocity across the damper. In reality, it is known that such elements do not 
generally display linear behavior [34] and are prone to non-linear effects such as viscoelasticity [35], poroelasticity [36], and hys
teresis [37]. However, studies show that the force-generating elements behave rather linearly in the low-amplitude range of motion for 
both rotation [38] and translation [39]. Given that this model is generally not intended for large displacements or impact loads, 
assuming linear constitutive behavior for force-generating elements is reasonable. 

2.3. Geometry and kinematics 

The model accounts for the curved geometry of the spine. Therefore, body-fixed, curvilinear coordinates are used, and each inertia 
is assumed to have three sagittal velocity components: a tangential velocity Vt along the spinal cord, a normal velocity Vn perpen
dicular to it, and an angular velocity ω. Also, to have access to the angular orientation of each inertia, the angle θ is designated as the 
angle that the tangential velocity component makes with respect to the inertial x direction, as depicted in Fig. 3. The spinal degrees of 
freedom are also shown in Fig. 1. 

The body-fixed velocities can be projected along the inertial directions and integrated so as to obtain inertial displacement and 
angular positions, as given in Eqs. (1)–(3): 

θ(t) =
∫

ωdt + θ0 (1)  

x(t) =
∫

( Vt cos θ − Vn sin θ )dt + x0 (2)  

z(t)=
∫

( Vt sin θ+Vn cos θ )dt + z0 (3) 

Fig. 3. Schematic of body-fixed velocities for each inertia.  
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where x(t) and z(t) represent the instantaneous translational position of the center of gravity of the inertial element with respect to 
the inertial x–z frame, and θ(t) indicates its angular position with respect to the positive x-direction. The coordinate origin is the seat 
base in the hip cushion. 

The instantaneous directions of axial compliance and shear compliance need to be expressed in terms of the instantaneous positions 
of the inertias. The cornerstone in shaping the geometry of this model is the assumption that the intervertebral axial compliance lies in 
the direction of the line that connects the centers of gravity for the two adjacent inertias. Once that direction is obtained, the direction 
of the shear compliance would be perpendicular to that line. In an exaggerated fashion for the purpose of clarity, Fig. 4 shows the 
centers of gravity for two consecutive top (T) and bottom (B) inertias, along with their individual velocity components and the di
rections for axial and shear compliance. 

Axial and shear forces would respectively be in the direction of ea and es which are unit vectors for axial and shear directions and 
are determined by the angle φ. The φ angle can be obtained in terms of inertial positions according to Fig. 4 as follows in Eq. (4): 

φ= tan− 1 zT − zB

xT − xB
(4) 

It’s noteworthy that the two inertias share a φ angle which would thusly be uniquely found, as both zT − zB and xT − xB are 
individually available. In turn, the contribution of the intervertebral compliance forces to the body-fixed velocities would be deter
mined by the difference between the φ angle and the inertia’s individual θ angles, which are denoted with ψT for the top and ψB for the 
bottom inertia. With knowledge of φ, Eq. (5) gives ψT and ψB: 

ψT =φ − θT ; ψB = θB − φ (5) 

Multiple geometric dimensions for the model have been extracted from the literature. In addition, a CAD model, which itself was 
constructed from CT-scan images of a healthy human subject with no history of lower back pain was used for complementary geo
metric information [40]. 

Since the equations of motion were derived using bond graph modeling [41], it was necessary to obtain the relative velocities across 
force-generating elements, i.e., intervertebral discs and muscles. For this purpose, the velocity vectors of inertias on either side would 
first have to be transferred from the center of gravity to the disc interface and then projected along the disc’s compliance directions. 
Since the inertias are modeled as rigid bodies with spatial dimensions, their velocity at the disc interface would be different from the 
velocity of their center of gravity. For instance, the lumbar vertebrae have a half-thickness distance in the tangential direction from 
their center of gravity to the disc interface, which contributes to changes in the vertebra’s normal velocity at the disc interface as shown 
in Fig. 5 as DB and DT . 

According to Fig. 5, velocity transfer from the vertebral center of gravity (CG) of each inertia to the top-bottom disc interface (TB) is 
given in Eq. (6): 

Vi,TB =Vi,CG +ωi ×Di → VB,TB
n =VB

n +DBωB ; VT,TB
n =VT

n − DT ωT (6) 

Eq. (7) gives the interface velocities resolved into the compliance directions according to Fig. 4: 

Fig. 4. Directions for axial and shear compliance.  
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Vi,TB =
(
Vi

t cos ψi − Vi,TB
n sin ψi

)
ea +

(
Vi

t sin ψi +Vi,TB
n cos ψi

)
es (7) 

Eqs. (8) and (9) gives the relative velocity and relative angular velocity across intervertebral discs: 

Vrel,TB =VB,TB − VT,TB = Vrel,TBa ea + Vrel,TBs es (8)  

ωTB =ωB − ωT (9)  

where the relative velocity is considered positive in compression. 
Another force-generating element that requires explanation is the musculature. There are a total of 6 muscles considered in the 

model: one global longissimus muscle that attaches the thorax to the pelvis, and five local multifidus muscles that attach the individual 
lumbar vertebrae to the pelvis. The location of the pelvic attachment point and the vertebral attachment points for each muscle are 
extracted from Arjmand et al. [42]. Fig. 6 shows a schematic of muscle architecture. 

In Fig. 6, P and V denote pelvic and vertebral centers of gravity and p and v subscripts associate quantities with them, respectively. 
The angle αi is the angle between the vertebral axis and the line that connects the vertebral center of gravity to the muscle attachment 
point. The length λi is the distance between the respective vertebral center of gravity and the muscle attachment point. Both αi and λi 
are constants pertaining to each muscle and are obtained from the literature [40]. The angle ρi is defined in Eq. (10) as the difference 
between αi and the individual inertia’s orientation angle θi. 

ρv = αv − θv & ρp = αp − θp (10) 

Subsequently, the position of the muscle attachment point is calculated on both the pelvis (Mp) and the vertebra itself (Mv) in Eq. 
(11) and (12): 

xMi = xi + λi cos ρi (11)  

zMi = zi − λi sin ρi (12) 

This enables the calculation of the muscle orientation angle δ and initial length L0 in Eq. (13) and (14): 

δ= tan− 1zMv − zMp

xMv − xMv

(13)  

Fig. 5. Schematic of the half-thickness dimension used for velocity transfer in lumbar vertebrae.  
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L0 =
⃒
⃒MvMp

⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

z0Mv − z0Mp

)2
+
(
x0Mv − x0Mv

)2
√

(14) 

where L0 is the initial, unstretched length of the muscle. To find the relative velocity across each muscle, the velocity of muscle 
attachment points for both the pelvis and the vertebra are calculated using velocity transfer in Eq. (15): 

VM =VCG + ω × λ (15) 

Given that the muscle orientation is different than the body-fixed orientation for each vertebra, velocities are resolved in the in
ertial x-z frame (Fig. 2) with respective i, k unit vectors in Eq. (16): 

VM =(Vt cos θ − Vn sin θ+ λω sin ρ)i + (Vt sin θ+Vn cos θ+ λω cos ρ)k (16) 

Eq. (16) can be used to yield the velocity of both Mv and Mp muscle attachment points and Eq. (17) calculates the relative velocity 
across the muscle in the x–z frame, projected along the direction of the muscle itself which is determined by the muscle orientation 
angle δ. 

Vrel,m = VMv − VMp = Vrel,mx i + Vrel,mz k
Vrel,m = Vrel,mx cos δ + Vrel,mz sin δ (17) 

where Vrel,m is a scalar value that indicates the relative velocity across the muscle, considered positive in tension as muscles can only 
withstand tension [43]. 

2.4. Equations of motion and kinetics 

Between any two inertias there is an axial compliance, a shear compliance, and a rotary compliance which exert forces and mo
ments on said inertias. Furthermore, all inertias except that representing the head are subject to muscle forces which pull on them 
towards the pelvis. And finally, there are gravity forces acting vertically downward. 

The described dynamics comprise a non-linear state space where the main state variables are the velocities of the inertias and the 
displacements across the compliances. Each inertia has three velocity states: tangential Vt, normal Vn, and angular ω and each 
compliance has three relative displacement states: axial qa, shear qs, and rotary qr. Even though all energy elements (inertias, springs, 
and dampers) are considered to have linear constitutive behaviors, the dynamics are still non-linear, because of the system kinematics. 
Moreover, the state space is expanded to include auxiliary states which are not directly involved with storing or dissipating energy but 
are necessary for developing the dynamics. These auxiliary states consist of the angular and translational positions of the inertial 
elements. 

The translational and rotary intervertebral compliance elements (TB) generate respective forces and moments given in Eqs. (18)– 
(20) that depend on the relative displacements and velocities across said elements, where the displacement is the temporal integral of 
said relative velocity. 

q̇TBi
=Vrel,TBi ; q̇TBr

= ωrel,TBr (18) 

Fig. 6. Schematic of muscle architecture in the model.  
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Fi
TB = kTBi qTBi + bTBi Vrel,TBi ; MTBr = kTBr qTBr + bTBr ωrel,TBr (19) 

Similarly, for the muscles: 

q̇m = Vrel,m ; Fm = kmqm + bmVrel,m for qm ≥ 0 (20) 

The qm ≥ 0 condition ensures the muscle is in tension. In the equations above F denotes a force and M designates a moment. Also, k 
and b indicate linear stiffness and damping coefficients, the TB subscript indicates the top-bottom vertebral interface, and the m 
subscript pertains to a muscle. The i subscript indicates either of axial or shear, and the r subscript denotes rotation. 

The acceleration vector in the rotating body-fixed frame is found via Eq. (21): 

a=
dV
dt

=
∂V
∂t

+ω×V=(V̇t − ωVn)et + (V̇n +ωVt)en (21)  

where et and en are tangential and normal unit vectors, respectively. 
Every force, including gravity, has to be resolved in tangential and normal directions and then their moment around the center of 

gravity needs to be calculated. Fig. 7 shows the direction of the gravity force in the body-fixed frame. 
According to Fig. 7, the force of gravity is expressed as Eq. (22): 

Fg =mg( − sin θet − cos θen) (22) 

The force of gravity has no moment about the center of gravity. 
As for the intervertebral compliance forces, according to the employed sign convention with relative velocity being positive in 

compression, a positive force pushes the top inertia up and the bottom inertia down, as shown in Fig. 8. 
The intervertebral (TB) compliance forces are resolved in body-fixed directions in Eq. (23) and (24). For the top inertia: 

FTB,T =(FTB
a cos ψT − FTB

s sin ψT)et + (FTB
a sin ψT +FTB

s cos ψT)en (23) 

And for the bottom inertia: 

FTB,B =( − FTB
a cos ψB − FTB

s sin ψB)et + (FTB
a sin ψB − FTB

s cos ψB)en (24) 

Amongst intervertebral (TB) forces, the axial force generates no moment because it passes through the center of gravity. However, 
the shear force exerts a moment on each body due to the half-thickness distance between the disc interface and the vertebral center of 
gravity. Fig. 9 shows the orientation of the shear force with respect to the center of gravity. 

According to Fig. 9, the shear force has a moment arm with respect to the centers of gravity denoted with li given in Eq. (25): 

li =
Di

cos ψi
(25) 

The shear force’s moment is then obtained via Eq. (26): 

Ms,TB
i = − FTB

sli (26) 

It is noteworthy that the shear force opposes the rotation of both bodies. 
With the relative muscle velocity being considered positive in tension, a positive muscle force pulls on both bodies along itself. 

Fig. 10 shows the orientation of the muscle force on the vertebra and its reaction on the pelvis with respect to the body-fixed 
coordinates. 

Fig. 7. Direction of the force of gravity in the body-fixed frame.  
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The muscle force is expressed in body-fixed directions in Eqs. (27) and (28): 

Fmv =Fm( − cos(θv − δ)et + sin(θv − δ)en)=Fmvt
et + Fmvn en (27)  

Fmp =Fm
(
cos

(
θp − δ

)
et − sin

(
θp − δ

)
en
)
=Fmpt

et + Fmpn en (28) 

The muscle force also produces a moment about the center of gravity for both the vertebra of interest and the pelvis. That moment is 
calculated via Eqs. (29) and (30) according to Fig. 10: 

Mmv = − λvFm cos
(π

2
− (ρv + δ)

)
= − λvFm sin(ρv + δ) (29)  

Fig. 8. Intervertebral (TB) forces in action and reaction.  

Fig. 9. Orientation of the intervertebral shear force with respect to centers of gravity.  
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Mmp = λpFm cos
(π

2
−
(
ρp + δ

))
= λpFm sin

(
ρp + δ

)
(30) 

The last forces that need attention are those from the seat. Fig. 11 schematically shows the orientation of the seat forces where H 
indicates the seat’s base (hip cushion) and RL, RT denote the seat-contact point for the lumbar and thorax backrests, respectively. Also, 
dL and dH respectively indicate the distance between the lumbar and thorax backrest contact points and the seat’s base. And β is the seat 

Fig. 10. Orientation of the muscle force.  

Fig. 11. Orientation of the seat forces.  
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backrest’s inclination angle. 
The seat forces can only push on the passenger’s body which means their associated compliance can only undergo compression, i.e., 

qR ≥ 0. All seat compliances act only in one direction, perpendicular to the seat’s orientation at the contact point. The hip cushion and 
its associated mass can only move vertically with respect to the vehicle as follows in Eq. (31): 

q̇RH
=Ws − VseatH ; FRH = kRH qRH + bRH (Ws − VseatH ) for qRH ≥ 0 (31) 

It is noted that FRH does not generate any moment as the hip cushion’s mass is considered to only move vertically. 
To calculate the seat-backrest forces at either location, velocities of the two ends of the backrest compliance along its direction (eR) 

should be found. Eq. (32) gives the velocity transfer for the backrest contact point on the seat from the seat’s base to the backrest’s 
contact point as seen in Fig. 11, thus: 

VR =
(
Us cos β+Ws sin β+ diωp

)
eR (32)  

where the i subscript could be either L for the lumbar backrest or T for the thorax backrest. It is assumed that the seat backrest makes 
contact with the upper body at two points [21]: the lumbar backrest touches the lowest depression point on the lumbar spine at the 
spinous process of the L3 vertebra due to lordosis curvature, and the thorax backrest touches the highest protrusion point on the 
thoracic spine at the location of the spinous process of the T7 vertebra due to kyphosis curvature [26]. The dimensions of the vertebrae 
and the position vector that connects the inertia’s center of gravity to the backrest contact point are extracted from the literature [31, 
40]. 

Fig. 12 shows a schematic of the relative position of the seat backrest’s contact point on the passenger body with respect to the 
associated inertia’s center of gravity, where SP stands for spinous process and Dx and Dz are its distance from the vertebral center of 
gravity in inertial x–z directions. 

The velocity of the spinous process is resolved in the backrest compliance’s direction in Eq. (33): 

VSP = (Vt cos θ − Vn sin θ + ωDz)i + (Vt sin θ + Vn cos θ + ωDx)k
VSP = VSPx i + VSPz k =

(
− VSPx sin β + VSPz cos β

)
eR

(33) 

Now the seat backrest (SBR) force along the compliance direction can be calculated via Eq. (34) 

VrelSBR =VR − VSP = VrelSBR eR ; q̇SBR = VrelSBR ; FSBR = kSBRqSBR + bSBRVrelSBR (34) 

From Fig. 12, the seat backrest force makes an angle equal to π-(β+θ) with respect to the tangential velocity of its associated inertia. 
Eq. (35) gives the seat backrest force and moment: 

FSBR = FSBR(cos(π − (θ + β))et + sin(π − (θ + β))en)

MSBR = − DzFSBR cos β + DxFSBR sin β (35) 

With all the acting forces and moments expressed in their respective body-fixed frames, the equations of motion are derived using 
Eq. (36) 

mV̇t
=mωVn +

∑
Ft ; mV̇n

= − mωVt +
∑

Fn ; Jω̇ =
∑

M (36) 

The equations of motion are extensively given for the L3 vertebra as an example in Eq. (37) since its motion is relatively more 
involved as it experiences all the possible considered effects. 

Fig. 12. The orientation of the backrest force with respect to the center of gravity of the associated inertia.  
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mL3V̇L3
t
=mL3ωL3VL3

n − mL3g sin θL3 +FL3L4
a cos ψL3L4 − FL3L4

s sinψL3L4 − FL2L3
a cos ψL3L2 − FL2L3

s sin ψL3L2 − FSBRL3 cos(θL3 +β)+FmL3t

mL3V̇L3
n
=− mL3ωL3VL3

t − mL3g cos θL3 +FL3L4
a sin ψL3L4 +FL3L4

s cosψL3L4 +FL2L3
a sinψL3L2 − FL2L3

s cos ψL3L2 +FSBRL3 sin(θL3 +β)+FmL3n

JL3ω̇L3 =ML3L4 − ML2L3 − MsL3L4 − MsL2L3 +MmL3 +MSBRL3

(37)  

2.5. Nonlinearity 

The model is nonlinear as the equations of motion include nonlinear rotating frame cross product terms as well as many nonlinear 
trigonometric functions operating on the position states. Due to the inherent curvature in the geometry of the spine, excitation in one 
direction excites other directions as well, and thus the equations of motion for individual directions are coupled. The trigonometric 
nonlinearities are an intrinsic characteristic of the model’s geometry, and the motion of the associated angles is sufficiently large that 
these trigonometric functions are retained. This is in particular because of the use of the arctangent function that is employed to 
calculate the φ angles that determine the instantaneous orientation of the intervertebral compliances (Eq. (4)). The arctangent function 
cannot be approximated by a linear term for the purpose of the calculations in this model, as its series approximation diverges for 
tangent values with magnitudes greater than 1 and the φ angles here typically range between 75 and 125◦ whose tangents have 
magnitudes much larger than 1. Furthermore, retaining the nonlinear terms enables the application of this model for analyzing large- 
displacement motions as well as small displacements, should proper viscoelastic properties be available. 

2.6. Initial conditions 

Each state requires an initial condition value. The initial condition for the auxiliary states, including translational and angular 
positions of the inertias, is extracted from the literature [31,40]. The velocity states all have zero initial conditions. However, since the 
model is subject to gravity, the displacement states have non-zero initial conditions. Given how the equations of motion are heavily 
coupled, an analytic derivation of those initial conditions was not performed. Instead, the model was run with zero initial conditions 
and zero inputs, and the system was allowed to settle into a static equilibrium. The resulting displacement states were then saved as the 
initial conditions for ensuing runs of the model. 

2.7. Parameter investigation 

There are quite a few parameters employed in developing the model. They include stiffness and damping coefficients associated 
with eight intervertebral compliances in three directions, stiffness and damping coefficients for the six modeled muscles, mass and 
moments of inertia for eight inertial elements (pelvis, five lumbar vertebrae, thorax, head), and a mass, stiffness, and damping co
efficients associated with the seat. This adds up to a total of 79 parameters. 

While the fundamental dynamics depend on the modeling assumptions, the response-time history, and the associated critical 
frequencies greatly depend on the parameter values. Parameters have been extracted from the literature as best as possible. Finding the 
required parameters within the literature proved a challenge as no unique study has reported all 79 required parameters in the way 
identified in this study. Hence, the parameters needed to be extracted from various studies where differing experimental methods were 
used to obtain said parameters, and therefore there is not total agreement among researchers. For this reason, it was necessary to adapt 
some of the employed parameters to match experimental results. This was achieved through a numerical optimization where 
important parameters were identified and varied within a range to arrive at a set of parameters that could replicate experimental data 
with sufficient accuracy. 

Among the various parameter groups, the highest level of confidence belongs to masses and moments of inertia. These inertial 
parameters are the same for a living person and a cadaver and have been studied extensively in anthropometry studies, and multiple 
highly-cited references have reported similar values for the masses and moments of inertia [44,45]. Therefore, the inertial parameters 
were not considered in the parameter optimization and they have been utilized in the model as given by the literature [31,46]. 

It was found that the vibration transmissibility was most affected by the intervertebral translational stiffness and damping co
efficients, respectively. Stiffness parameters do not come with the same level of confidence as the inertial parameters, as most ex
periments that give values for stiffness are performed on cadavers, and the force-generation mechanism for a living organism is not the 
same as a cadaver. Lastly, the least level of confidence belongs to the damping parameters, which add time-dependence to the force- 
generation mechanism as well. Quite a few references were investigated to obtain the required stiffness and damping parameters, 
including but not limited to Refs. [22–25,27,44,45]. It was observed that they did not agree on the lumping strategy for defining the 
parameters or on the parameter values themselves. In some cases, they differed by an order of magnitude. 

Consequently, some biomechanical parameters, particularly the damping values, had to be modified from their initial values 
extracted from the literature to enable model validation against experimental findings. The initial values for the biomechanical 
stiffness parameters were taken from Keller et al. [47]. Stiffness values were proportionally varied from Keller et al.’s initial guess, and 
a varying damping ratio was applied to calculate an average damping coefficient for each intervertebral, translational damper element 
according to the stiffness of the spring next to it and the masses on either side as follows in Eq. (38): 

kTBa,s = ηkTBa,sKeller ; bTBa,s = 2ζ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kTBa,s
mT + mB

2

√

(38) 
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where η is the proportionality constant between the used stiffness values and the same values from Keller et al., which was found to be 
36% and 49% for the axial direction and the shear direction, respectively. Also ζ is the employed damping ratio which was found to be 
0.5. This set of parameters was able to replicate experimental results with reasonable accuracy and was chosen accordingly. 

Additionally, seat parameters were taken from Papaioannou et al. [46]. For the muscles, Young’s modulus Em, damping ratio ζm, 
and cross-sectional area Am were extracted from the literature, respectively [48–50], and the muscle stiffness and damping coefficients 
were calculated as follows via Eq. (39): 

km =
EmAm

L0
; bm = 2ζm

̅̅̅̅̅̅̅̅̅̅
kmmv

√
(39)  

where L0 is the muscle’s unstretched length, and mv is the mass of the vertebral body to which the muscle is attached. The parameters 
employed in this study are given in Tables 1–12. 

3. Validation 

Before the model can be used to make further inferences on the internal motions within the body, it needs to be validated, i.e., assert 
that it can predict reasonable outputs according to the available literature. The present model has been validated against Pranesh et al. 
[33]. In their study, 12 seated human subjects with no history of lower-back pain were exposed to vibrations of vehicular nature with 
vertical excitations at the base. Using accelerometers, vibration transmissibility frequency responses were recorded at different lo
cations of the upper body. Fig. 13 compares the vibration transmissibility as predicted by the model here with the experimental data 
from Pranesh et al. Given that vertical vibrations are responsible for the majority of the perception of ride comfort, vertical vibration 
transmissibility is compared to Pranesh’s experiment in three different locations: the L5 and L3 vertebra within the lumbar spine, and 
the head at the top of the model. Fig. 13(a) through (c) show this comparison. Also, the horizontal vibration transmissibility in response 
to the same vertical excitation at the base is investigated for the head in Fig. 13(d) to account for the fore-aft degree of freedom. 

As seen in Fig. 13, the results from Pranesh et al. have a noticeable variability. This is due to how the different human subjects in 
their experiment must have had different bodily constitutions, and while their response is similar in shape, they are not exactly the 
same for every subject. Fig. 13 shows that the model developed here agrees sufficiently well with Pranesh et al. in both magnitude and 
frequency content. 

To quantify the accuracy of the validation, first an average experimental curve was required to represent Pranesh et al.’s data. For 
this purpose, curves were fit (R2 = 99%) to the bulk of Pranesh’s data to represent the average experimental data for vibration 
transmissibility. Fig. 14(a) through (d) show how the model compares against Pranesh et al.’s average response. 

Fig. 14 suggests that the model replicates Pranesh’s experimental results with sufficient accuracy. To quantify this accuracy, 
however, a frequency-averaged, relative error is defined in Eq. (40) as a measure of the deviation of the model from Pranesh’s 
experiment: 

Table 1 
Inertial parameters for the passenger model from [31,51].  

Level Mass – m (kg) Sagittal Mass Moment of Inertia – Iyy (×10^− 4 kg m^2) 

Pelvis 8.1541 300 
L5 2.1243 54.6 
L4 2.0367 52.0 
L3 1.9710 54.1 
L2 1.8907 59.1 
L1 1.8250 64.0 
Thorax 16.0746 1250 
Head 5.0662 293.4  

Table 2 
Translational Intervertebral Stiffness Values, initial guess from Ref. [47], modified to match [33].  

Section Initial ka (kN/m) Modified ka (kN/m) Initial ks (kN/m) Modified ks (kN/m) 

Pelvis-Seat 300 108 200 98 
L5S1 510 184 45 22.1 
L4L5 450 162 30 14.7 
L3L4 525 189 30 14.7 
L2L3 600 216 35 17.6 
L1L2 620 223.2 40 19.6 
T-L1 640 230.4 50 24.5 
Neck 1250 450 30 14.7  
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ε=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫f∞

f0

(
Trm − TrmPranesh

TrmPranesh

)2

df

f∞ − f0

√
√
√
√
√
√
√

(40)  

where Trm denotes transmissibility. The bounds of the frequency range of interest are selected to be f0 = 0.5 Hz and f∞ = 20 Hz. The 
frequency-averaged, relative error ε was calculated to be 6%, 6%, 5%, and 7% for L5 vertical, L3 vertical, head vertical, and head 
horizontal transmissibilities, respectively. 

This provides some confidence that this model can predict reasonably accurate results and could be further employed to make 
inferences regarding the body’s internal dynamics. It is also noteworthy that Figs. 13–14(c) and (d) display the vertical and horizontal 
seat-to-head transmissibility (STHT), which is one of the commonly recognized biodynamic characteristics in biomechanical modeling 
of seated humans. 

4. Results and discussion 

The model’s response has been simulated using MATLAB SIMULINK®. Fig. 15 shows the axial displacement deviation at various 
vertical locations for a unit heave-impulse at the base of the model. 

Table 3 
Translational Intervertebral Damping Values, initial guess from Ref. [51], modified to match [33].  

Section Initial ba (Ns/m) Modified ba (Ns/m) Initial bs (Ns/m) Modified bs (Ns/m) 

Pelvis-Seat 1200 938 1200 894 
L5S1 1200 971 1200 337 
L4L5 1200 581 1200 175 
L3L4 1200 615 1200 172 
L2L3 1200 646 1200 182 
L1L2 1200 644 1200 191 
T-L1 1200 1436 1200 468 
Neck 1200 2181 1200 394  

Table 4 
Rotational intervertebral stiffness and damping values, from [47,51].  

Section kr (Nm/rad) br (Nms/rad) 

Pelvis-Seat 700 1.2 
L5S1 75 1.2 
L4L5 80 1.2 
L3L4 100 1.2 
L2L3 120 1.2 
L1L2 140 1.2 
T-L1 160 1.2 
Neck 400 1.2  

Table 5 
Seat parameters, from [46].  

Mass – mseat (kg) Cushion Stiffness – kseat (kN/m) Cushion Damping – bseat (Ns/m) 

13.6 80 1350  

Table 6 
Muscle material properties, from [48,49].  

Muscle Young’s Modulus – Em (kPa) Damping Ratio – ζm 

Multifidus 91.34 0.58 
Longissimus 62.85 0.58  

Table 7 
Associated muscles’ geometric parameters, from [42,50].   

Thorax L1 L2 L3 L4 L5 

Initial Length – L0 (cm) 26.57 14.03 11.59 9.14 7.11 4.81 
Cross Sectional Area – Am (cm2) 18.5 1.95 3.18 4.74 6.50 7.14  
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Fig. 15 shows that, in those sections that are closer to the base, the effect of the input is noticed both earlier and with higher in
tensity, such that a wave-like behavior is observed in the propagation of the excitation motion within the passenger’s body. 

Another subject of interest is the model’s frequency response. The non-linear model has been linearized around its equilibrium, and 
its frequency response has been investigated. To ascertain the accuracy of the linearization, the non-linear model was simulated for a 
small-amplitude harmonic input with a frequency sweep in the range of interest. It was determined that the linearized frequency 
response was virtually identical to the small-input, non-linear response. Frequency response plots were generated for various inter
segmental velocity responses against the three heave, cruise, and pitch input velocities for a frequency range of 0.1–20 Hz. This range 
encompasses the entire range of vibration signals coming from a generic vehicle, which is about 1–10 Hz [52]. It is noteworthy that this 
frequency response is identical to that of one between respective intersegmental displacements and input displacements, since velocity 
and displacement are proportional in the frequency domain, as shown in Eq. (41): 

Vrel(s)
Vin(s)

=
L (q̇)
L (q̇in)

=
sq(s)

sqin(s)
=

q(s)
qin(s)

(41) 

Fig. 16 shows the non-dimensional vibration transmissibility for axial and shear motions subject to translational excitation ve
locities at three joint locations: the L5S1 and L4L5 lumbar discs at the bottom and the neck at the top of the model. 

Fig. 16(a) shows that in response to vertical excitation, it is the L4L5 disc that experiences the highest vibration transmissibility for 
axial displacement, with L5S1 being a close second. However, for shear displacement due to heave input, it is L5S1 that sees the highest 
transmissibility, as evident in Fig. 16(c). This corroborates with L5S1’s inherent slanted orientation, where its askew geometry induces 
a substantial shear force when exposed to vertical excitation [26]. Similarly, said slanted geometry causes the same cross-transmission 
effect as noted in Fig. 16(b), where L5S1 experiences a higher transmissibility for axial displacement when subject to a horizontal 
excitation. Fig. 16(a) through (c) correspond well with how most chronic lower back pain is associated with the lower lumbar region 
[28], as the L4L5 and L5S1 discs have developed the highest translational transmissibility. The smallest translational transmissibility is 
generally observed at the level of the neck. However, as depicted in Fig. 16(d), the neck experiences the highest transmissibility in 
shear vibrations when exposed to horizontal excitations within the vehicular frequency range of interest. This corresponds with how 

Table 8 
Geometric Parameters for Muscle Attachment Points on both Vertebra and Pelvis [40].    

Thorax L1 L2 L3 L4 L5 

On Vertebra αv (deg) 171.2 89.8 89.6 101.9 108.1 105.2 
λv (mm) 178.3 68.8 66.8 72.6 68.6 63.3 

On Pelvis αp (deg) 178.1 150.5 158.0 165.9 164.9 164.8 
λp (mm) 44.2 46.9 51.1 61.2 65.2 67.3  

Table 9 
Geometric parameters for seat backrest contact points [40].   

Distance to base – d (mm) x-Distance to CG – Dx (mm) z-Distance to CG – Dz (mm) 

Lumbar Contact Point 212.5 69.9 19.3 
Thorax Contact Point 438.9 64.8 66.8  

Table 10 
Tangential half-thickness dimensions for velocity transfer [40].  

Level Head-Thorax L1 L2 L3 L4 L5 Pelvis-L5 

Half-Thickness (mm) 121.4 13.8 14.5 14.6 15.1 13.9 37.5  

Table 11 
Distance from CG to compliance interface [40].   

Pelvis-Seat 
(tangential) 

Pelvis-Seat 
(normal) 

Thorax-L1 
(tangential) 

Thorax-L1 
(normal) 

Thorax-Head 
(tangential) 

Thorax-Head 
(normal) 

Distance 
(mm) 

− 89.8 65.3 − 164.9 67.4 265.1 − 19.6  

Table 12 
Geometric initial conditions with seat base at the coordinate origin [40].   

Head Thorax L1 L2 L3 L4 L5 Pelvis 

Initial Angle θ0 (deg) 75.6 104.0 65.9 71.3 83.9 98.8 107.6 135.0 
Initial Position x (mm) − 55.9 − 10.7 − 45.4 − 58.4 − 63.8 − 61.4 − 50.5 − 17.3 
Initial Position z (mm) 767.7 505.7 308.4 271.0 231.8 192.0 155.8 109.6  
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Fig. 13. Comparison of vibration transmissibility between this study and Pranesh et al.’s experiment [33] (a) L5 vertebra, vertical. (b) L3 vertebra, 
vertical. (c) Head, vertical. (d) Head, horizontal. 
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the majority of neck injuries are shear-related and are commonly associated with head-on collisions [53]. Fig. 17 depicts the 
non-dimensional rotational frequency response for a rotary excitation. 

Fig. 17 shows that the neck has the highest rotational susceptibility to rotary excitation for the vehicular frequency range. Fig. 18 
extensively investigates the non-dimensional translational transmissibility for translational excitations for the L4L5 disc. 

Fig. 18 (a) and (b) show that in response to both translational inputs, the shear displacement has a higher transmissibility than that 
of axial displacement for all frequencies. Fig. 18(c) and (d) show that within the frequency range of interest, both translational 

Fig. 14. Comparison of vibration transmissibility between this study and Pranesh et al.’s average response [33] (a) L5 vertebra, vertical. (b) L3 
vertebra, vertical. (c) Head, vertical. (d) Head, horizontal. 

Fig. 15. Wave-like propagation of an impulse within various sections of the model.  
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responses are more susceptible to the heave input despite the cruise input taking over at higher frequencies. It can also be noted in 
Fig. 18 that vibration is reduced in all cases except for the shear displacement in response to cruise input that gets some amplification at 
higher frequencies. 

Another noteworthy remark that can be observed from all frequency responses is that vibration transmission has a peak at around 
4.5 Hz for all displacements and excitations. This is noticed in Pranesh’s experiment [33] too, and indicates a resonant natural fre
quency of about 4.5 Hz that falls within the vehicular frequency range. It also corresponds to the findings from other biomechanical 
models that have observed a fundamental natural frequency of about 4.5 Hz for human body vibration, including Guruguntla and Lal 
[20], Liang and Chiang [23], Kim et al. [24], and Cho and Yoon [21]. 

Fig. 16. Translational Frequency Responses for L5S1, L4L5, and Neck Joints (a) axial vs. heave. (b) Axial vs. cruise. (c) Shear vs. heave. (d) Shear 
vs. cruise. 

Fig. 17. Rotary frequency response for the L5S1, L4L5, and neck joints.  
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The main advantage of this research is enabling curved motion and tracking smooth trajectories through the use of a few simple 
geometric assumptions, thus providing an intuitive, sufficiently accurate, low-order model. This allows for smoother posture 
prediction. 

Furthermore, because of how the model employs much fewer degrees of freedom than finite element studies, it is computationally 
lighter and more time-efficient. 

Another advantage of this study is that it readily yields the spinal loads that are known to cause discomfort or injury, as the 
presented model studies the lumbar spine extensively. This enables the application of the model in injury estimation [14], ergonomics 
studies [15], and rehabilitation [16]. 

The main limitation of this study is that its application is restricted to small-amplitude motions, as the force-generating elements 
generally display nonlinear behaviors for large displacements. However, due to the inclusion of geometric nonlinearities, its appli
cation can readily be extended to large-amplitude motions by introducing proper stiffness and damping characteristics. 

Another reservation is that this model has excluded the arms and therefore cannot thoroughly account for the case of a driver with 
hands on the steering wheel, where the dynamic response is somewhat different according to Ref. [33]. A final remark is that this study 
has considered motions in the sagittal plane to be decoupled from other anatomical planes. While in general there is some degree of 
coupling amongst motions within said planes, Russell et al. have argued that sagittal motions are dominated by sagittal actions [54]. 
Hence, considering sagittal actions should suffice for adequately predicting sagittal motions. 

5. Conclusion 

A nonlinear biomechanical model of the upper body was developed for the purpose of studying the propagation of disturbance 
inputs from a generic vehicle to a seated passenger. The model replicates experimental data with sufficient accuracy and fidelity. The 
proposed model accounts for curved motion and allows for the prediction of all small-amplitude sagittal motions. This model employs 
much fewer degrees of freedom than similar finite element models and is therefore computationally lighter and provides additional 
geometric and analytical intuition into the upper body’s internal dynamics. Upon simulation of frequency response, it was shown that 
within the vehicular frequency range of 1–10 Hz, the lower lumbar region, namely the L5S1 and L4L5 discs, experience the highest 
translational vibration transmissibility and the neck experiences the highest rotational vibration transmissibility. The model suggests 
that the maximum vibration transmissibility occurs at about 4.5 Hz. This signifies a fundamental natural frequency of the human body 
and could be the designated frequency for vibration mitigation and controller design. The model can be employed in ride-comfort 
studies and help define a quantitative ride-comfort index, such that the most comfortable ride would be one that has induced the 
least internal displacements. Also, the model has applications in any other study that might require an assessment of the internal 
dynamics of the upper body. 

Fig. 18. Comparing translational Frequency Responses of the L4L5 Joint (a) axial and shear vs. heave. (b) Axial and shear vs. cruise. (c) Axial vs. 
heave and cruise. (d) Shear vs. heave and cruise. 
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