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Coding-Complete Genome Sequence of a Pollen-Associated
Virus Belonging to the Secoviridae Family Recovered from a
Japanese Apricot (Prunus mume) Metagenome Data Set
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ABSTRACT We report the coding-complete genome sequence of Japanese apricot
pollen-associated secovirus 1 (JAPSV1), a virus belonging to the Secoviridae family, re-
covered from Japanese apricot (Prunus mume) pollen that is closely related to Peach
leaf pitting-associated virus (PLPAV). This discovery adds to the number of known
pollen-associated viruses.

he 2012 edition of Virus Taxonomy lists just under 900 species of plant viruses (1),

yet far fewer are known to be pollen associated (2-4). The detection of such viruses
in asymptomatic hosts and wild plants, however, is expected to accelerate viral
discovery (1). Secoviridae is the fourth largest family of plant viruses, and viruses of this
family are spread to plant hosts primarily by insects or nematodes (1). These viruses
belong to the Picornavirales order and have a linear, positive-sense, single-stranded
RNA (ssRNA) genome with two segments (5). The longer segment, RNAT1, is approxi-
mately 6 to 8 kb and encodes all proteins necessary for cytoplasmic replication, and the
shorter segment, RNA2, is 2 to 4 kb and encodes the capsid and movement proteins (5).

Pollen was collected by Akagi et al. (6) from anthers of flower buds in the balloon
stage from trees in an experimental orchard at Kyoto University. They extracted the
total RNA using the cold-phenol approach, and RNA sequencing (RNA-seq) libraries
were constructed by the Japanese company TaKaRa using TruSeq RNA sample prep kits
(llumina). Akagi et al. (6) sequenced the RNA using the TruSeq SBS kit v3-HS on an
lllumina HiSeq 2000 platform, which resulted in 35,162,899 paired-end informative
Prunus mume cv. Kairyo-Uchida-Ume reads that were each 100 bp long (SRA run
accession number DRR002284). We recovered Japanese apricot pollen-associated seco-
virus 1 (JAPSV1) from this data set using Pickaxe, a viral discovery pipeline that detects

known and novel viruses in sequence data (7, 8). Briefly, Pickaxe performs quality Citation Fetters AM, Cantalupo PG, Ashman
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obtain a set of nonhost reads. Nonhost reads are aligned to Viral RefSeq (ftp:// selleeing @ithe Seeamme Ty everEd

ftp.ncbi.nlm.nih.gov/refseq/release/viral/) and are assembled with the CLC Assembly from a Japanese apricot (Prunus mume)
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a BLAST pipeline, as described previously (7), except that the BLASTX step was replaced
with RAPSearch2 (9).

We identified two contigs, 6,133 bp and 2,704 bp, as RNA1 and RNA2, respectively, Institute
by BLASTN alignments, both with 93% identity to the genome segments of Peach leaf Copyright © 2019 Fetters et al. This is an open-
pitting-associated virus (PLPAV; RNA1, GenBank accession number MK460243; RNA2, access article distributed under the terms of
the Creative Commons Attribution 4.0
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programs assume the presence of one organism (10, 11). Aligning the nonhost reads to
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each genome segment resulted in greater than 99% coverage, with an average depth
(reads/base) of 2,017 for RNA1 and 4,941 for RNA2. Both genome segments have 43%
GC content. We found two open reading frames (ORFs) using the latest version of
ORFfinder (https://www.ncbi.nm.nih.gov/orffinder/), with default parameters that cor-
respond to the Secoviridae genome. The longer segment of most Secoviridae genomes
codes for helicase, proteinase, and polymerase proteins. Our conserved domain search
of the longer ORF (1,920 amino acids) detected those proteins in the same sequence.
Similarly, our conserved domain search of the shorter ORF (997 amino acids) detected
a movement protein and two coat proteins in the same sequence as that of most
Secoviridae. We searched the latest version of the Conserved Domain Database using
the default parameters to annotate both RNA1 and RNA2 (12) (https://www.ncbi.nlm
.nih.gov/Structure/cdd/wrpsb.cgi).
Due to the high percentage identity (98%) of the JAPSV1 polyproteins with those of
PLPAV estimated using a BLASTP alignment, the similar GC content of the JAPSV1
polyproteins, and the fact that no other Secoviridae sequences were identified in the
data set, we conclude that we detected a virus in the Secoviridae family that is closely
related to PLPAV. Although JAPSV1 is closely related to PLPAVY, its detection expands
our knowledge of pollen-associated plant viruses and provides a starting point for
considering how such viruses are spread, as well as plant virus host switching.

Data availability. This whole-genome shotgun project has been deposited in the
European Nucleotide Archive under the accession numbers LR594708 and LR594709.
The version described in this paper is the first version, and the coding-complete
genome sequence of JAPSV1 is publicly available on the Pipas Lab website (http://
pipaslab.webfactional.com/wp/wp-content/uploads/2019/07/JAPSV1.txt). The raw data
in which we found JAPSV1 are available under SRA run number DRR002284, and the
genome segment sequences of PLPAV are referenced by MK460243 and MK460244 in
the National Center for Biotechnology Information.
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