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ABSTRACT
Objectives: Calcium pyrophosphate crystal deposition
disease (CPPD) is common, yet prevalence and overall
clinical impact remain unclear. Sensitivity and specificity
of CPPD reference standards (conventional crystal
analysis (CCA) and radiography (CR)) were meta-
analysed by EULAR (published 2011). Since then, new
diagnostic modalities are emerging. Hence, we updated
2009–2016 literature findings by systematic review and
evidence grading, and assessed unmet needs.
Methods: We performed systematic search of full
papers (PubMed, Scopus/EMBASE, Cochrane 2009–
2016 databases). Search terms included CPPD,
chondrocalcinosis, pseudogout, ultrasound, MRI, dual
energy CT (DECT). Paper selection, data abstraction,
EULAR evidence level, and Quality Assessment of
Diagnostic Accuracy Studies (QUADAS)-2 bias and
applicability grading were performed independently by 3
authors.
Results: We included 26 of 111 eligible papers, which
showed emergence in CPPD diagnosis of ultrasound (U/
S), and to lesser degree, DECT and Raman
spectroscopy. U/S detected CPPD crystals in peripheral
joints with sensitivity >80%, superior to CR. However,
most study designs, though analytical, yielded low
EULAR evidence level. DECT was marginally explored
for CPPD, compared with 35 published DECT studies in
gout. QUADAS-2 grading indicated strong applicability
of U/S, DECT and Raman spectroscopy, but high study
bias risk (in ∼30% of papers) due to non-controlled
designs, and non-randomised subject selection.
Conclusions: Though CCA and CR remain reference
standards for CPPD diagnosis, U/S, DECT and Raman
spectroscopy are emerging U/S sensitivity appears to be
superior to CR. We identified major unmet needs,
including for randomised, blinded, controlled studies of
CPPD diagnostic performance and rigorous analyses of
4 T MRI and other emerging modalities.

INTRODUCTION
Calcium pyrophosphate dihydrate crystal
deposition (CPPD) in the extracellular

Key messages

What is already known about this subject?
▸ The reference standards of calcium pyrophos-

phate crystal deposition disease (CPPD)
diagnosis are conventional radiography for
chondrocalcinosis, and synovial fluid com-
pensated polarised light microscopy, but, in
recent years, ultrasound has been established
to have strong diagnostic performance for
CPPD, and sensitivity higher than plain
radiography.

What does this study add?
▸ Systematic search of full publications on CPPD

diagnostic approaches, published since the
drafting of EULAR CPPD diagnostic recommen-
dations, point to the potential value for not only
ultrasound, but also of DECT, the relatively
unvalidated utility of emerging modalities such
as Raman spectroscopy for crystal analysis
(including an approach adapted for ‘point of
care’ use).

▸ Quality and inherent risks of bias were highly
variable in the studies reviewed, and the volume
of CPPD diagnosis investigation is dwarfed by
the number of studies of urate crystal detection
in gout.

▸ Overall, there remains major, unmet need for
randomised, blinded and controlled studies of
CPPD diagnostic performance of advanced
imaging and emerging crystal analytic modal-
ities, in patient samples in ‘real-world’ clinical
scenarios, with comparison to the reference
standards.

How might this impact on clinical practice?
▸ New criteria that incorporate advanced

imaging and emerging crystal analytic
methods should advance clinical practice by
improving recognition of CPPD, and thereby
leading to more understanding in clinical prac-
tice of how CPPD can impact on phenotypes
of joint pathology.
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matrix of articular hyaline and fibrocartilages, and of
certain articular and periarticular connective tissues is
very common as an idiopathic disorder in ageing.1 CPPD
also can occur in association with osteoarthritis (OA),
certain metabolic disorders (including hyperparathyroid-
ism, haemochromatosis, hypomagnesaemia), and as a her-
itable disorder, whose common thread may be excessive
cartilage extracellular inorganic pyrophosphate (PPi).

2

Contributing factors to the disorder include PPi gener-
ation and transport, imbalances in chondrocyte growth
factors, and alterations in the connective tissue matrix.2

CPPD manifests substantially more often as joint path-
ology than it does as a symptomatic arthropathy. Recent
epidemiological studies suggest growing CPPD preva-
lence in developed countries, not simply due to increased
longevity of the population and particularly high preva-
lence of OA, but also potentially promoted by iatrogenic
factors; these factors include hypomagnesaemia asso-
ciated with loop and thiazide diuretics and proton pump
inhibitors.1 The original diagnostic criteria for CPPD
were proposed by McCarty3 in 1994. European League
Against Rheumatism (EULAR) recommendations for
diagnosis in 2011 reinforced these criteria,4 including
that the gold standard for diagnosis of CPPD crystal
deposition disease, particularly for acute CPP crystal-
associated inflammatory arthritis, is identification of
CPPD crystals by compensated polarised light micro-
scopic analysis of synovial fluid, in the absence of joint
infection or other cause of arthritis. EULAR also semin-
ally highlighted evidence on the utility of ultrasound (U/
S) in CPPD diagnosis in 2011.4 As U/S and other CPPD
diagnostic modalities are rapidly emerging since 2011, we
systematically reviewed the literature on the diagnostic
approach modalities, including the conventional stand-
ard of plain radiography. We examined new evidence on
high-resolution U/S, dual-energy CT (DECT) and specia-
lised crystal analytic approaches such as Raman spectros-
copy. To bring focus onto the most recent developments
in CPPD diagnosis, we used the 2011 EULAR systematic
review as a starting point, and simply updated 2009–2016
literature findings not cited in 2011 by EULAR.4 We also
performed evidence grading, and assessed unmet needs
in the field.

METHODS
Literature search
We conducted a literature search of PUBMED (1 January
2009 to 30 April 2016), SCOPUS/EMBASE (1 January
2009 to 30 April 2016) and COCHRANE (1 January 2009
to 30 April 2016) databases. Our search strategies used a
combination of controlled terms, subject headings and
keywords to locate studies related to the themes of CPPD
crystal deposition and diagnosis. The major search terms
and concepts included (but were not limited to) CPPD
crystal deposition, pseudogout, chondrocalcinosis, diagnosis,
diagnostic imaging, ultrasound, plain x-ray, computed tomog-
raphy, dual-energy computed tomography, magnetic resonance

imaging, crystal analysis and Raman spectroscopy. We identi-
fied additional articles through manual searches of the
references in relevant papers.

Review of literature
After the initial searches were completed, YW reviewed
all the resulting titles and abstracts. Citations were
excluded if the title or abstract was not relevant to the
goals of the review. Full manuscripts of the remaining
citations were reviewed by YW and RT. Review articles
were excluded; selected articles were manually searched
to identify additional relevant reports.

Selection criteria
We reviewed titles and abstracts to identify published
studies that met our systematic review inclusion criteria
of: (1) diagnostic performance of ≥1 imaging or tissue/
fluid sample crystal analytic modalities; (2) ≥1 group of
patient±human specimens; (3) sensitivity or specificity
measure (original or meta-analytic). We excluded: (1)
non-English text; (2) non-original literature (eg, reviews
without meta-analysis or comparable statistical analyses,
editorials, opinions, letters, non-analytical); (3) case
report; (4) not pertaining to diagnosis; (5) simple preva-
lence survey by conventional crystal analysis (CCA) or
conventional radiography (CR); (6) use of synthetic
crystals.

Data extraction and quality assessment
Two authors (YW and RT) independently reviewed the
articles identified from the literature search. Then the
following information was collected: index diagnostic
modality, overall study design, modality compared with
CCA or CR reference standard and EULAR level of evi-
dence. Methodological quality was assessed by the
Quality Assessment of Diagnostic Accuracy Studies
(QUADAS)-2 tool.5 QUADAS-2 is the current version of
QUADAS and the tool for use in systematic reviews to
evaluate the risk of bias and applicability of primary
diagnostic accuracy studies. When there were differences
in QUADAS-2 scores, a third author (KC) reviewed the
paper to settle discrepancies.

RESULTS
Study identification
A total of 111 articles were reviewed (figure 1). Among
articles identified, 65 were excluded after review of the
title and/or abstract, 19 were excluded after review of
manuscript, and 1 duplicate was excluded. A total of 26
articles were included in the analysis, all of them are full
length manuscripts (tables 1–3). Table 1 provides infor-
mation on the diagnostic modalities and EULAR evi-
dence levels. Two studies examined CR,6 7 12 studies
examined U/S,8–19 1 study examined CT,20 1 study exam-
ined DECT,21 3 studies examined CCA,22–24 4 studies
examined Raman spectroscopy,25–28 1 study examined
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elemental bioanalysis29 and 2 studies examined metabo-
lomic or other mass spectrometry.30 31

Quality assessment
Overall, the included studies met most of the quality
indicators of the QUADAS-2 tool (figure 2). The most
common quality issues were non-randomised patient
selection without case–control or appropriate exclusion,
and index test results being interpreted without knowl-
edge of the results of the reference standard.

Study design, modality and level of evidence
Study design, modality and level of evidence are shown
in table 1. Most studies were case–control or cross-
sectional studies with exceptions of three descriptive
studies.13 16 31 Among the 26 diagnostic studies, all but
229 30 used comparison to CCA or CR reference stand-
ard; the remaining 2 studies29 30 did not use any refer-
ence standard for comparison. Modalities examined,
and numbers of studies for each are cited in table 1.

Figure 1 Systematic review study flow. A total of 111 articles

were reviewed. Among articles identified, 65 were excluded

after review of the title and/or abstract, 19 were excluded after

review of manuscript, and 1 duplicate was excluded. A total of

26 articles were included in the analysis.

Table 1 Modalities and EULAR evidence levels

Index diagnostic modality: Overall study design:

Analytical: case–control,

n=3

Analytical:

cross-sectional, n=20

Descriptive, n=3

Modality compared with CA or CR

Reference standard?

Yes: n=24

No: n=2

EULAR level of

evidence*:

I: n=0

II: n=23

III: n=3

IV: n=0

CR6 7: n=2 Analytical:

cross-sectional, n=2

Yes: n=2 II: n=2

U/S8–19: n=12

Analytical: case–control,

n=1

Analytical:

cross-sectional, n=9

Descriptive: n=2

Yes: n=12

II: n=10

III: n=2

CT20: n=1 Analytical:

cross-sectional, n=1.

Yes: n=1 II: n=1

DECT21: n=1 Analytical:

cross-sectional, n=1

Yes: n=1 II: n=1

CCA22–24: n=3

Analytical: case–control,

n=1

Analytical:

cross-sectional, n=2

Yes: n=3 II: n=3

Raman spectroscopy25–28:

n=4 Analytical: case–control,

n=1.

Analytical:

cross-sectional, n=3

Yes: n=4 II: n=4

Elemental bioanalysis29: n=1 Analytical:

cross-sectional, n=1

No: n=1 II: n=1

Metabolomic30 or other mass

spectrometry31: n=2 Analytical:

cross-sectional, n=1

Descriptive: n=1

Yes: n=1

No: n=1

II: n=1

III: n=1

II: Cohort or case–control studies; III: non-comparative, descriptive studies; IV: expert opinion.
*EULAR level of evidence: I: meta-analysis of cohort or case–control studies.
CCA, conventional crystal analysis; CR, conventional radiography; DECT, dual-energy CT; U/S, ultrasound.
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Table 2 Imaging study (CR, U/S, DECT, CT, MRI) characteristics and features

Study Modality

Diagnosis of

CPPD

Publication

date

Patients

(N) Features examined Prevalence of pattern by site Sensitivity Specificity

Abhishek et al6 CR X-rays 7/2013 435 CC at knee, hip, wrist, symphysis pubis,

and MCP

Knee 8%, hip 5%, wrist 6.9%,

symphysis pubis 3.6%, MCP 1.5%

ND ND

Abhishek et al7 CR X-rays 10/2012 428 CC at hip, wrist, symphysis pubis, and

MCP without knee CC

Hip 45.9%, wrist 44.4%,

symphysis pubis 45.5%, MCP

31.3%

ND ND

Barskova et al8 U/S McCarty

criteria

6/2013 25 Linear hyperechoic deposits in hyaline

cartilage

Knee:

U/S 100%

CT 72%

CR 52%

ND ND

Filippou et al9 U/S McCarty

criteria

11/2013 42 Hyperechogenic bands and spots in

hyaline cartilage and fibrocartilage;

linear deposits along the tendon

Knee 97.6%, wrist 88%, Achilles

tendon 54.8%, plantar fascia

26.1%, MCP 9.5%

ND ND

Filippucci et al10 U/S CPPD crystal

analysis

9/2013 88 Hyperechoic spots within the

fibrocartilage and hyaline cartilage of the

humeral head

Fibrocartilage 42.4%,

hyaline cartilage 16.3%

ND ND

Filippucci et al11 U/S McCarty

criteria

2/2009 48 Intracartilaginous hyperechoic spots ND Knee

68.7%

Knee

97.6%

Filippucci et al12 U/S McCarty

criteria

1/2010 70 Intracartilaginous hyperechoic spots Knee 64.2% ND ND

Gutierrez et al13 U/S CPPD crystal

analysis

12/2010 2 Calcification within femoral hyaline

cartilage, hyperechoic spots in wrist

ND ND ND

Lamers-Karnebeek

et al14
U/S CPPD crystal

analysis

4/2014 54 Hyperechoic band within the cartilage 0 ND ND

Loffler et al15 U/S CPPD crystal

analysis

3/2015 225 Hyperechoic spots within the cartilage ND 78.9% 51.7%

Russell et al16 U/S CPPD crystal

analysis

3/2013 4 Hyperechoic foci within the cartilage ND ND ND

Ruta et al17 U/S McCarty

criteria

4/2016 75 Hyperechoic bands within the femoral

hyaline cartilage and hyperechoic spots

in meniscal fibrocartilage

ND 60% 96.7%

Zufferey et al18 U/S CPPD crystal

analysis

7/2015 109 Intracartilage, meniscus, synovial or

tendon hyperechoic deposits

ND 60% 80%

Ottaviani et al19 U/S CPPD crystal

analysis

8/2015 51 Hyperechoic spots in knee cartilage ND 100% 92.3%

Kobayashi et al20 CT CPPD crystal

analysis

9/2014 27 Calcification of the transverse ligament

and longus colli muscle

Neck:

transverse ligament 81.5%,

longus colli 7.4%

ND ND

Misra et al21 DECT X-rays 2/2015 16 Intra-articular calcium crystal in meniscal

and hyaline cartilage and deeper

structures cruciate ligaments and joint

capsules

Meniscus 66.6–95.8%, hyaline

cartilage 8.3–91.6%, cruciate

ligament 0–79.1%, joint capsule

58.3–62.5%

ND ND

CC, chondrocalcinosis; CPPD, calcium pyrophosphate crystal deposition disease; CR, conventional radiography; DECT, dual-energy CT; MCP, metacarpophalangeal joint; ND, not defined; U/S,
ultrasound.
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Table 3 Crystal analytic study (CCA, Raman spectroscopy, elemental bioanalysis, metabolomic, mass spectrometry) characteristics and features

Study Modality

Diagnosis of

CPPD

Publication

date Patients (N) Features examined Prevalence of pattern by site Sensitivity Specificity

Pollet

et al22
CCA CPPD crystal

analysis

5/2015 180 Synovial fluid crystal

analysis

ND 66.7% 93.2%

Robier

et al23
CCA CPPD crystal

analysis

6/2014 50 Synovial CCP crystal count

with cytospin and smear

Cytospin 96/10HPF, smear 2.5/

10HPF

ND ND

Tausche

et al24
CCA CPPD crystal

analysis

8/2013 75 CCP crystals/field day 0

and stored for 1–3 days

>5/field 33.3%,

<5/field 66.6%

ND ND

Cheng

et al25
Raman

spectroscopy

CPPD crystal

analysis

4/2009 35 CCP crystal analysis with

Raman and PLM

Agreement 91.4%, discrepancy

8.5%,

confirmation 100% correct with

Raman, 33.3% correct with PLM

ND ND

Li et al26 Raman

spectroscopy

CPPD crystal

analysis

2/2014 ND CPPD crystals

concentrations detected by

CARD and PLM

CARD 1 ug/mL,

PLM 10–100 ug/mL

ND ND

Fuerst

et al27
Raman

spectroscopy

CPPD crystal

analysis

3/2010 4 CPPD crystal analysis by

Raman spectra

CPPD 25%, HA 75% ND ND

Li et al28 Raman

spectroscopy

CPPD crystal

analysis

2/2016 174 Rapid POCR compared

with CPLM for CPPD and

gout diagnoses

Overall 89.7% POCR and CPLM

agreement;

κ coefficient for POCR and CPLM:

0.61 (95% CI 0.42 to 0.81) in

CPPD; 0.84 (CI 0.75 to 0.94) in

gout

ND ND

Nguyen

et al29
Elemental

bioanalysis

CPPD crystal

analysis

2013 20 (141

cartilage

samples)

CaC crystals and CPP

crystals in patients with OA

by FT-IR

CaC crystals 68.3%, CPP crystals

14.1%

ND ND

Hugle

et al30
Metabolomic CPPD crystal

analysis

3/2012 59 Metabolomic profiling of

knee synovial fluid with

NMR

35 different metabolites identified,

no difference compared with OA

ND ND

Austin

et al31
Mass

spectrometry

CPPD crystal

analysis

3/2009 ND CPP crystal identification

with LA ICP-MS

High calcium, phosphorus,

magnesium, strontium intensities

in cartilage and synthetic synovial

fluid

ND ND

CaC, calcium-containing; CARD, cost-efficient automated Raman device; CCA, conventional crystal analysis; CCP, cyclic citrullinated peptide; CPLM, compensated polarised light microscopy;
CPPD, calcium pyrophosphate crystal deposition disease; FT-IR, Fourier-transform infrared spectroscopy; HA, hydroxyapatite; LA ICP-MS, laser ablation inductively coupled plasma mass
spectrometry; ND, not defined; NMR, nuclear MR; OA, osteoarthritis; PLM, polarised light microscopy; POCR, point of care Raman.
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Most studies (23 of 26)6–12 14 15 17–30 yielded EULAR evi-
dence level of II, and 313 16 31 of 26 studies provided
lower EULAR evidence of III.

Study characteristics and features
Detailed study characteristics and features are shown in
tables 2 and 3. We included only studies (from 1 January
2009 to 30 April 2016) after the EULAR recommenda-
tions for calcium pyrophosphate deposition terminology
and diagnosis. Among all 26 studies, 12 (7 U/S, 2 CCA,
3 Raman spectroscopy)10–12 14–16 18 22 24–26 28 included
patients with CPPD and gout, 7 (5 U/S, 1 CT, 1
CCA)8 9 13 17 19 20 23 studied patients with CPPD only
and 6 (2 CR, 1 DECT, 1 Raman spectroscopy, 1 elemen-
tal bioanalysis, 1 mass spectrometry)6 7 21 27 29 31

included patients with CPPD and significant coexisting
OA. The articular or periarticular sites studied were
mostly knees,6–9 11–19 21–23 29–31 as well as
wrists,6 7 9 13 22 ankles,14 15 18 22 hips,6 7 22 31 metacar-
pophalangeal joints (MCPs),6 7 9 16 shoulders,10 22 23

metatarsophalangeal joints (MTPs),14 18 22 symphysis
pubis,6 7 elbows,16 22 neck20 and Achilles tendon/
plantar fascia.9 The age of patients ranged from 1828

to 9822 years, and the proportion of males ranged from
22.9%11 to 70.4%.14 The mean disease duration was
described in three studies8 10 12 and ranged from 5.6
to 6 years.
As previously described, the U/S patterns evaluated

were linear hyperechoic deposits or bands in the hyaline
cartilage,8 9 14 17 hyperechoic spots in fibrous cartilage

or in tendons.9–13 15–19 The sensitivity of U/S studies
ranged from 60%17 18 to 100%19 and specificity from
51.7%15 to 97.6%.11 One study of CCA claimed sensitiv-
ity of 66.7%22 and specificity of 93.2%.22 Meta-analysis,
in one systematic review study, concluded sensitivity and
specificity for U/S in CPPD of 87.9%32 and 91.5%,32

respectively.
Diagnosis of CPPD relies on identification of CPPD crys-

tals by compensated polarised light microscope (CPLM)
in synovial fluid aspirates, enhanced by birefringent prop-
erties of CPPD. However, the relatively small field of view
limits the efficiency and accuracy of CPPD diagnosis by
CPLM. Raman spectroscopy is a chemical analysis tech-
nique that is 100% specific in fingerprinting species based
on the identification of chemical bonds unique to each
material.28 We reviewed four major studies25–28 comparing
Raman spectroscopy and CPLM. It was found that point of
care Raman (POCR) spectroscopy can detect monoso-
dium urate and CPPD crystals with good sensitivity and
specificity at concentrations as low as 5 and 2.5 μg/
mL,25 and 0.1 and 1 μg/mL.26 The detection limit of
Raman spectroscopy is lower than that reported for CCA.
Further study using a larger clinical sample set revealed
that CPLM and POCR analyses agreed in 89.7% of
samples (156 of 174), κ coefficients indicated that POCR
and CPLM had excellent agreement in diagnosing gout
(0.84 with 95% CI 0.75 to 0.94), and good, but less broad
agreement in diagnosing acute CPP crystal arthritis (pseu-
dogout; 0.61 with 95% CI 0.42 to 0.81).28 The results sug-
gested that POCR can be used in settings where there are

Figure 2 Graphical display for QUADAS-2 results. We assessed methodological quality by the QUADAS-2 tool, to evaluate the

risk of bias and applicability of primary diagnostic accuracy studies, as described in the text. As the data show in the figure, the

overall quality of the studies was satisfactory, with most QUADAS-2 grading in the low-risk range. The QUADAS-2 grading

strongly supported applicability of U/S, DECT, and Raman spectroscopy, but there was moderate study bias risk overall;

specifically ∼30% studies lacked proper knowledge of the results of the reference standard; and ∼25% studies without proper

patient selection due to non-controlled study designs, and non-randomized subject selection. DECT, dual-energy CT; QUADAS,

Quality Assessment of Diagnostic Accuracy Studies; U/S, ultrasound.
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limited time, resources or staff to execute CPLM, also can
be used in conjunction with CPLM when there is ambigu-
ity in identifying the type of crystal microscopically. Such
ambiguity exists more often for CPP crystals which appear
to evade detection by CPLM.33 However, the study
refrained from deriving a sensitivity value for POCR or
CPLM because there is no gold standard method that
gives 100% accurate diagnosis.
We found only three small studies on elemental bioa-

nalysis,29 metabolomics30 and mass spectroscopy.31

Nguyen et al29 carried out elemental bioanalysis using
Fourier-transform infrared (FT-IR) spectrometry and
scanning electron microscopy (SEM) of 8–10 cartilage
zones of the knees from 20 patients with OA, including
medial and lateral femoral condyles and tibial plateau
and the intercondyle zone. Differential expression of
genes involved in the mineralisation process between
cartilage with and without calcification was assessed by
RT-PCR; immunohistochemistry and histology studies
were performed as well.29 Among 141 cartilage samples
from 20 patients with OA,29 FT-IR spectroscopy detected
calcium-containing (CaC) crystals in 63.8% (90/141)
and revealed 4 distinct CaC crystal spectra: CA crystals in
71 samples; CPP crystals were detected in 20 samples
from 8 patients; amorphous Ca2+ carbonated phosphate
crystals in 3 samples from 3 patients, and whitlockite
crystals in 4 samples from the same patient. Although
preoperative X-rays showed joint calcifications (chondro-
calcinosis) in four cases only, the CaC crystal deposition
is a widespread phenomenon in human OA articular
cartilage. Interestingly, the expression of several genes
involved in mineralisation, including human homologue
of progressive ankylosis, ectonucleotide pyrophosphatase
phosphodiesterase I and tissue non-specific alkaline
phosphatase, were upregulated in OA chondrocytes iso-
lated from CaC crystal-containing cartilages.29

Synovial fluid metabolomics by proton (1H) nuclear
MR (1H-NMR) spectroscopy was analysed in a study of
59 samples from patients with OA, gout, CPPD, spondy-
loarthritis, septic arthritis and rheumatoid arthritis.30

Although a distinctive metabolism signature was
observed in septic arthritis, metabolites in OA were
similar to those in inflammatory arthritis using 1H-NMR.
Last, an elemental bioimaging method with laser abla-

tion inductively coupled plasma mass spectrometry (LA
ICP-MS) using a focused laser beam to mobilise sample
material as droplets or vapour from the sample surface.
The material is then transported to the plasma where
the material is ionised and carried through to the mass
spectrometer, which selectively detects ions at a given
mass-to-charge ratio.31 The study obtained cartilage sec-
tions from knee or hip arthroplasty and were imaged by
LA ICP-MS for the presence of crystal-associated ele-
ments. In addition, eight synovial fluid samples, six from
patients diagnosed with OA and two from patients diag-
nosed with rheumatoid arthritis were analysed by the
same method. There were corresponding regions of rela-
tively high calcium and phosphorus intensities in the

cartilage section and synovial fluids taken from patients
with OA, which may be representative of CPPD crystals.
This preliminary study gives a good indication of the
potential of LA ICP-MS to detect CPPD crystals in cartil-
age and synovial fluid samples. However, further studies
are needed to confirm crystal presence by SEM.31

DISCUSSION
This is the first systematic review, since that of EULAR
published in 2011, to examine diagnostic performance
of the broad field of established and emerging imaging
and crystal analytic measures. We found 26 new studies
since 2009 that examined the sensitivity and/or specifi-
city of imaging and crystal analytic diagnostic measures
for CPPD. Most studies used comparison to CCA or CR
reference standard. Collectively, 78 9 11 15 17–19 of the 12
U/S studies suggest that U/S for CPPD may have higher
sensitivity and/or specificity compared with CCA.
U/S also is particularly well established in gout.34

Significantly, a recent systematic review/meta-analysis
focused on U/S in CPPD, reviewing studies up to 31
December 2014.32 Our report shows similar findings.32

Specifically, the most frequently reported CPPD pattern
was hyperechoic foci within fibrocartilage or tendons
but with a large range of sensitivity and specificity
depending on the examined site: knees better than
wrists, ankles, shoulders and hands (MCPs); hyperechoic
spots identified more frequently within fibrocartilage
than in hyaline cartilage and tendons.
Three U/S studies from 2015 reported

moderate-to-high diagnostic performance of U/S with
similar sensitivity of 60–100% and specificity of 80–
96.7%17–19 compared with 87.9% and 91.5%32 in the pre-
ceding analysis by Gamon and colleagues. However, prior
reports of high sensitivity and specificity performance of
U/S for CPPD may be due to evaluation of a combination
of several patterns and several sites during the same
examination. Whether a specific number of joint sites is
required for examination, and which joints to examine by
U/S when CPPD is suspected, remain to be determined.9

Nevertheless, compared with CCA and CR, U/S results
had better specificity and sensitivity for CPPD.8 17 19

Up to this point, there were no studies comparing U/
S and Raman or FTIR spectroscopy, and most of the U/
S studies used CCA or CR as gold standard for diagnosis
of CPPD. Additionally, concurrence of basic calcium
phosphate (BCP) and CPPD crystals, and degenerative
joint disease has been well established.31 BCP deposits
can also appear as hyperechoic spots on U/S particu-
larly in tendons, whereas CPPD deposits may be misin-
terpreted as BCP aggregates because of limitations of
the other imaging techniques (ie, X-rays and MRI).10

A striking observation of our systematic review was that,
compared with over 3534 published DECT studies in gout,
DECT has only been marginally explored for CPPD. Misra
et al21 reported that intra-articular calcification in CPPD
was seen broadly, including in meniscal fibrocartilage (the
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single most common site involved), hyaline cartilage, cru-
ciate ligaments, medial collateral ligament and joint
capsule. DECTenables detection of CaC crystals in deeper
intra-articular structures. DECT for CPPD appears highly
specific, and informative on crystal distribution in various
joint tissues, but it is not yet clear whether DECT is super-
ior to CT to detect CaC crystal deposition in the joint.
More studies of DECT in CPPD are needed.
In contrast to previously reported work, Abhishek

et al7 observed that chondrocalcinosis (CC) was fre-
quently detected in the wrist (44.4%), hip (45.9%), sym-
physis pubis (45.5%) and MCP joint (31.3%) in the
absence of knee CC. Further imaging studies are
needed to replicate the findings about signal character-
istics of CC using imaging modalities other than CR.
There has only been one study, to date, on 4 T MRI in

CPPD. Specifically, a report of three patients with CC
(one woman and two men, age range 54–68 years), and
retrospective review of the imaging results of the knees
with high-field MRI (4 T MRI), high-resolution three-
dimensional CT, conventional radiography and arthros-
copy, revealed that high-field MRI demonstrated a
greater number of involved articular surfaces and menis-
cal bodies than CT, radiography and arthroscopy.35

Given that the case series represents a small sample size,
and pathological correlation was not available for this
study, definitive conclusions regarding sensitivity, specifi-
city, accuracy and direct comparison of the techniques
could not be made.35

Methods employed by studies analysed here were satis-
factory overall. However, some studies15 24 27 used a
case–control design. Such designs may exaggerate the
diagnostic properties (sensitivity and specificity). Also,
the majority of the studies used cross-sectional designs
in which patients for whom the clinical question ‘Does
this patient have CPPD?’ are referred for participation.
Last, there was great variability in the study protocols

used. Standardisation of the methodology used for both
U/S, DECT, and Raman spectroscopy are needed. At
present, it remains unclear which joints and other sites
are optimal for U/S or DECT imaging, and also which
scanner settings are most appropriate to achieve optimal
sensitivity and specificity for CPPD deposition.
Certain limitations of our analyses should be acknowl-

edged: first the number of studies of U/S, DECT, Raman
spectroscopy for CPPD is limited, particularly as com-
pared with U/S in rheumatoid arthritis (RA) or DECT in
gout. Second, the number of patients in the selected
studies was often low, and comparators used had wide dif-
ferences (ie, inflammatory arthritis, OA, asymptomatic).
To evaluate this limitation, we used the QUADAS-2 tool.
Overall, the quality of the studies was satisfactory with
most QUADAS-2 grading in the low-risk range. The
QUADAS-2 grading strongly supported applicability of
U/S, DECT and Raman spectroscopy, but there was mod-
erate study bias risk overall; specifically ∼30% studies
lacked proper knowledge of the results of the reference
standard; and ∼25% studies without proper patient

selection due to non-controlled study designs, and non-
randomised participant selection (figure 2).
A larger limitation in recent literature is that there has

been little discussion and analysis of cost and resource
issues for crystal arthropathy diagnostics. In this context,
the applicability and efficiency of CPLM, and most other
analytic methods for CPPD crystals remain burdened by
cost issues of ‘point of care’ access to CPLM equipment.
Diagnostic approaches to crystal arthropathies include
emerging ‘point of care’ methodologies, exemplified by
adaptation of Raman spectroscopy.28 As the field moves
forward, we anticipate seeing similar adaptation of other,
highly specific crystal analytic methods, such as FTIR
spectroscopy.29 However, cost-effectiveness relative to
CPLM is not assured. One potential approach to the
cost issue may be via lens-free polarised microscopy, with
wide-field holographic imaging of birefringent objects,
as recently tested, with success, for identification of
urate crystals from a tophus.36 This approach employs
sensing and imaging methodology that can potentially
be broadly adapted to use in conventional mobile elec-
tronic devices.36 However, it has not yet clear whether it
will be reliable for synovial fluid samples or for identifi-
cation of CPPD crystals, which can include both non-
birefringent and highly polymorphic particulates.
In summary, systematic review of CPPD diagnostic

studies since EULAR 20114 indicated that U/S is a
highly sensitive and specific tool for the diagnosis of
CPPD deposition. However, we identified major unmet
needs, including for randomised, blinded, controlled
studies of CPPD diagnostic performance and rigorous
analyses of DECT, 4 T MRI and other emerging moda-
lities, such as Raman spectroscopy.
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