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Necroptosis is the best-described form of regulated necrosis at present, which is widely recognized as a component of caspase-
independent cell death mediated by the concerted action of receptor-interacting protein kinase 1 (RIPK1) and receptor-
interacting protein kinase 3 (RIPK3). Mixed-lineage kinase domain-like (MLKL) was phosphorylated by RIPK3 at the threonine
357 and serine 358 residues and then formed tetramers and translocated onto the plasma membrane, which destabilizes plasma
membrane integrity leading to cell swelling and membrane rupture. Necroptosis is downstream of the tumor necrosis factor
(TNF) receptor family, and also interaction with NOD-like receptor pyrin 3 (NLRP3) induced inflammasome activation.
Multiple inhibitors of RIPK1 and MLKL have been developed to block the cascade of signal pathways for procedural necrosis
and represent potential leads for drug development. In this review, we highlight recent progress in the study of roles for
necroptosis in cerebral ischemic disease and discuss how these modifications delicately control necroptosis.

1. Introduction

For a long time, necrosis was classified as nonprogrammed
cell death as a response to extreme stress. The integrity of
the plasma membrane was attacked by uncontrolled and
accidental necrosis causing the collapse of the cell, though
the nuclei keep substantially intact on the way [1]. However,
in recent years, there is strong evidence confirming that
part of necrosis also contained program control, therefore
proposing the new concept as programmed necrosis or
necroptosis. Apoptosis, autophagy, and necroptosis are all
classified as programmed cell death (PCD) based on mor-
phological and biochemical features [2, 3]. These phenomena
have been observed in the ischemic stroke model [4–6]. Due
to technical limitations, many studies considered necroptosis
equated with apoptosis. Necroptosis is not induced by the
caspase activation which is a typical requirement of the apo-
ptotic pathway [7]. Wang et al. systematically exposed the

classic signal pathway of necroptosis to further understand
this form of cell death [8]. It was found that necroptotic
cell death participates in a variety of cerebrovascular dis-
eases. These mechanisms are reviewed in this paper, since
they could be targets of new therapeutic approaches for
these diseases.

2. Research Progress of the Signal Pathway of
Programmed Necrosis

In the 1990s, researchers observed that caspase inhibition
cannot fully block tumor necrosis factor- (TNF-) induced cell
death but rather switches the cell fate to the necrotic death
signal pathway similar to apoptosis [9, 10]. This is the first
time that procedural necroptosis has been observed. In the
activation of downstream necroptosis of the pathway,
caspase-8 plays a critical regulatory role in the switch.
Caspase-8 acts as an endogenous inhibitor of the necroptosis
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signal. It not only cleaves but also activates and initiates the
execution phase of apoptosis. When FADD-caspase-8-FLIP
complex functions are inhibited, the pathway of cell death
switches from apoptosis to typical necroptosis features
[11–14]. On the other side, when RIP3 kinase activity is
inhibited, necroptosis may also lead to the activation of the
FADD-RIPK1-RIPK3-caspase-8 complex to induce apopto-
sis [15]. TNF-α is the major trigger of necroptosis, which is
capable of initiating RIPK1 kinase-dependent necroptosis
as well as caspase-8-dependent apoptosis [16].

So what is the most classic feature of procedural necrop-
tosis? TNF-α-induced necroptosis is mostly intensively
investigated. TNF receptor 1 (TNFR1) ligation recruits com-
plex I which contains TRADD, TRAF2, and cIAP1/2 [17].
Complex I transits into the cytosol activating death-
inducing TNFR1 complex II via cylindromatosis (CYLD)
[18]. In the necrotic signal pathway, receptor-interacting
kinase 1 (RIPK1 or RIP1) was the first molecule recognized
as the central components of the necroptotic machinery
[19]. When FADD or caspase-8 is inactivated or absent,
RIPK1 and TRIF include a RIP homotypic interaction motif
(RHIM) domain that permits RIPK3 activation via RHIM-
mediated interactions. RIPK3 kinase activity and RIPK3
RHIM domain are the requirement of necroptosis induction
[20, 21]. RIPK1 and RIPK3 were phosphorylated, then
formed a necrosome through their RHIM domains, and
activate their kinase activities [22]. This RIPK1-RIPK3
interacts with mixed-lineage kinase domain-like (MLKL)
phosphorylation [23], which consists of an N-terminal 4-
helical-bundle domain (4HBD) linked by a brace region to
a C-terminal pseudokinase domain [24]. MLKL was phos-
phorylated by RIP3 at the serine 358 and threonine 357 res-
idues, which induces a conformational change into its
active state [25], and then formed tetramers and translocated
onto the plasma membrane, which injures cellular mem-
brane integrity resulting in cell swelling and membrane rup-
ture [26]. Downstream of the necrosome are two splice
variants of phosphoglycerate mutase family member 5
(PGAM5), PGAM5S and PGAM5L. It was first reported to
be a key substrate associated with the RIP1-RIP3-MLKL
complex in necroptosis. PGAM5S and PGAM5L are both
requirements of intrinsic necroptosis. The presence of the
necrosis inhibitor necrosulfonamide (NSA) does not affect
PGAM5L bound to the necrosome. However, the binding
of PGAM5S is blocked by NSA. PGAM5S is normally located
on the mitochondria and becomes related to the upstream
necrosis-inducing complex probably through interactions
with RIP3 resulting in the activation of PGAM5S by phos-
phorylation [27]. Furthermore, mitochondrial fragmentation
caused by the mitochondrial phosphatase PGAM5S which
recruited the mitochondrial fission factor dynamin-related
protein 1 (Drp1) may upregulate ROS generation [27].

RIP3 is a nucleocytoplasmic shuttling protein whose
nuclear distribution is temperature-sensitive. RIP3 possesses
two classical unconventional nuclear localization signals
(NLS, aa 442–472) and two classical nuclear export signals
(NES) [28]. The above two localization signals and amino
acid residue 452 within NLS participated in the necropto-
sis signal pathway [29]. Therefore, some studies began to

explore the existence of the RIP3 nuclear pathway in addition
to the classic mitochondrial pathway. Recent literature sug-
gests that RIP3 binds to the apoptosis-inducing factor (AIF)
nuclear pathway which is also involved in the process of pro-
cedural necrosis [14]. AIF is discharged from mitochondria
and combines with RIP3 to form RIP3-AIF complexes. The
new RIP3-AIF complex translocates into the nucleus leading
to DNA degradation, and then the neurons are induced to
suffer the necroptosis signal pathway (Figure 1).

3. Necroptosis in Cerebral Ischemia Disease

In the field of cerebral ischemia, the recognition of proce-
dural necrosis can be traced back to 2005; Degterev et al.
found that cerebral ischemia in mice in the absence of apo-
ptotic signaling is contributing to the nonapoptotic death
pathway like necroptosis. Necroptosis delayed mouse ische-
mic brain injury distinct from that of apoptosis [30]. Vieira
et al. established oxygen-glucose deprivation (OGD) models
in vitro and explored the mechanism underlying OGD-
induced necroptosis in hippocampal neurons, and they
found that although ischemic insults induced caspase-8
mRNA downregulation, they also induced RIP3 mRNA and
protein level upregulation. The changes in RIP3 protein level
were positively related to hippocampal neuronal death.
Similar to RIP3, RIP1 protein levels were positively related
to the activation of neuronal death. Both RIP1 and RIP3 con-
tribute to necrotic cell death in hippocampal neurons chal-
lenged with OGD insult. Consistent with the classical
procedural necroptosis cellular pathways, upregulation of
RIP1-RIP3 expression and negative change of caspase-8 can
afterwards be used to activate necroptotic signaling [31].

Global brain ischemia and reperfusion (I/R) injury acts as
another manifestation of brain cell injury, in which the hip-
pocampal CA1 layer is especially vulnerable [32, 33]. Yin
et al. built rat 20min global cerebral ischemia model to
explore intracellular changes [5]. As a marker of necroptosis,
RIP3 upregulated and transferred into the nucleus after cere-
bral ischemia and reperfusion injury. The RIP1-RIP3 com-
plex plays crucial roles for TNF-induced necroptosis in the
cell cytosol. ATP depletion is one of the results of the mito-
chondrial permeability transition pore (mPTP) leading to
mitochondrial swelling. Fakharnia et al. presented additional
arguments in the classical mitochondrial pathway. As a gate-
keeper of mPTP, CypD, which mediated mPTP opening,
may contribute to not only apoptosis but also necroptotic cell
death in cerebral I/R injury and alleviated the levels of RIP1
and RIP3 [34]. However, the RIP3 function in the nucleus
is not completely dependent on the RIP3-RIP1 complex. It
needs future studies to examine other nuclear proteins that
interacted with RIP3 [5]. Xu et al. continued to explore the
role of RIP3 mechanisms in the nucleus. The interaction
between activated RIP3 and AIF occurs in the cytoplasm
after I/R injury. AIF and RIP3 translocation into the nucleus
is critical to neuronal necroptosis, and AIF translocation
into the nucleus may be RIP3-dependent [14]. As a key
mediator, AIF links caspase-independent PCD with the
necroptotic pathway.
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Nerve cell necrosis was observed following the focal mid-
dle carotid artery occlusion/reperfusion (MCAO/R) ischemic
stroke model. TNFR1 and RIP3 were positively expressed
and significantly increased following the volume of cerebral
infarction postreperfusion. Caspase inhibitor z-VAD-FMK
(z-VAD) treatment markedly increased RIP3 expression
during ischemia injury [35]. Compared with the classic
procedural necrosis pathway, Lu et al. put forward the
opposite view on the MCAO model, which is mainly con-
centrated in the downstream of RIP1-RIP3-MLKL. They
found the mitochondria-enriched RIP1/RIP3 complex in
necroptosis; nevertheless, PGAM5 had hardly any effect
on RIP1-RIP3 recruitment. PGAM5 gene knockout in mice
exacerbated necroptosis rather than reduced necroptosis. It
causes abnormal mitochondrial accumulation and increases
ROS generation [36].

In addition to phosphorylation modification, Miao
et al. tested RIP3 S-nitrosylation in I/R paralleled with ele-
vated phosphorylation. It means that phosphorylation and
activation of RIP3 could be modulated by its S-nitrosylation
triggered by NMDAR-dependent nNOS activation [37].

4. The Activation of the NLRP3
Inflammasome by a Mechanism Involving
the RIP1-RIP3 Signaling Pathway

Neuroinflammation is still the primary cause of morbidity
and mortality in cerebral ischemia [38–40]. The NOD-like
receptor pyrin 3 (NLRP3) inflammasome is considered an
effective therapeutic target. The abnormalities of structure
and expression of the NLRP3 inflammasome could affect
the development or progression of ischemic stroke. After
OGD, MCAO, or global cerebral ischemia injury, NLRP3

inflammasome and other proinflammatory cytokines were
activated [41]. These cytokines could be the mediating
molecules during postischemic inflammation and immune
responses. Following the detection of cellular stress, NLRP3
was exposed to interact with the adaptor apoptosis-
associated speck-like protein containing a CARD (ASC).
After binding with NLRP3, ASC recruits procaspase-1 clus-
tering which permits autocleavage and formation of the
active caspase-1, which mediates the release of the mature,
biologically active cytokines to engage in immune defense
[42]. The downstream of NLRP3 was explored relatively
and clearly in neuronal cell experiments, primarily associated
with inflammatory factors. Caspase-1 and both IL-6 and IL-
1β are involved in mouse primary cortical neurons’ ischemic
conditions [43, 44]. In particular, caspase-1 inhibitor treat-
ment protected neurons in experimental stroke models
through suppression of NLRP3 inflammasome activity [45].
These mechanisms have been confirmed in the cerebral
ischemic disease model. However, we know very little about
its upstream studies. So far, the mechanism that activates
NLRP3 inflammasome in ischemia injury generalizations
in two main models, lysosomal damage or ROS release, is
mutually connected and associated with NLRP3 in ischemia
injury (Figure 2). Although there are many pathways of
ROS production after ischemia [46, 47], necroptosis is one
of the ways.

As mentioned before, caspase-8 is a regulatory molecule.
Kang found certain cells deficient in caspase-8 prompting
which is mediated by RIP1 and RIP3. Caspase-8 deficiency
dendritic cells (DCs) expressed to accentuated activation of
the inflammasome through the functions of RIP1, RIP3, and
MLKL [7]. And Gurung et al. considered caspase-8 an apical
mediator of NLRP3 inflammasome priming [48]. MLKL, a
key component downstream of necrosome components, is
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Figure 1: Two classic pathways of necroptosis. One of the classic
pathways is RIP3 binding to RIP1 to form procedural necrosis
complex II, which in turn binds to MLKL and mediates
necroptosis of the mitochondrial pathway. The other is RIP1
binding to AIF, which translocated into the nucleus and mediates
necroptosis of the nuclear pathway.
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Figure 2: The activation of the NLRP3 inflammasome through the
RIP1-RIP3 signaling pathway. The activation of RIP1-RIP3 damages
the mitochondria by activating the DRP1. This results in excessive
production of ROS and subsequent trigger activation of the
NLRP3 inflammasome. RIP3 also destructs lysosomal membrane
stability, leading to hydrolase release (such as cathepsin-B) and
activation of NLRP3-mediated inflammatory factors.
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considered an executor of necroptosis. In MLKL-knockout
mice, NLRP3 activation was inhibited, which means that
the potential function of MLKL is the regulation of inflam-
masome activation [17]. Beyond their core role in necrosis,
the necrosome components RIP1 and RIP3 have been pro-
posed to be hyperresponsive to the induction of assembly,
which were applied to the NLRP3 inflammasome. When
inhibitory factors of necrosomes are blocked, RIP1-RIP3
could promote inflammasome activation spontaneously.
Wang et al. discovered that the RIP1-RIP3 complex partic-
ipates in RNA virus-induced NLRP3 activation through the
GTPase DRP1 pathway. This promoted the mitochondrial
damage leading to the production of ROS and stimulus
NLRP3 [49].

The relationship between the procedural necrosis and
inflammation is likely clearer, but this may not be the only
signaling pathways that intersect. At least downstream stud-
ies, including the relationship between necroptosis and
inflammation in cerebral infarction, indicate the direction
of the study.

5. The Regulation of Necroptosis in the Cerebral
Ischemic Model

Many studies focus on how to block the cascade of signal
pathways for procedural necrosis. The most classic inhibitor
is the small-molecule compound necrosulfonamide (NSA).
NSA did not block interactions between necrosis-induced
RIP1 and RIP3, but it blocks necroptosis downstream of
RIP3 activation. NSA targets the N-terminal Cys86 residue
MLKL which has a drawback that is specifically inhibiting
necroptosis in multiple human cell lines. In human glioblas-
toma cells, NSA switches from necrosis to apoptosis in
edelfosine-treated cells [50]. In a HeLa cell line in which
caspase-8 was knocked down and RIP3 was expressed,
necrosis induced by TNF-α plus Smac mimetic (no need
for z-VAD) was efficiently blocked by NSA, while necrosis
induced by either TNF-α or z-VAD was insensitive to NSA
in a 3T3 cell line expressing mouse RIP3 [23]. NSA also sig-
nificantly reduces BV6/MS275-induced cell death in acute
myeloid leukemia (AML) cell lines [51].

In the field of cerebral ischemia, some of the inhibitors of
programmed necrosis have been demonstrated in animal
models. Degterev et al. reported that as an identified small-
molecule inhibitor of necroptosis, necrostatin-1 (NEC-1)
has been shown to ameliorate tissue damage in ischemic
brain injury animal models [30]. NEC-1 has a selective pri-
mary cellular target responsible for the death domain
receptor-associated adaptor kinase RIP1 activity [52, 53].
The crystal structures of the RIP1 kinase domain bound to
NEC-1 and are caged in a hydrophobic pocket between the
N- and C-lobes of the kinase domain. This structure stabi-
lizes RIP1 in an inactive conformation. DAXX is a novel sub-
strate of RIP3 in global cerebral ischemia and ischemia of the
retinal cell animal model and is translocated from the
nucleus to the cytoplasm in response to stress. Pretreatment
with Nec-1 can block DAXX translocation from the nucleus
to the cytoplasm, which resulted in the inactivation of DAXX
[54–56]. NEC-1 not only inhibited the expression of RIP1

and prevented the upregulation and nuclear translocation
of RIP3 but also decreased cathepsin-B release in the globe
cerebral ischemic model. This suggests that there may be a
signal transduction between programmed necrosis and
autophagy [5]. The recent literature highlights the intricate
interplay between necroptosis and autophagy. CA074-me
and 3-methyladenine (3-MA), as autophagy inhibitors [46],
were used to determine what is beneficial for global cerebral
ischemia in the process of necroptosis signal pathways.
CA074-me and 3-MA pretreatment greatly inhibited rat
mortality rates and neuronal death. The mechanism of 3-
MA is the inhibition of the nuclear translocation and colo-
calization of RIP3 and AIF, as it is significant for ischemic
neuronal DNA degradation and necroptosis for the nuclear
translocation of the RIP3-AIF complex [14]. In the stabili-
zation of the lysosomal membrane, CA074-me has an indi-
rect effect by maintaining energy balance and inhibiting
RIP3 expression and nuclear translocation [57]. Besides this,
CA074-me almost completely hampered the loss of mito-
chondrial membrane depolarization, phosphatidylserine
(PS) translocation, and plasma membrane rupture [58].

Multitargeted kinase inhibitors, such as dabrafenib,
vemurafenib, sorafenib, pazopanib, and ponatinib, are cur-
rently used for the treatment of cancer, which have later
emerged as having antinecroptotic activity [59–61]. Among
them, dabrafenib may block TNF-α-induced necroptosis as
an effective high-affinity inhibitor of RIP3. Dabrafenib
administered intraperitoneally after mouse cerebral ischemic
injury markedly reduced infarct lesion size along with signif-
icantly attenuated upregulation of TNF-α [59].

6. Future Research about Necroptosis

Previous studies suggested that PGAM5 promotes necropto-
sis by associating with necrosome. However, the role of
PGAM5 intrinsically is still controversial [62]. In response
to multiple necroptotic stimuli, PGAM5 deficiency aggra-
vated rather than mitigated necroptosis in brain ischemic
reperfusion injury [36]. The loss of PGAM caused abnormal
mitochondrial accumulation and increased ROS generation.
In oxidative damage and necroptosis-dependent stroke,
PGAM5 could drive pathology, and thus targeting PGAM5
may be of benefit.

The core of procedural necrosis is RIP1-RIP3 and its
downstream signaling pathways. In addition to the above-
mentioned inhibitors, the drugs used in the experiments
and the clinical use of drugs have been developed. This is
because the understanding of this pathway is still relatively
limited. After the classic pathway was proposed, there are
many studies that questioned the effect of RIP3 on the necro-
sis of the bypass signals, such as dynamin-related protein 1
and proteasome beta-4 subunit (PSMB4) [63, 64]. These
need to be systematically assessed. Furthermore, the most
critical problem is that for a long time, both necrotic and
apoptotic cells dominated the theory of neuronal death in
the penumbra zone. The clarification of the relationship
between procedural necroptosis and necrosis and autophagy
still needs a lot of work to do. This cross-channel signal path
may be complexity over imagination.
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