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Active Smoking Induces Aberrations
in Digestive Tract Microbiota of Rats
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Weiwei Heng1, Lichun Zheng1, Qingang Hu1*, Fuhua Yan1* and Wenmei Wang1*

1 Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China, 2 Department of Periodontics & Oral
Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States

Cigarette smoking could have certain effects on gut microbiota. Some pioneering studies
have investigated effects of active smoking on the microbiome in local segments of the
digestive tract, while active smoking-induced microbiome alterations in the whole
digestive tract have not been fully investigated. Here, we developed a rat model of
active smoking and characterized the effects of active smoking on the microbiota within
multiple regions along the digestive tract. Blood glucose and some metabolic factors
levels, the microbial diversity and composition, relative abundances of taxa, bacterial
network correlations and predictive functional profiles were compared between the
control group and active smoking group. We found that active smoking induced
hyperglycemia and significant reductions in serum insulin and leptin levels. Active
smoking induced region-specific shifts in microbiota structure, composition, network
correlation and metabolism function along the digestive tract. Our results demonstrated
that active smoking resulted in a reduced abundance of some potentially beneficial genera
(i.e. Clostridium, Turicibacter) and increased abundance of potentially harmful genera (i.e.
Desulfovibrio, Bilophila). Functional prediction suggested that amino acid, lipid,
propanoate metabolism function could be impaired and antioxidant activity may be
triggered. Active smoking may be an overlooked risk to health through its potential
effects on the digestive tract microbiota, which is involved in the cause and severity of an
array of chronic diseases.

Keywords: smoking, microbiota, digestive tract, gastrointestinal tract, oral cavity
INTRODUCTION

Cigarette smoking remains the leading cause of disease burden worldwide. Cigarette smoking
increases the risk of oral leukoplakia, oral cancer, periodontitis, gastric ulcer, atrophic gastritis,
gastric cancer, Crohn’s disease, ulcerative colitis, inflammatory bowel disease, colon cancer, etc.

A large variety of symbiotic microorganisms inhabit the digestive tract and constitute a complex
microecosystem, and microbiotas along the digestive tract play a critical role in maintaining host
physiological homeostasis (Li et al., 2017; Sedano-Nunez et al., 2018). Some pioneering studies have
indicated that smoking can alter microflora composition. At the phylum level, smoking reduced the
relative abundance of Firmicutes (Lee et al., 2018; Sublette et al., 2020; Yang et al., 2021) and
Bacteroidetes (Stewart et al., 2018), while enhanced that of Cyanobacteria (Huang and Shi, 2019;
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Sublette et al., 2020; Li et al., 2021c; Yang et al., 2021),
Tenericutes (Huang and Shi, 2019), and TM7 (Moon et al.,
2015). At the genus level, Desulfovibrio (Kato et al., 2010),
Paraprevotella (Zhang et al., 2020), Staphylococcus (Kelley
et al., 2021), Corynebacterium (Moon et al., 2015; Kelley et al.,
2021), and Xanthomonas (Huang and Shi, 2019) were enriched
in smoking individuals, while Clostridium (Wang et al., 2021),
Lactococcus (Huang and Shi, 2019),Morganella (Huang and Shi,
2019) were depleted in smoking individuals.

The digestive tract constitutes several sequential segments
and microbiomes in each segment are obviously different due to
distinct microenvironments. Therefore, it is necessary to
investigate the effects of active smoking on the whole
gastrointestinal microbiomes systematically and integrally.
Although some studies have indicated that active or passive
smoking-induced shifts in microbiomes in a certain segment of
the gastrointestinal tract of humans and rodents (Vogtmann
et al., 2015; Allais et al., 2016; Wu et al., 2016; Yu et al., 2017;
Lee et al., 2018; Shanahan et al., 2018; Stewart et al., 2018; Al-
Zyoud et al., 2019; Huang and Shi, 2019; Karabudak et al., 2019;
Al Bataineh et al., 2020; Nolan-Kenney et al., 2020; Sublette et al.,
2020; Tam et al., 2020; Wirth et al., 2020; Jia et al., 2021; Prakash
et al., 2021; Yang et al., 2021; Yoon et al., 2021), the overall effects
that active smoking has on the whole digestive tract microbiome
are unclear. Therefore, we developed a rat model of active
smoking and aimed to determine the effects of active smoking
on community structure and bacterial abundance along the
digestive tract and on blood glucose and related factor levels.

Our results demonstrated that active smoking reduced the
abundance of beneficial genera but increased that of potentially
harmful genera. Our findings contribute to understanding
smoking-induced microbial dysbiosis in the digestive tract.
Some treatments using probiotics, prebiotics, and postbiotics
may provide benefits in restoring microecology equilibrium.
MATERIALS AND METHODS

Laboratory Animals and Cigarettes
This study was carried out according to the National Guide for
the Care and Use of Laboratory Animals. All experimental
procedures were approved by the Ethics Committee of Nanjing
Stomatological Hospital, Medical School of Nanjing University
[IRB Approval Number: 2018NL-008 (KS)] and the Animal
Ethical and Welfare Committee of Nanjing University
(IACUC-D2102043). Five-week-old Wistar rats, weighing 145–
155 g were provided by Vital River Laboratory Animal
Technology Co., Ltd (Beijing, China). After arrival at our
facilities, each rat was housed in its own cage in a specific
pathogen-free facility to avoid microbiota transfer as
previously described (Laukens et al., 2016). Rats were housed
in cages under controlled ambient temperature (22 ± 3°C) and
humidity with a strict 12-h light/12-h dark cycle. Rats were
provided with tap water and a standard laboratory chow diet.
After one week of acclimatization, the rats were divided into two
groups with equivalent average body weights and standard
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
deviations. The rats in the control group (n = 10, male 5 and
female 5) were given intraoral delivery of room air. The rats in
the active smoking group (n = 9, male 5 and female 4) were given
intraoral delivery of cigarette smoke. The rats in the control
group and active smoking group were separated in different
rooms. Both groups of rats were kept in the animal retainers
twice a day (20 min per time in the morning and afternoon) to
receive intraoral delivery of room air or cigarette smoke. The
total duration of the experiment was 3 months. 3R4F Research
Cigarettes (Kentucky Tobacco Research Institute, Lexington, KY,
USA) were used in this experiment. Each cigarette contained the
following ingredients: tar 9.4 mg, nicotine 0.73 mg, carbon
monoxide 12.0 mg.

Active Smoking Protocol
We developed an intraoral smoking exposure apparatus for
rodents that simulates human active smoking. Briefly, the
intraoral smoking exposure apparatus included animal
retainers, intraoral smoking pipes, cigarette smoke delivery
tubes, peristaltic pumps (LongerPumper, Boonton, NJ, USA),
and a hood over the smoking rats to evacuate the extra smoke
from the environment. During the treatment process, the body of
the rats was retained in a plastic hollow cylinder. The delivery
tube was connected to the filter tip of a lit cigarette at one end
and connected to the intraoral smoking pipe at the other end.
The intraoral smoking pipe was sterile and replaced between rats.
Then, a peristaltic pump at a speed of 30 rpm was used to
automatically draw, deliver and spray cigarette smoke into the
oral cavity of rats. Approximately one week after the first
smoking treatment, the rats became addicted to active
smoking, and it could be observed that the rats smoked with
the oral cavity by regular cheek blowing. A video as supplemental
information shows that a rat was actively smoking.

Buccal Swabs, Gastrointestinal Contents
and Blood Sampling
After 3 months, microbial samples were collected from the oral
cavity by swabbing over the buccal mucosa of rats. The animals
were then deeply anesthetized via intraperitoneal injection of
sodium pentobarbital (2%, 0.2 ml/100g). The abdomen was
sterilized with 75% ethanol, and a midline abdominal incision
was made. Blood was collected via abdominal main vein
puncture and centrifuged for further serum biochemical
analyses. Then, the rats were sacrificed. Subsequently, the
stomach, small intestine, cecum and colon were isolated. The
gastrointestinal contents were rapidly collected through a sterile
incision in the stomach (gastric antrum), small intestine (middle
segment of the jejunum), cecum (body of cecum), and colon
(middle segment) while avoiding junction sites of these regions
(Li et al., 2017). The serum, swab, and content samples were
rapidly collected, flash-frozen with liquid nitrogen, and
immediately stored at -80°C until analysis.

Biochemical Assays
Serum level of cotinine, the primary metabolite of nicotine, was
assayed by using liquid chromatography/mass spectrometry.
Serum corticosterone level was measured by rat enzyme
November 2021 | Volume 11 | Article 737204
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immunoassay assay kits (Cayman Chemical, Ann Arbor, MI,
USA) according to the manufacturer’s instructions. Serum
epinephrine level was measured by rat enzyme immunoassay
assay kits (Biovision, Milpitas, CA, USA) according to the
manufacturer’s instructions. Serum gastrin 1 level was
measured by rat enzyme immunoassay assay kits (Abcam,
Cambridge, MA, USA) according to the manufacturer’s
instructions. Serum glucose level was determined by rat
glucose colorimetric assay kits (Cayman Chemical, Ann Arbor,
MI, USA) according to the manufacturer’s instructions. Serum
GHbA1c level was measured by rat enzyme-linked immune
sorbent assay kits (Cusabio, Houston, TX, USA) according to
the manufacturer’s instructions. Serum insulin, leptin, and
unacylated ghrelin levels were measured by rat enzyme
immunoassay assay kits (Cayman Chemical, Ann Arbor, MI,
USA) according to the manufacturer’s instructions. Serum
adiponectin level was measured by rat enzyme immunoassay
assay kits (Abcam, Cambridge, MA, USA) according to the
manufacturer’s instructions.

DNA Extraction and PCR Amplification
DNA extraction was performed as described previously (Clos-
Garcia et al., 2019). Bacterial genomic DNA was extracted from
the buccal swab and gastrointestinal content samples using a
DNA extraction kit (Omega Bio-tek, Norcross, GA, USA)
according to the manufacturer’s protocols. Agarose gel
electrophoresis was used to assess the DNA integrity and size.
DNA concentration and purity were evaluated using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
The V4 region of the bacterial 16S ribosomal RNA gene was
amplified by PCR using the primers 515 F (GTG CCA GCM
GCC GCG GTA A) and 806 R (GGA CTA CHV GGG TWT
CTA AT) (Kaakoush et al., 2017).

Library Construction and Illumina MiSeq
Sequencing
The PCR products were separated by gel electrophoresis and
purified using an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions. Bacterial 16S rDNA libraries were
constructed according to the 16S Metagenomic Sequencing
Library Preparation guide from Illumina (Forest City, CA,
USA). Only libraries without primer dimers and contaminant
bands tested with an Agilent High Sensitivity DNA Kit were used
for sequencing via Illumina MiSeq. The equimolar purified
products were pooled and paired-end sequenced (2 × 250) on
an Illumina MiSeq platform according to standard protocols at
BGI-Shenzhen (Shenzhen, China). Prior to submission for
sequencing, libraries were quality checked. As an added quality
control measure, the software package QIIME pipeline was used
to filter out and discard poor-quality sequence reads using the
default settings (Liu et al., 2018).

Bioinformatics Analyses
Operational Taxonomic Units (OTUs) based on the 16S rRNA
gene sequences were determined using QIIME’s UCLUST
algorithm, and taxonomy assignment was performed using the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
RDP classifier (Bokulich et al., 2018). The relative abundance of
each OTU was determined as a proportion of the sum of
sequences for each sample.

Alpha diversity analyses estimated from observed species
(Sobs), Chao 1, abundance-based coverage estimate (ACE),
Shannon, and Simpson indices-based measurements were used
to evaluate microbial richness, evenness and community
diversity based on the OTUs. The alpha diversity metric was
determined using mothur software v.1.31.2, and rarefaction
curves were visualized with R program v.3.1.1 (Hall et al.,
2017; Lopez-Garcia et al., 2018).

Beta diversity analyses were used to determine the degree of
dissimilarity between pairs of bacterial communities using
QIIME v.1.80. The unweighted, weighted UniFrac and Bray-
Curtis distance matrix, which measures pairwise taxonomic
dissimilarity between microbial populations, was analyzed with
an unsupervised clustering algorithm (Wu et al., 2018). The beta
diversity metric was visualized with a matrix heatmap
constructed using the aheatmap function from the NMF
package in R program v.3.1.1 (Gaujoux and Seoighe, 2010).

Taxonomic assignments of the microbiome populations were
made according to the OTU annotation within QIIME v.1.80,
presenting the taxonomic profiling of the samples at each
taxonomic level (Liu et al., 2018).

Heatmaps of bacterial abundance showed the bacterial
distribution in five regions along the digestive tract. Log10-
transformed relative abundances of bacteria were visualized
using the gplots package in R program v.3.1.1 (Li et al., 2020b).

The linear discriminant analysis (LDA) effect size (LEfSe)
method was used for statistical analysis at different taxonomic
levels (Segata et al., 2011). Cladogram constructed using the
LEfSe method to indicate the phylogenetic distribution of active
bacteria that were remarkably enriched. LDA scores showed
significant bacterial differences within groups at different
taxonomic levels.

The common and unique OTUs in different groups were
determined and compared using the VennDiagram package in R
program v.3.1.1 to generate the Venn diagram (Lam et al., 2016).

Network analysis was conducted to identify correlations
between core genera. The inter-generic associations were
identified using Spearman’s rho correlation coefficient.
Network analyses were visualized in network plots generated
by Cytoscape software v.3.5.1 (Xi et al., 2019).

The biological functions of the microbial community were
predicted and annotated with KEGG pathways using the
PICRUSt algorithm (Li et al., 2017). The OTU contribution to
the abundances of functional KEGG pathways was calculated by
summing the abundance contribution of each OTU for each
KEGG orthology that belonged to the same pathway and then
normalizing by the number of samples. Differentially enriched
KEGG pathways or modules were identified according to their
reporter score (Chen et al., 2017b).

Statistical Analyses
Most biochemical data and the abundances of the bacteria are
presented as the median and interquartile range. Non-parametric
statistical methods were used throughout the study. Statistical
November 2021 | Volume 11 | Article 737204
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comparison of two groups was performed with the
nonparametric Mann-Whitney U-test as described previously
(Chu et al., 2017; Clos-Garcia et al., 2019). In each case, p-
values ≤ 0.05 were considered statistically significant. The
analyses were performed with the Statistical Package for the
Social Sciences, version 18.0 (SPSS, Chicago, USA).
RESULTS

Active Smoking Increased Serum Cotinine
Level and Reduced Body Weight Gain
Figure 1 shows a schematic diagram of the control and rat model
of active smoking using in the present study. The serum cotinine
concentration was 2.813 ± 0.944 ng/ml in rats in the active
smoking group, while that in the control group rats was zero (p <
0.001) (Table 1). There was no statistically significant differences
in serum gastrin 1, corticosterone and epinephrine levels
between the control group and active smoking group
(Table 1). Our results showed that rats in the active smoking
group gained less weight compared with rats in the control group
(p < 0.01) (Supplementary Figure S1).

Active Smoking Induced Hyperglycemia
and Shifts in Related Factor Levels
Biochemical analyses indicated that the serum glucose level in
the active smoking group was significantly higher than that in the
control group (p < 0.01). Moreover, the serum insulin and leptin
levels in the active smoking group were remarkably lower than
those in the control group (p < 0.01 and p < 0.05, respectively).
However, the serum glycosylated hemoglobin A1c (GHbA1c),
adiponectin and ghrelin levels were not significantly altered in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the active smoking group compared with the control group (p >
0.05) (Table 1).

High-Throughput Sequencing Data
Except for two colonic content samples that were unavailable in a
rat in the control group and a rat in the active smoking group, all
93 specimens met the requirements for library establishment. In
total, 4,245,900 sequence reads with a mean length of 252 bp
were obtained from all the samples (the oral swabs and gastric,
small intestinal, cecal, and colonic contents) in the control and
active smoking groups. Each sample was covered by an average
of 45,655 reads, arrange from 36,789 to 46,773. Figure 2 shows a
schematic of five regions along the digestive tract and the
microbiome constituents in each region in the control and
active smoking groups.

Effects of Active Smoking on Community
Structure of the Digestive Tract
Regardless of the smoking status, bacterial species richness and
diversity were significantly different between most regions along
the digestive tract. The cecal microbiota had the greatest diversity
(596 unique OTUs per sample on average), followed by the
colonic microbiota (582 unique OTUs per sample on average),
and the oral microbiota had the lowest diversity (102 unique
OTUs on average). The gastric and small intestinal microbiota
shared the same diversity (both with 225 unique OTUs on
average). Our analyses indicated that alpha diversity was
generally increased along the digestive tract. The stomach and
small intestine harbored a more diverse microbial community
than the oral cavity, while the cecum and colon possessed a more
diverse microbial community than the stomach and small
intestine (Figure 3A).
FIGURE 1 | Schematic of the control and active smoking groups.
November 2021 | Volume 11 | Article 737204
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The alpha diversity in each region did not remarkably differ
between the control group and active smoking group (p > 0.05)
(Figure 3A). Based on analyses of the unweighted UniFrac distance
metrics, the bacterial communities in the gastric, small intestinal,
cecal or colonic contents in the control and active smoking groups
were markedly different in beta diversity (p < 0.001, p < 0.001, p <
0.05, and p < 0.001, respectively) (Figure 3B). Based on analyses of
the weighted UniFrac distance metrics, the bacterial communities
in the gastric or cecal contents in the control and active smoking
groups were significantly different in beta diversity (p < 0.001 and
p < 0.001, respectively) (Figure 3B). Based on the Bray-Curtis
distance metrics, the bacterial communities in the gastric, cecal or
colonic contents in the control and active smoking groups were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
also clearly distinct by beta diversity (p < 0.001, p < 0.001, and p <
0.05, respectively) (Figure 3B).

Our analyses indicated that the community structure of the
stomach was analogous to that of the small intestine, while the
cecum and colon shared a similar microbial community
(Figure 4 and Supplementary Figures S2, S3). Moreover, the
community structure of the oral cavity was closer to that of the
stomach and small intestine in the unweighted, weighted
UniFrac or Bray-Curtis distance (Figure 4 and Supplementary
Figures S2, S3). A matrix heatmap shows distinctive clustering
of the cecal and colonic bacterial communities by active smoking
status based on the unweighted UniFrac distance analyses
(Figure 4). A matrix heatmap shows distinctive clustering of
FIGURE 2 | The schematic of the digestive tract of rats and constituents of the microbiome in the control and active smoking groups. Pie charts for the bacterial
genera at five regions along the digestive tract according to the median relative abundance. Each genus is indicated by different colors. Genera with a relative
abundance lower than 1% are labeled together as ‘others’ (orange).
TABLE 1 | Comparison of serum parameters concentration between the control group and active smoking group.

Parameters Control group Active smoking group p-value

Median IQR Median IQR

Cotinine (ng/ml) 0 0-0 2.83 2.28-3.54 <0.001***
Glucose (mg/dl) 94.46 73.02-97.35 113.00 103.73-138.49 0.002**
GHbA1c (ng/ml) 40.38 31.24-50.75 44.97 34.42-47.78 0.967
Insulin (ng/ml) 34.02 27.30-37.21 23.52 20.82-24.89 0.006**
Leptin (pg/ml) 2955.23 2513.22-3614.14 2060.54 971.95-2179.53 0.011*
Adiponectin (pg/ml) 6781.37 2460.91-13764.70 4227.80 3121.15-4701.30 0.624
Ghrelin (pg/ml) 34.02 27.30-37.21 76.83 22.88-467.08 0.935
Gastrin 1 (pg/ml) 378.33 187.28-591.37 254.66 206.07-536.91 0.838
Corticosterone (pg/ml) 1526.81 829.71-2301.59 1617.62 1356.82-2812.03 0.514
Epinephrine (pg/ml) 2347.72 1313.69-4583.56 2811.60 1342.96-4280.89 0.806
November 2021 | Volume 11 | Artic
IDR: interquartile range; GHbA1c: glycosylated hemoglobin A1c; *: p < 0.05 versus control group, **p < 0.01 versus control group, ***p < 0.001 versus control group, Bold values:
statistically significant differences.
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the oral cavity, gastric and small intesinal bacterial communities
by active smoking status based on the Bray-Curtis distance
analyses (Supplementary Figure S2). A matrix heatmap shows
relative weak clustering of the digestive tract bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
communities by active smoking status based on the weighted
UniFrac distance analyses (Supplementary Figure S3).

Matrix heatmaps based on the unweighted UniFrac analyses
show distinctive clustering in the control group and active
FIGURE 4 | Matrix heatmap based on phylogenetic unweighted UniFrac distance displays the overall community structure differences along the digestive tract
according to active smoking status. Distinctive clustering in the control group and active smoking group is visualized in the cecal and colonic bacterial communities.
A

B

FIGURE 3 | Bacterial community structure along the digestive tract of rats in the active smoking group compared with the control group. (A) Box plots of alpha
diversity measured by five indices. Boxes denote the interquartile range (IQR) between the first and third quartiles, and the line inside the boxes denote the median.
Circles represent data points beyond the whiskers. (B) Pairwise comparison of median unweighted, weighted UniFrac and Bray-Curtis distances between the active
smoking group and control group. * and *** denote p < 0.05 and p < 0.001, respectively.
November 2021 | Volume 11 | Article 737204
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smoking group in the oral cavity, cecal and colonic bacterial
communities (Figure 5). Matrix heatmaps based on the Bray-
Curtis and weighted UniFrac analyses show distinctive clustering
in the control group and active smoking group in the gastric,
cecal and colonic bacterial communities (Figure 5).

Community Composition of the Digestive
Tract Modified by Active Smoking
From the phylum to the species level, the taxonomic analysis
revealed the enriched taxa in the control group or active smoking
group (Supplementary Tables S1-S5). Not surprisingly, both the
relative abundance heatmap and taxonomic profiling bars
showed that the overall microbial composition significantly
varied along the digestive tract (Figure 6). Despite this,
Firmicutes was the most abundant phylum in the
gastrointestinal regions.

At the phylum level, rats in the active smoking group
possessed significantly lower relative abundances of
Bacteroidetes (p < 0.01) and higher relative abundances of
Cyanobacteria (p < 0.05) in the oral cavity. When comparing
the composition of the gastric and small intestinal microbiota
between the groups, there were no differences in abundance at
the phylum level. Rats in the active smoking group bore
significantly lower relative abundances of Firmicutes (p < 0.05)
in the cecum. Rats in the active smoking group possessed
significantly higher relative abundances of Tenericutes and
TM7 (p < 0.05 and p < 0.05, respectively) in the colon
(Supplementary Tables S1–S5).

Overall, at the genus level, the results suggested that active
smoking significantly altered the enrichment of low-abundance
genera (Supplementary Tables S1–S5). Genera with relative
abundance higher than 5% seemed to not be directly affected
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
by active smoking. Interestingly, our results showed that the
proportions of the class Clostridia, the order Clostridiales and
the order Turicibacterales, the family Clostridiaceae and the
family Turicibacteraceae, the genus Clostridium and the genus
Turicibacter, and the species Clostridium perfringens were
reduced in the active smoking group compared with the
control group (Supplementary Tables S1–S5).

In the class level, the relative abundance of Clostridia was
lowered in the oral, small intestinal and cecal samples from the
active smoking group (p < 0.05, p < 0.05 and p = 0.05,
respectively) (Supplementary Tables S1, S3, S4). In the order
level, the relative abundance of Clostridiales was decreased in the
oral, small intestinal and cecal samples from the active smoking
group (p < 0.05, p < 0.05 and p = 0.05, respectively)
(Supplementary Tables S1, S3 and S4). At the family level,
the relative abundance of Clostridiaceae was decreased in the
cecal samples from the active smoking group (p < 0.05)
(Supplementary Table S4). At the genus level, the relative
abundance of Clostridium was reduced in the gastric and cecal
samples from the active smoking group (p < 0.05 and p < 0.01,
respectively) (Figure 7 and Supplementary Tables S2, S4). At
the species level, the relative abundance of Clostridium
perfringens was lower in the gastric, cecal and colonic samples
from the active smoking group (p < 0.05, p < 0.05, and p < 0.01,
respectively) (Supplementary Tables S2, S4, S5).

In the order level, the relative abundance of Turicibacterales
was decreased in the oral, cecal and colonic samples from the
active smoking group (p < 0.05, p < 0.05 and p < 0.05,
respectively) (Figure 7, Supplementary Tables S1, S4, S5). At
the family level, the relative abundance of Turicibacteraceae was
decreased in the oral, cecal and colonic samples from the active
smoking group (p < 0.05, p < 0.05 and p < 0.05, respectively)
FIGURE 5 | Matrix heatmaps based on beta analysis metrics separately show the community structure dissimilarity in the oral cavity, stomach, small intestine,
cecum, and colon according to active smoking status.
November 2021 | Volume 11 | Article 737204
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(Figure 7 and Supplementary Tables S1, S4, S5). At the genus
level, the relative abundance of Turicibacter was reduced in the
oral, cecal and colonic samples from the active smoking group
(p < 0.05, p < 0.05 and p < 0.05, respectively) (Figure 7 and
Supplementary Tables S1, S4, S5).

Besides reduced abundance of potentially beneficial genera
(Clostridium and Turicibacter), our results also demonstrated a
clear enrichment in sulfate-reducing bacteria (Desulfovibrio and
Bilophila) and some opportunistic pathogens (Staphylococcus,
Jeotgalicoccus, and Odoribacter). At the genus level, the relative
abundance of Desulfovibrio was increased in the gastric and cecal
samples from the active smoking group (p < 0.01 and p < 0.05,
respectively) (Supplementary Tables S2, S4). Also, the relative
abundance of Bilophila was increased in the gastric and cecal
samples from the active smoking group (p < 0.05 and p < 0.05,
respectively) (Supplementary Tables S2, S4). The genus
Staphylococcus abundance was increased in the oral, cecal and
colonic samples from the active smoking group (p < 0.01, p <
0.01 and p < 0.01, respectively) (Supplementary Tables S1, S4,
S5). Also, the genus Jeotgalicoccus abundance was increased in
the oral and cecal samples from the active smoking group (p <
0.01 and p < 0.01, respectively) (Supplementary Tables S1, S4).
The genus Odoribacter abundance was increased in the cecal and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
colonic from the active smoking group (p < 0.001 and p < 0.01,
respectively) (Supplementary Tables S4, S5).

Active Smoking Induced Differences in
Community Structure and Phylum
Abundance Between the Stomach and
Small Intestine
Surprisingly, the alpha diversity of the gastric microbiome was
significantly higher than that of the small intestinal microbiome
in the active smoking group (observed species and ACE metric)
(p < 0.05), while those of the gastric and small intestinal
microbiome in the control group were comparable (p > 0.05)
(Figure 8A). Intriguingly, in the control group, no significant
differences in the relative abundance of the Firmicutes,
Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes
phyla were observed between the gastric contents and the
small intestinal contents (p > 0.05). However, in the active
smoking group, the relative abundances of these phyla were
significantly distinct between the gastric contents and the small
intestinal contents (p < 0.05) (Figure 8B). At the OTU level,
fewer unique OTU-annotated bacterial taxa resided in the oral
cavity, small intestine, and colon of the active smoking group
compared with the control group. In contrast, more unique
A

B

FIGURE 6 | Comparison of the microbiotal composition along the rat digestive tract between the control group and active smoking group. (A) Distribution of
bacterial genera and their relative abundance among microbiota in different samples are shown in a bar plot. (B) Heatmap showing log10-transformed relative
abundances of bacteria in different samples at the genus level.
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A

B

FIGURE 8 | Active smoking induced-differences in bacterial community structure and relative abundance between the stomach and small intestine. (A) Relative to the
similarity in alpha diversity between two regions in the control group, significantly differential median Sobs and ACE were measured between the stomach and small intestine in
the active smoking group. (B) Relative to the comparable relative abundances of bacterial phyla between the stomach and small intestine in the control group, significantly
distinct relative abundances of bacterial phyla were determined in the active smoking group. *, ** and *** denote p < 0.05, p < 0.01 and p < 0.001, respectively.
FIGURE 7 | Distinct active taxa identified in the oral cavity, stomach, small intestine, cecum, and colon according to smoking status using LEfSe analysis. Counts
were analyzed using LEfSe to identify significant differences in bacterial abundance between the control group and active smoking group. Cladogram constructed
using the LEfSe method to indicate the phylogenetic distribution of active bacteria that were remarkably enriched. LDA (Linear Discriminant Analysis) scores showed
significant bacterial differences within groups at different taxonomic levels. Red represents the enriched taxa in the control group and green represents the enriched
taxa in the active smoking group.
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OTU-annotated bacterial taxa inhabited the stomach and cecum
of the active smoking group compared with the control group
(Supplemental Figure S4).

In agreement with the taxonomic profiling and alpha
diversity findings, the network analyses revealed prominent
shifts in microbial community structure and altered
relationships between the gastric and small intestinal flora
(Figure 9). It was also noted that robust inter-generic networks
were translocated from the small intestine flora in the control
group into the stomach flora in the active smoking group.
Moreover, in contrast with the control group, the core genera
of the stomach were significantly enriched while the core genera
of the small intestine were profoundly depleted in the active
smoking group. Although Lactobacillus was the keystone species
of the stomach and small intestine in the control group and the
active smoking group, its role was significantly reduced within
the microbial associations in the stomach and conspicuously
enhanced within the microbial associations in the small intestine
in the active smoking group.

Active Smoking Contributes to Altered
Microbial Functions Associated With
Metabolism
Functional prediction analyses (Figure 10) suggested that
microbiota associated with pathways for carbohydrate, lipid,
fatty acid, and amino acid metabolism and lipid or amino acid
biosynthesis was more pronounced in rats in the control group
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
(p < 0.05). However, microbiota associated with metabolism
pathways for some antioxidants and vitamins, such as
glutathione, lipoic acid, retinol, taurine, hypotaurine,
riboflavin, and cofactors, was enriched in the active smoking
group (p < 0.05).
DISCUSSION

Although the oral and fecal microbiomes have been well studied,
it is challenging to collect gastric and intestinal contents to
observe human microbiota shifts in the digestive tract. An
animal model is a good alternative to assess the effects of active
smoking on the human microbiome along the digestive tract
systematically and comprehensively. In the present study, our
results indicated that active smoking directly affectd the digestive
tract microbiota which then resulted to the alteration of some
biochemical components. Chronic cigarette smoke exposure has
been reported to modulate cecal microbiota, increase
inflammation of the small intestine, and decrease blood leptin
level in mice (Dubois-Deruy et al., 2020). A recent study
indicated smoking induced gut microbiota dysbiosis, broke
metabolism homeostasis and caused insulin resistance in mice
(Yang et al., 2021). Another study indicated that smoking
modulated the microbial composition of the oral cavity and
reduced salivary levels of insulin and leptin (Rodriguez-Rabassa
et al., 2018).
FIGURE 9 | Network plots highlight correlations between positive and negative responders at five regions along the digestive tract of rats in the control group and
the active smoking group, arranged in the same order. Prominent aberrations in bacterial community structure in the stomach and small intestine were determined in
the active smoking group. The node size is proportional to the mean relative abundance of genera in the enriched population. Edges between nodes represent
correlations between the connected nodes, with line width indicating the correlation magnitude. Only lines corresponding to correlations with magnitudes > 0.4 or <
-0.4 are shown. Green edges, negative correlations; red edges, positive correlations.
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Some rodent or human-based studies have confirmed that
smoking could result in alterations in community structure and
taxonomic abundances in a certain segment of the digestive tract
(Vogtmann et al., 2015; Lee et al., 2018; Shanahan et al., 2018; Al-
Zyoud et al., 2019; Sublette et al., 2020; Tam et al., 2020; Young
et al., 2020; Prakash et al., 2021). Our results further confirmed
that active smoking could induce a comprehensive effect on
community structures and taxonomic abundances in the whole
digestive tract. The present findings showed that beta diversity of
the gastrointestinal microbiota was clearly altered by active
smoking. These results suggest that smoking can induce a shift
in community structure or bacterial profile in the digestive tract.

In the present study, the rats in the active smoking groups had
smaller proportional abundances of Clostridia, Clostridiales,
Turicibacterales, Clostridiaceae, Turicibacteraceae, Clostridium,
and Turicibacter in the digestive tract than the control rats.
Accordingly, the data of our PICRUSt analysis showed that
active smoking reduced the microbial community functions,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
especially in the metabolism of amino acids (alanine, aspartate,
glutamate, cysteine, methionine, arginine, proline, beta alanine,
and histidine), carbohydrates (starch, sucrose, fructose,
mannose, amino sugar, nucleotide sugar, pyruvate, glycolysis,
gluconeogenesis), and one of short-chain fatty acids (SCFAs),
i.e. propanoate.

Clostridia are the most common fermenters of amino acids
found in the gut (Young et al., 2020). A recent study revealed that
depletion of some Clostridiales was associated with dysfunction
in amino acid metabolism and carbohydrate metabolism (Li
et al., 2020a). Clostridium, as the core gut microbial genus, is
closely related to carbohydrate metabolism. There is exact
evidence that Clostridium acts as the predominant amino
acids-fermenting microbe along the digestive tract of humans
and animals (Dai et al., 2011). Not surprisingly, consistent with
the previous studies, our results suggested that active smoking
decreased body weight gain (Ypsilantis et al., 2013; Tong et al.,
2020). The present results indicate that active smoking not only
A

B

C

FIGURE 10 | Associations between active smoking status and inferred bacterial functions. Bacterial KEGG pathways significantly enriched in the control group or
active smoking group were plotted as heatmaps by region along the digestive tract. Regions of the digestive tract and active smoking status are indicated at the
bottom. Each bar represents the median relative abundance of a certain functional KEGG pathway of samples from each digestive tract region. The colors denote
the variation in median relative abundance. Blue denotes the lowest abundance, while orange represents the highest abundance. The transition between high and
low relative abundance is expressed in white. (A) Metabolism or biosynthesis of the primary nutrition substance-related pathways. (B) Metabolism or biosynthesis
of antioxidant- and vitamin-associated pathways. (C) Diabetes-improving chemical biosynthesis-, photosynthesis-, and xenobiotic degradation-related pathways.
#denotes p-value = 0.05 and *, ** and *** denote p-value < 0.05, p-value < 0.01 and p-value < 0.001 versus the control group or active smoking group, respectively.
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induced aberrations in the oral and gastrointestinal
microbiomes, but it also led to hyperglycemia, reduced serum
insulin and leptin levels. Apart from decreased appetite and
changes in serum leptin levels, active smoking also interferes
negatively with the gut homeostasis by promoting mucosal
inflammation and impairing mucosal barrier integrity (Tam
et al., 2020). Therefore, impaired community functions may
dampen metabolic function and nutrition absorption, further
lowering the body weight gain. Further, our results suggested
that active smoking may induce abnormal amino acid and lipid
metabolism by reducing abundance of Clostridium and
Turicibacter. Turicibacter is a genus in the Firmicutes phylum
of bacteria that has most commonly been found in the guts of
animals. It was reported that Turicibacter has been strongly
associated with abnormal lipid and carbohydrate metabolism
(Horie et al., 2017; Li et al., 2021a).

In our study, amino acid metabolism and lipid metabolism
were significantly decreased in the active smoking group
compared that in the control group. Our results demonstrated
that active smoking significantly decreased abundances of
Turicibacterales, Turicibacteraceae, and Turicibacter in the
oral, cecal and colonic contents. The decrease we observed
here is likely related to the perturbing effects of active smoking
on lipid metabolism. Notably, the genus Turicibacter is beneficial
and anti-inflammatory and plays a protective role in animal
models of inflammatory bowel disease (Werner et al., 2011; Song
et al., 2017).

In our study, active smoking increased the abundances of
Desulfovibrio and Bilophila in the gastric and cecal contents. As
lipopolysaccharide-producing, mucosa-damaging, and pro-
inflammatory bacterial communities, Desulfovibrio and
Bilophila have been known as harmful genera (Song et al.,
2017). The genera Desulfovibrio and Bilophila are likely
participate in the development of colorectal cancer by
producing hydrogen sulfide and promoting chronic
inflammation. On one hand, it reduces sulfate to sulfide which
has a toxic effect on intestinal epithelial cells and induces
abnormal proliferation and metabolism of epithelial cells. On
the other hand, it also destroys the intestinal barrier function by
inhibiting the oxidation of SCFAs (Chen et al., 2019).

Gut microbiota influence metabolism and immune response
mainly by its fermentation products i.e. SCFAs, which regulate
glucose and lipid metabolism. SCFAs work as a mediator
between gut microbiota and pancreas and improve glucose
homeostasis and insulin sensitivity (Mandaliya and Seshadri,
2019). These SCFAs are potent preventive agents against
colorectal cancer and inflammation. Clostridium, Turicibacter,
and Coprococcus are main SCFAs-producing bacteria, which
regulated the gut barrier and immune response as well as the
endocrine system (Li et al., 2019). Propionate is a major
fermentation product and one of SCFAs in the gut with several
health benefits toward energy homeostasis. In case of diseases
where microbial dysbiosis is apparent, gut microbial production
of propionate may be decreased. Propionate stimulates satiety-
inducing hormones, leading to lower energy intake and reducing
weight gain and associated risk factors (El Hage et al., 2019). Our
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analyses indicated that the abundances of Clostridium,
Turicibacter, and Coprococcus were significantly decreased by
active smoking. Moreover, our results of PICRUSt analyses
showed that active smoking reduced propionate metabolism in
the cecal and colonic contents. In our study, the abundance of
Desulfovibrio increased and propionate metabolism decreased in
the active smoking group. Sulfate reducing bacteria including the
Desulfovibrio genera are able to grow on propionate (Sedano-
Nunez et al., 2018; Ozuolmez et al., 2020) and sulfate reduction
then proceeds with propionate (but not butyrate) as the electron
donor (Chen et al., 2017a; He et al., 2019).

Previous studies have determined that long-term smoking
can result in a chronic inflammation microenvironment and
oxidative stress in the gastrointestinal tract. Active smoking-
induced inflammation, oxidative stress and biochemical shifts
could lead to structural and functional dysbiosis of the oral and
gastrointestinal flora (Papoutsopoulou et al., 2020; Genua et al.,
2021). The present results suggest that active smoking can impair
nutritional metabolism function and induce activated
antioxidant activity. Antioxidant activity in microbial
communities in the digestive tract might be reactively triggered
by smoking-induced oxidative stress and contribute to
alleviation of inflammation.

Some treatments using probiotics, prebiotics, and postbiotics
may provide benefits in smoking-induced dysbiosis and
disorders. Constructing metabolic networks of a dysbiosis can
improve the process of choosing the best treatment. Metabolic
networks provide a useful tool to investigate the effectiveness of
probiotic treatment (Jansma and El Aidy, 2021). The metabolic
products of the abundant microbiota mostly affects the
establishment of probiotic bacteria, can be supported with the
use of prebiotics. Gut microbiota can be altered/modified using
probiotics, prebiotics, synbiotics, and postbiotics such as
(SCFAs), and all of these can contribute positively to host
health (Adithya et al., 2021). Some prebiotics such as dietary
polyphenols exert antimicrobial activities against pathogenic gut
microbiota, improve gut metabolism and immunity, impart anti-
inflammatory properties, and also provide benefits in various
gastrointestinal, metabolic, and neuropsychological disorders
(Adithya et al., 2021). Interestingly, a recent study indicated
that arabinoxylan can increase the relative abundance of
Clostridium, while decrease the relative abundance of
Desulfovibrio and Bilophila (Li et al., 2021b).

Our study has several limitations. Firstly, the sample number
in each group is small in our study, although the overall sample
number is relative large to cover all the segments of the digestive
tract. It is necessary to increase sample size in further study.
Secondly, the analyses of metabolites in the digestive tract are
absent in our study, which would be helpful to strengthen our
assessment. Some other biochemical components present in the
digestive tract, such as vasoactive intestinal peptide (VIP),
somatostatin (SST), and 5-hydroxytryptamine (5-HT), which
can reflect the status of the gastrointestinal functions, should be
included in further study. Finally, we compared the active
smoking group with the control group regardless of gender
and other characteristics that could have influenced the
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microbiomes. In further study, we will use only one sex type
(males are preferred since female rats’ hormonal changes are
more elaborate which can alter the activities of the body affecting
the biochemical activities). Therefore, our results should be
interpreted carefully. Further studies are needed to investigate
the effects of active or passive smoking on microbiomes,
metabonomics, even metagenomics based on large-scale data.

Collectively, our results demonstrated that active smoking
altered the gut microbiota of rats through decreasing the
abundance of potentially beneficial genera (e.g., Clostridium,
Turicibacter), and increasing the abundance of potentially
harmful genera (e.g., Desulfovibrio, Bilophila). Given that the
importance of microecological equilibrium, our findings may be
value in understanding how microbial dysbiosis in the
gastrointestinal tract is involved in the pathogenesis of
smoking-related diseases. Further in-depth studies investigating
the animal and human microbiome in the digestive tract will be
necessary to gain insight into the pathogenesis of some smoking-
related diseases, uncover the intricate and intrinsic underlying
mechanism, and identify microbial signatures to pave the way for
development of customized therapeutics, probiotics, prebiotics
and postbiotics.
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