
RESEARCH ARTICLE

Adaptive social contact rates induce complex

dynamics during epidemics

Ronan F. ArthurID
1, James H. Jones2, Matthew H. Bonds3, Yoav RamID

4,5,6, Marcus

W. FeldmanID
7*

1 School of Medicine, Stanford University, Stanford, California, United States of America, 2 Department of

Earth Systems Science, Stanford University, Stanford, California, United States of America, 3 Department of

Global Health and Social Medicine, Harvard Medical School, Cambridge, Massachusetts, United States of

America, 4 School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel, 5 School of

Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel, 6 Sagol School of Neurosciences, Tel

Aviv University, Tel Aviv, Israel, 7 Department of Biology, Stanford University, Stanford, California, United

States of America

* mfeldman@stanford.edu

Abstract

Epidemics may pose a significant dilemma for governments and individuals. The personal

or public health consequences of inaction may be catastrophic; but the economic conse-

quences of drastic response may likewise be catastrophic. In the face of these trade-offs,

governments and individuals must therefore strike a balance between the economic and

personal health costs of reducing social contacts and the public health costs of neglecting to

do so. As risk of infection increases, potentially infectious contact between people is deliber-

ately reduced either individually or by decree. This must be balanced against the social and

economic costs of having fewer people in contact, and therefore active in the labor force or

enrolled in school. Although the importance of adaptive social contact on epidemic out-

comes has become increasingly recognized, the most important properties of coupled

human-natural epidemic systems are still not well understood. We develop a theoretical

model for adaptive, optimal control of the effective social contact rate using traditional epi-

demic modeling tools and a utility function with delayed information. This utility function

trades off the population-wide contact rate with the expected cost and risk of increasing

infections. Our analytical and computational analysis of this simple discrete-time determin-

istic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics

around this equilibrium under some parametric conditions, and complex dynamic regimes

that shift under small parameter perturbations. These results support the supposition that

infectious disease dynamics under adaptive behavior change may have an indifference

point, may produce oscillatory dynamics without other forcing, and constitute complex adap-

tive systems with associated dynamics. Implications for any epidemic in which adaptive

behavior influences infectious disease dynamics include an expectation of fluctuations, for a

considerable time, around a quasi-equilibrium that balances public health and economic pri-

orities, that shows multiple peaks and surges in some scenarios, and that implies a high

degree of uncertainty in mathematical projections.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008639 February 10, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Arthur RF, Jones JH, Bonds MH, Ram Y,

Feldman MW (2021) Adaptive social contact rates

induce complex dynamics during epidemics. PLoS

Comput Biol 17(2): e1008639. https://doi.org/

10.1371/journal.pcbi.1008639

Editor: Rustom Antia, Emory University, UNITED

STATES

Received: July 10, 2020

Accepted: December 16, 2020

Published: February 10, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008639

Copyright: © 2021 Arthur et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This research was supported in part by

the Morrison Institute for Population and Research

https://orcid.org/0000-0001-8513-8348
https://orcid.org/0000-0002-9653-4458
https://orcid.org/0000-0002-0664-3803
https://doi.org/10.1371/journal.pcbi.1008639
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008639&domain=pdf&date_stamp=2021-02-10
https://doi.org/10.1371/journal.pcbi.1008639
https://doi.org/10.1371/journal.pcbi.1008639
https://doi.org/10.1371/journal.pcbi.1008639
http://creativecommons.org/licenses/by/4.0/


Author summary

Epidemic response in the form of social contact reduction, such as has been utilized dur-

ing the ongoing COVID-19 pandemic, presents inherent tradeoffs between the economic

costs of reducing social contacts and the public health costs of neglecting to do so. Such

tradeoffs introduce an interactive, iterative mechanism that adds complexity to an infec-

tious disease system. Consequently, infectious disease modeling typically has not included

dynamic behavior change that must address such a tradeoff. Here, we develop a theoreti-

cal strategic model that introduces lost or gained economic and public health utility

through the adjustment of social contact rates with delayed information. This model pro-

duces an equilibrium, a point of indifference where the tradeoff is neutral, and at which a

disease will be endemic for a long period of time. Under small perturbations, this model

exhibits complex dynamic regimes, including oscillatory behavior, runaway exponential

growth, and eradication. These dynamics suggest that for epidemic responses that rely on

social contact reduction, secondary waves and surges with accompanied business and

school re-closures and shutdowns may be expected, and that accurate projection under

such circumstances is unlikely.

Introduction

Adapting to a changing landscape of risk during an infectious disease epidemic may pose

a significant dilemma for a susceptible individual or for a governing body responsible for

the health of susceptible individuals. On the one hand, changing behavior (e.g. through

social distancing) can reduce the reproduction number (R0) of an epidemic and save

many from death or morbidity [1, 2]. On the other hand, behavior change can reduce an

individual’s ability to make a living or, for a group of people, can hamper or cause a reces-

sion in the economy through decreased production, sales, and investment and increased

unemployment, inflation, and debt [3]. This dilemma introduces a behavior change trade-

off for the decision-maker, a balancing act between epidemiological interests and economic

interests.

There is growing interest in the role of behavior in infectious disease dynamics (see Funk

et al., 2010 [4] for a general review). Behavior relevant to epidemic outcomes is known to

change in response to perceived risk during epidemics (e.g. measles-mumps-rubella (MMR)

vaccination choices [5], condom purchases in HIV-affected communities [6], and social

distancing in influenza outbreaks [7] and during the ongoing COVID-19 pandemic [8]).

Although behavior is difficult to measure, quantify, and predict [9], modelers have adopted a

variety of strategies to investigate its role in epidemic outcomes. These strategies include

agent-based modeling [10], network structures that model behavior as a social contagion pro-

cess [11] or that replace central nodes when sick [12], and game theoretic descriptions of ratio-

nal choice under changing incentives, as in the case of vaccination [7, 13, 14]. A common

approach to incorporating behavior into epidemic models is to track co-evolving dynamics of

behavior and infection [11, 15–17].

In epidemic response policy, it is typical to think of behavior change as an exogenously-

induced intervention without considering associated incentives for the individual or the col-

lective. Due to the interactive relationship between behavior and epidemic dynamics, adaptive

behavior should instead be thought of as endogenous to an infectious disease system because it
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is, in part, a consequence of the prevalence of the disease, which in turn responds to changes

in behavior [9, 18]. An epidemic system with adaptive behavior responds to the conditions it

itself creates, and is thus a complex, adaptive system [19], subject to the properties and tenden-

cies of such systems.

The interaction between behavioral incentives and epidemic dynamics introduces a nega-

tive feedback into the epidemic system. In an important early expansion of Kermack and

McKendrick’s seminal Susceptible-Infectious-Removed (SIR) model [20], Capasso and Serio

built a self-iterative epidemic model by making the transmission parameter (β) a negative

function of the number of infected because “in the presence of a very large number of infec-

tives the population may tend to reduce the number of contacts per unit time.” [21] A negative

feedback such as this may lead to an endemic equilibrium [22]. This happens because, at low

levels of prevalence, the cost of behavior change to avoid disease relative to the risk of infection

may not be justified, even though the collective, public benefit in the long-term may be greater.

Conversely, as prevalence increases, the probability of infection also increases, thus increasing

incentives to adopt protective behavior [13]. If responses are based on outdated information, a

negative feedback between prevalence and social contact can produce sustained oscillations in

time-series data [23].

Such periodicity (i.e. multi-peak dynamics) has long been documented empirically in epi-

demiology [24, 25]. Periodicity can be driven by seasonal contact rate changes (e.g. when chil-

dren are in school) [26], seasonality in the climate or ecology [27], sexual and social behavior

change [23, 28], and host immunity cycling through new births of susceptibles or a decay of

immunity over time. Some papers in nonlinear dynamics have studied delay differential equa-

tions in the context of epidemic dynamics and found periodic solutions as well [29]. Although

it is atypical to include delay in modeling, delay is an important feature of epidemics. Delays of

information acquisition, behavioral response, scientific investigation, and those inherent in

natural biological processes can affect epidemic outcomes. In the ongoing COVID-19 pan-

demic, for example, there have been delays in the international recognition of the outbreak

[30], delays in the identification of the virus, delays in the acquisition of reliable information

on suspected and confirmed cases [31], and delays in the development and deployment of

competent diagnostics [32].

Although infectious disease modelers have begun to incorporate adaptive behavior into

their models, few studies in the literature capture the competing economic and public health

incentives that drive delayed behavioral responses in both individual and group settings during

epidemics [33, 34]. Here we develop a theoretical model using both discrete and continuous

time and both SIR and SIS compartmental epidemic structures. The model, which is designed

to be strategic rather than tactical (sensu Holling [35]), is adjusted on the principle of endoge-

nous behavior change through an adaptive social-contact rate that can be thought of as either

individually motivated or institutionally imposed. We introduce a novel utility function that

motivates the population’s effective contact rate at a particular time period. This utility func-

tion is based on information about the epidemic size that may not be current. This leads to a

time delay in the contact function that increases the complexity of the population dynamics of

the infection. Results from the discrete-time model show that the system approaches an equi-

librium in many cases, although small parameter perturbations can lead the dynamics to enter

qualitatively distinct regimes. The analogous continuous-time model retains periodicities for

some sets of parameters, but numerical investigation shows that the continuous time version is

much better behaved than the discrete-time model. This behavior is similar to that in models

of ecological population dynamics, and a useful mathematical parallel can be drawn between

these systems.
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Model specifications

SIS

To represent endogenous behavior change, we start with the classical discrete-time suscepti-

ble-infected-susceptible (SIS) model [20], which, when incidence is relatively small compared

to the total population [36, 37], can be written in terms of the recursions

Stþ1 ¼ St � b StIt þ gIt ð1Þ

Itþ1 ¼ It þ b StIt � gIt ð2Þ

St þ It ¼ Nt; ð3Þ

where at time t, St represents the number of susceptible individuals, It the infected individuals,

and Nt the number of individuals that make up the population, which is assumed fixed in a

closed population. We can therefore write N for the constant population size. Here γ, with 0<

γ< 1, is the rate of removal from I to S due to recovery. This model in its simplest form

assumes random mixing, where the parameter b represents a composite of the average contact

rate and the disease-specific transmissibility given a contact event. In order to introduce

human behavior, we substitute for b a time-dependent bt, which is a function of both b0, the

probability that disease transmission takes place on contact, and a dynamic social contact rate

ct whose optimal value, c�t , is the number of contacts per unit time that maximize utility for the

individual. c�t is determined at each time t as in economic epidemiological models [34], namely

bt ¼ b0 c�t ; ð4Þ

where c�t represents the optimal contact rate, defined as the number of contacts per unit time

that maximize utility for the individual. Here, c�t is a function of the number of infected in the

population according to the perceived risks and benefits of social contacts, which we model as

a utility function. We assume that there is a constant utility independent of contact, a utility

loss associated with infection, and a utility derived from the choice of number of daily contacts

with a penalty for deviating from the choice of contacts which would yield the most utility.

This utility function is assumed to take the form

UðcÞ ¼ a0 � a1ðc � ĉÞ2 � a2

(

1 � 1 �
It� D
N

� �

b0

� �c
)

: ð5Þ

Here U represents utility for an individual at time t given a particular number of contacts

per unit time c, α0 is a constant that represents maximum potential utility achieved at a target

contact rate ĉ. The second term, � a1ðc � ĉÞ2, is a concave function that represents the penalty

for deviating from ĉ. The third term, a2 1 � 1 �
It� D
N

� �
b0

� �c� �
, is the cost of infection (i.e. mor-

bidity), α2, multiplied by the probability of infection over the course of the time unit. The

time-delay Δ represents the delay in information acquisition and the speed of response to that

information. We note that 1 � I
N b0

� �c
can be approximated by

1 �
I
N

� �

b0

� �c

� 1 � c
I
N

� �

b0; ð6Þ

when I
N b0 is small and c I

N b0 � 1: We thus assume I
N ðb0Þ is small, that is, prevalence is low,

and approximate U(c) in Eq 5 using Eq 6. Eq 5 assumes a strictly negative relationship between

number of infecteds and contact.
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We assume an individual or government will balance the cost of infection, the probability

of infection, and the cost of deviating from the target contact rate ĉ to select an optimal contact

rate c�t , namely the number of contacts, which takes into account the risk of infection and the

penalty for deviating from the target contact rate. This captures the idea that individuals trade

off how many people they want to interact with versus their risk of becoming infected, or that

authorities want to reopen the economy during a pandemic and have to trade off morbidity

and mortality from increasing infections with the need to allow additional social contacts to

help the economy restart. This optimal contact rate can be calculated by finding the maximum

of U with respect to c from Eq 5 with substitution from Eq 6, namely

UðcÞ ¼ a0 � a1ðc � ĉÞ2 � a2c
It� D
N

� �

b0: ð7Þ

Differentiating, we have

dUðcÞ
dc
¼ � 2a1ðc � ĉÞ � a2b0

It� D
N
; ð8Þ

which vanishes at the optimal contact rate, c�, which we write as c�t to show its dependence on

time. Then

c�t ¼ ĉ �
a2

2a1

b0

It� D
N
; ð9Þ

which we assume to be positive. Therefore, total utility will decrease as It increases and c�t also

decreases. Utility is maximized at each time step, rather than over the course of lifetime expec-

tations. In addition, Eq 9 assumes a strictly negative relationship between number of infecteds

at time t − Δ and c�t . While behavior at high degrees of prevalence has been shown to be non-

linear and fatalistic [38, 39], in this model, prevalence (i.e.,
b0It
N ) is assumed to be small, consis-

tent with Eq 6.

We introduce the new parameter a ¼
a2

2a1
b0, so that

c�t ¼ ĉ � a
It� D
N
: ð10Þ

We can now rewrite the recursion from Eq 2, using Eq 4 and replacing ct with c�t as defined

by Eq 10, as

Itþ1 ¼ I2
t

b0a

N
It� D � b0ĉ

� �

þ Itðb0Nĉ � ab0It� D þ 1 � gÞ ¼ f ðIt; It� DÞ: ð11Þ

When Δ = 0 and there is no time delay, f(�) is a cubic polynomial, given by

f ðItÞ ¼
b0a

N
I3

t � b0ðĉ þ aÞI
2

t þ ðNb0ĉ þ 1 � gÞIt: ð12Þ
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SIR

For the susceptible-infected-removed (SIR) version of the model, we include the removed cate-

gory and write the (discrete-time) recursion system as

Stþ1 ¼ St � btStIt ð13Þ

Itþ1 ¼ It þ btStIt � gIt ð14Þ

Rtþ1 ¼ Rt þ gIt; ð15Þ

where Rt = N − It − St, bt ¼ b0c�t with b0 the baseline contact rate and c�t specified by Eq 10.

With bt = b, say, and not changing over time, Eqs 13–15 form the discrete-time version of the

classical Kermack-McKendrick SIR model [20]. The inclusion of the removed category entails

that ~I ¼ 0 is the only equilibrium of the system Eqs 13–15; unlike the SIS model, there is no

equilibrium with infecteds present. In general, since c�t includes the delay Δ, the dynamic

approach to ~I ¼ 0 is expected to be quite complex. Numerical analysis of this SIR model

shows strong similarity between the SIS and SIR models for several hundred time steps before

the SIR model converges to ~I ¼ 0. In the section “Numerical Iteration and Continuous-Time

Analog” we compare the numerical iteration of the SIS (Eq 11) and SIR (Eqs 13–15) and inte-

gration of the continuous-time (differential equation) versions of the SIS and SIR models.

Analytical results

Equilibria

To determine the dynamic trajectories of (11) without time delay, we first solve for the fixed

point(s) of the recursion (11) (i.e., value or values of I such that f(It+1) = It = It−Δ). That is, we

solve

I ¼
b0a

N
I3 � b0ðĉ þ aÞI

2 þ ðNb0ĉ þ 1 � gÞI: ð16Þ

From Eq 16, it is clear that I = 0 is an equilibrium as no new infections can occur in the next

time-step if none exist in the current one. This is the disease-free equilibrium denoted by ~I .

Other equilibria are the solutions of

b0a

N
I2 � b0ðĉ þ aÞI þ Nb0ĉ � g ¼ 0; ð17Þ

namely

aþ ĉ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � ĉÞ2 þ 4ag

Nb0

q

2a=N
: ð18Þ

We label the solution with the + sign I� and the one with the − sign Î . I� > 0 but I� � N if

4αγ/Nb0� 0, which is impossible under our assumptions that α and γ are positive. Hence I� is

not feasible. Further, under these same conditions, Î � N, and Î > 0 if

Nĉb0 > g: ð19Þ

It is important to note that under these conditions Î is an equilibrium of the recursion (11)

for any Δ� 0. Recall that for the SIR version of this model the only equilibrium is ~I ¼ 0.
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Stability of the equilibria

Assessing global asymptotic stability in epidemic models is an important task of mathematical

epidemiology [40, 41]. The three equilibria of the SIS recursion (11) are qualitatively different.

~I ¼ 0 corresponds to a disease-free population; I� is greater than N and is therefore not feasi-

ble; Î is the only positive feasible equilibrium if ĉb0 > g=N (this is equivalent to R0 > 1, where

R0 ¼ Nĉb0 þ 1 � g) and is, therefore, the most interesting for the asymptotic stability behavior

of the epidemic. Mathematical stability analysis of recursion (11) is complicated because of the

delay term Δ. However, from (11), if Nĉb0 > g, the disease-free equilibrium ~I ¼ 0 is locally

unstable, and in this case Î is indeed feasible.

Local stability of Î in (18) is discussed in detail in S1 Appendix. First, in the absence of delay

(i.e., Δ = 0), Î is locally stable if j ddI f ðIÞjI¼Î < 1, and the condition for this to hold when Î is

legitimate is

b0 Î

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða � ĉÞ2 þ
4ag

Nb0

s

< 2: ð20Þ

If inequalities (20) and Nĉb0 > g hold, then Î is locally stable. However, even if both of

these inequalities hold, the number of infecteds may not converge to Î . It is well known that

iterations of discrete-time recursive relations, of which (12) is an example (i.e., with Δ = 0),

may produce cycles or chaos depending on the parameters and the starting frequency I0 of

infecteds.

Numerical iteration and continuous-time analog

We begin with numerical analysis of the discrete-time SIS recursion (11), which includes the

delay parameter Δ. Local stability properties of the equilibrium state Î , with 0 < Î < N, are

shown in the Appendix under the assumption Nĉb0 > g, which also entails that the disease-

free equilibrium ~I ¼ 0 is locally unstable. In the recursion (11), the number of infecteds at

time t will not, in general, be integers, but can be interpreted as the expected number of

infected in the population. Further, the dynamics of It under such a recursion can be very sen-

sitive to the starting condition I0, the size of the time delay Δ, and the parameters: N; b0; g; ĉ;
and α. The local stability of Î , namely whether It converges to Î from a starting number of

infecteds close to Î , may tell you little about the actual trajectory of It from other starting

conditions.

Table 1 reports an array of dynamic trajectories without delay (Δ = 0) for some choices of

parameters. In seven cases, I0 = 1, and in two cases the numerical iteration of Eq 12 was initi-

ated with I0 6¼ 1. The first three rows show three sets of parameters for which the equilibrium

values of Î are very similar but the trajectories of It are different: a two-point cycle, a four-

point cycle, and apparently chaotic cycling above and below Î . In all of these cases,

df ðIÞ=dIjI¼Î < � 1. Clearly the dynamics are sensitive to the target contact rate ĉ in these cases.

The fourth and eighth rows show that It becomes unbounded (tends to +1) from I0 = 1, but a

two-point cycle is approached if I0 is close enough to Î : df ðIÞ=dIjI¼Î < � 1 in these cases. For

the parameters in the ninth row, if I0 is close enough to Î there is damped oscillation into Î :

here � 1 < df ðIÞ=dIjI¼Î < 0. In the case marked �, Î is locally stable and with a large enough

initial number of infecteds, there is damped oscillatory convergence to Î . In the case marked
��, with I0 = 1 the number of infecteds becomes unbounded, but in this case, Î is locally unsta-

ble (df ðIÞ=dIjI¼Î < � 1), and starting from I0 close to Î a stable two-point cycle is approached.
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S5 Fig is a bifurcation diagram for recursion (11) with Δ = 0 and the other parameters from

the first three lines of Table 1. As ĉ increases, first there is convergence to Î , then period dou-

bling to chaos and finally passage to negative infinity.

Stability analysis of the SIS model is more complicated when Δ 6¼ 0, and in S1 Appendix we

outline the procedure for local analysis of the recursion (11) near Î . Local stability is sensitive

to the delay time Δ as can be seen from the numerical iteration of (11) for the specific set of

parameters shown in Table 2. Some analytical details related to Table 2 are in S1 Appendix.

The fifth and sixth rows of Table 1 exemplify another interesting dynamic starting from

I0 = 1. It becomes larger than Î (overshoots) and then converges monotonically down to Î ; in

each case 0 < df ðIÞ=dtjI¼Î < 1. For the parameters in the seventh row, there is oscillatory con-

vergence to Î from I0 = 1 (� 1 < df ðIÞ=dIjI¼Î < 0), while in the last row there is straightfor-

ward monotone convergence to Î . The dependence of the dynamics for recursion (11) on the

delay Δ and target contact rate ĉ is illustrated for Δ = 0, 1, 2 in S6 Fig. The bifurcation diagram

for each Δ shows the shift, summarized in Table 2, from convergence to period doubling,

chaos, and negative infinity, which occurs for smaller values of ĉ as Δ increases.

A continuous-time analog of the discrete-time recursion (11), in the form of a differential

equation, substitutes dI/dt for It+1 − It in (11). We then solve the resulting delay differential

equation numerically using the VODE differential equation integrator in SciPy [42, 43]

(source code available at https://github.com/yoavram/SanJose). Using the parameters in

Table 2, Figs 1–4 compare the effect of the parameters on the trajectories of the discrete-time

and continuous-time SIS model specified in (11). The number of time steps used in the

Table 1. Some results for dynamics of infection with Δ = 0.

Parameters Equilibrium

N b0 γ ĉ α Î Dynamics

250 0.1 0.1 0.2 0.1 240.371 I0 = 1: two-point cycle 110.436, 339.564

250 0.1 0.1 0.205 0.1 240.799 I0 = 1: four-point cycle above and below Î
250 0.1 0.1 0.209 0.1 241.115 I0 = 1: apparent chaos around Î
250 0.5 0.1 0.1 0.1 227.639 I0 = 1: becomes unbounded.

I0 = 226: converges to two-point cycle.

250 0.115 0.1 0.1 0.1 203.375 I0 = 1: overshoots Î , then decreases to Î
350 0.1 0.1 0.1 0.1 290.839 I0 = 1: overshoots Î , then decreases to Î

1,000 0.1 0.1 0.1 0.1 900.000 I0 = 1: damped oscillation to Î
1,100 0.1 0.1 0.1 0.1 995.119 I0 = 1: It becomes unbounded

I0 = 990: damped oscillation to Î
10,000 0.05 0.08 0.0015 0.375 35.718 I0 = 1: monotone convergence to Î

https://doi.org/10.1371/journal.pcbi.1008639.t001

Table 2. The effect of the delay, Δ, on dynamics of infecteds�.

Δ Outcome

0 Monotone convergence to Î
1 Damped oscillation to Î
2 Î locally unstable; I0 < 72 bounded oscillation; I0 > 73 unbounded oscillation

3 Î locally unstable; collapse (−1)

4 Î locally unstable; collapse (−1)

� In all cases, N = 10, 000, b0 = 0.05, γ = 0.08, ĉ ¼ 0:0015, α = 0.375, Î ¼ 35:718. I0 = 1 unless stated.

https://doi.org/10.1371/journal.pcbi.1008639.t002
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computations illustrated in these figures is less than 250 in each case. In Fig 1 the delay ranges

from Δ = 0 to Δ = 5, while in Fig 2 the delay is Δ = 2 and Figs 3 and 4 have delay Δ = 3. In the

supplementary material S1–S4 Figs, the discrete-time and continuous-time recursions of the

SIR model are compared for short and much longer durations.

In Fig 1, with no delay (Δ = 0) and a one-unit delay (Δ = 1), the discrete and continuous

dynamics are very similar, both converging to Î . However, with Δ = 2 the differential equation

oscillates into Î while the discrete-time recursion enters a regime of inexact cycling around Î ,

which appears to be a state of chaos. For Δ = 3 and Δ = 4, the discrete recursion “collapses”. In

other words, It becomes negative and appears to go off to −1; in Fig 1, this is cut off at I = 0.

Fig 1. Discrete-time SIS (blue) and continuous-time SIS (orange) dynamics for delays Δ = 0 to Δ = 5. N = 10, 000,

b0 = 0.05, γ = 0.08, ĉ = 0.0015, α = 0.375, and I0 = 1. Here the epidemic equilibrium is Î ¼ 35:72.

https://doi.org/10.1371/journal.pcbi.1008639.g001

PLOS COMPUTATIONAL BIOLOGY Social contact induces complex epidemic dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008639 February 10, 2021 9 / 17

https://doi.org/10.1371/journal.pcbi.1008639.g001
https://doi.org/10.1371/journal.pcbi.1008639


Fig 2. Effect of initial number of infecteds I0 on the dynamics for delay Δ = 2. Discrete- and continuous-time results are in blue and orange,

respectively. Other parameters as in Fig 1. As in Fig 1, Î ¼ 35:72.

https://doi.org/10.1371/journal.pcbi.1008639.g002

Fig 3. Effect of baseline contact rate b0 on dynamics with delay Δ = 3. Other parameters as in Fig 1 with I0 = 1.

Discrete- and continuous-time results are in blue and orange, respectively. Note that α changes with b0 as α = b0 α2/

2α1: (A) α = 0.0375; (B) α = 0.075; (C) α = 0.225; (D) α = 0.3; (E) α = 0.375; (F) α = 0.75.

https://doi.org/10.1371/journal.pcbi.1008639.g003
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The continuous version, however, in these cases enters a stable cycle around Î . It is important

to note that in Fig 1 for each panel the initial frequency was I0 = 1 infected individual. For Δ =

2, for example, with an initial value of I0 higher than about 73, instead of the inexact cycle,

which is approached for smaller values of I0, the discrete recursion goes off and becomes nega-

tively unbounded. This dependence of the dynamics on I0 is illustrated for Δ = 2 in Fig 1,

where the continuous-time version of the SIS model (11) oscillates into Î . Two expanded views

of the inexact cycling seen for I0 = 1 in Fig 1 are presented in S7 Fig.

Figs 3 and 4 focus on a delay of Δ = 3 and show the dependence of the discrete- and continu-

ous-time dynamics on parameters b0 and γ, respectively. For b0 increasing from 0.005 to 0.05

the pattern of trajectories from I0 = 1 is remarkably similar to that for γ decreasing from 0.75 to

0.1. First, both converge to ~I ¼ 0, then both converge to Î , then there is stable oscillation into Î .

For b0 = 0.04 and γ = 0.2, however, the continuous trajectory enters a stable cycle while the dis-

crete trajectory cycles inexactly around Î . For higher values of I0, however, the discrete-time tra-

jectory may become unbounded. Finally, for b0 = 0.05 and γ = 0.75, the discrete-time trajectory

goes to −1, but is shown stopped at 0, while the continuous case develops a stable cycle.

The discrete- and continuous-time trajectories for the SIR model (13–15) were studied with

the same parameters as used in Figs 1–4. Each computation is presented twice: first, for the

same length of time as the SIS discrete- and continuous-time in Figs 1–4, and second, for up to

5,000 time units. The trajectories are shown in the Supplementary material, where S1–S4 Figs

show short and longer run times. For the longer run times, as expected, in both discrete-time

and continuous-time versions of the SIR model, there are eventually no infecteds. Comparing

the short-run and long-run figures, the former are not good predictors of the latter in the SIR

setting. The short-run behavior of the discrete-time model usually involves a great deal of

cycling, which is difficult to see on the longer time scales. S8 Fig compares the SIR and SIS

dynamics for the model in Fig 2A with I0 = 1 (see also S7 Fig), with panels A and B illustrating

the short term and panels C and D the longer term dynamics. Panels A and B appear to show

convergence to Î , but in panels C an D, after about 500 time units, both discrete- and continu-

ous-time versions show the number of infected declining to zero.

It is worth noting that if the total population size of N decreases over time, for example, if

we take N(t) = Nexp(−zt), with z ¼ 50b0ĉg, then the short-term dynamics of the SIS model in

(11) begins to closely resemble the SIR version. This is illustrated in S9 Fig, where b0; ĉ; g are,

as in S8 Fig, the same as in Fig 2A. With N decreasing to zero, both S and I will approach zero

in the SIS model, which explain its apparent similarity to the SIR model.

Discussion

This simple epidemic model with adaptive social contact produces two possible equilibria,

one with zero infecteds, where the disease is eradicated, and one between zero and N, the

Fig 4. Effect of removal rate γ on dynamics with delay Δ = 3. Discrete- and continuous-time results are in blue and orange, respectively. Other

parameters as in Fig 1 with I0 = 1.

https://doi.org/10.1371/journal.pcbi.1008639.g004
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population size, where the disease is endemic. These equilibria are locally stable under differ-

ent conditions. Dynamics produced by this model are complex and subject to regime shifts

across thresholds in the initial conditions and parameter settings. These dynamics include

damped oscillation to the equilibrium, periodic oscillation, chaotic oscillation, and regression

to positive or negative infinity. Our stability analysis is carried out in the neighborhood of the

equilibria. Although global asymptotic stability analysis of some epidemic models has been

possible [29, 40, 41], the inclusion of the delay Δ seems to make global analysis extremely diffi-

cult in general [29].

Our model makes a number of simplifying assumptions. We assume that all individuals in

the population will respond in the same fashion to government policy and that governments

or individuals choose a uniform contact rate according to an optimized utility function, which

is homogeneous across all individuals in the population. This contact rate will, in practice,

vary across the population according to a variety of drivers including, but not limited to, dis-

ease state, cultural and religious practices, political affiliation, housing density, occupation,

risk tolerance, and age. Finally, we assume that the utility function is symmetric around the

optimal number of contacts so that increasing or decreasing contacts above or below the target

contact rate, respectively, yield the same reduction in utility. These assumptions allowed us to

create the simplest possible model that includes adaptive behavior trade-offs and time delay.

Convergence to an endemic equilibrium when economic and public health trade-offs are

included in an epidemic model is consistent with both theory [22] and other models [33]. Our

results show certain parameter sets can lead to limit-cycle dynamics, consistent with other

behavior change models [23, 44] and negative feedback mechanisms with time delays [45, 46].

This is because the system is reacting to conditions that were true in the past, but not necessar-

ily true in the present. The time scale and the meaning of the delay, Δ, can influence the quali-

tative dynamics of the epidemic and, under certain conditions, can lead to a stable cyclic

epidemic even in the continuous-time version of our model. We note that these distinct

dynamical trajectories as seen in our computational experiments come from a purely deter-

ministic recursion. This means that oscillations and even erratic, near-chaotic dynamics and

collapse in an epidemic may not necessarily be due to seasonality, complex agent-based inter-

actions, changing or stochastic parameter values, demographic change, host immunity, or

socio-cultural idiosyncrasies. In our discrete-time model, there is the added complexity that

the non-zero equilibrium may be locally stable but not attained from a wide range of initial

conditions, including the most natural one, namely a single infected individual.

This dynamical behavior in number of infecteds can result from mathematical properties of

a simple deterministic system with homogeneous endogenous behavior change, similar to

complex population dynamics of biological organisms [47]. The mathematical consistency

with population dynamics suggests a parallel in ecology, that the indifference point for human

behavior functions in a similar way to a carrying capacity in ecology, below which a population

will tend to grow and above which a population will tend to shrink. For example, the Ricker

Equation [48], commonly used in population dynamics to describe the growth of fish popula-

tions, exhibits similar complex dynamics and qualitative state thresholds. These ecological

models are typically structured mathematically in discrete time, while continuous time models

are more commonly used in modeling epidemics. There is no a priori reason to prefer the con-

tinuous time framework over that in discrete time. It is not clear which strategic approach is

more realistic as transmission from an infected to a susceptible individual may happen at any-

time, but epidemiologists do tend to frame their thinking in discrete time-steps of days and

weeks.

Observed epidemic curves of many transient disease outbreaks typically inflect and go

extinct, as opposed to this model that may oscillate perpetually or converge monotonically or

PLOS COMPUTATIONAL BIOLOGY Social contact induces complex epidemic dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008639 February 10, 2021 12 / 17

https://doi.org/10.1371/journal.pcbi.1008639


cyclically to an endemic disease equilibrium. Including institutional and public efforts that are

further incentivized to eradicate, rather than to optimize short-term utility trade-offs, would

alter the dynamics to look more like real-world epidemic curves. Beyond infectious diseases

that remain endemic to society, outbreaks may also flare up once or multiple times, such as the

double-peaked outbreaks of SARS in three countries in 2003 [49], and surges in fluctuations in

COVID-19 cases globally in 2020 [50]. There may be many causes for such double-peaked out-

breaks, one of which may be a lapse in behavior change after the epidemic begins to die down

due to decreasing incentives [11], as represented in our simple theoretical model. This is con-

sistent with findings that voluntary vaccination programs suffer from decreasing incentives to

participate as prevalence decreases [51, 52]. A recent analysis [53] that incorporated epidemic-

like transmission of sentiment opposed to vaccination against an infection found that the tran-

sient dynamics of the anti-vaccine sentiment could induce complex dynamics of the disease

epidemic. However, this analysis did not incorporate a time delay in the manifestation of the

anti-vaccine sentiment. The relation between the spread of the sentiment and of the infection

is, therefore, somewhat different from that seen here between an adaptive contact rate and the

epidemic dynamics.

One of the responsibilities of infectious disease modelers is to predict and project forward

what epidemics will do in the future in order to better assist in the proper and strategic alloca-

tion of preventative resources. However, there are limits to the power and precision of such

modeling. In our model, allowing for adaptive behavior change leads to a system that is quali-

tatively sensitive to small differences in values of key parameters. These parameters are very

hard to measure precisely; they change depending on the disease system and context and

their inference is generally subject to large errors. Further, we don’t know how policy-makers

weight the economic trade-offs against the public health priorities (i.e., the ratio between α1

and α2 in our model) to arrive at new policy recommendations. Geographic and/or cultural

variation in our parameter c�t (and concomitant variation in the delay Δ) are likely to affect

how epidemic dynamics are affected by such trade-offs.

In our model, complex dynamic regimes occur more often when there is a time delay. If

behavior change arises from fear and fear is triggered by high local mortality and high local

prevalence, such delays are biologically inherent because death and incubation periods are lag-

ging epidemiological indicators. Lags, whether social, environmental, or biological, mean that

people can respond inappropriately to an unfolding epidemic crisis, but they also mean that

people can abandon protective behaviors prematurely as conditions improve. Developing

approaches to reduce lags or to incentivize protective behavior throughout the duration of any

lag introduced by the natural history of the infection (or otherwise) should be a priority in

applied research. Policy-makers should also consider the benefit of the long-term utility of

early-stage overreaction to outbreaks and consider overriding short-term incentives. In light

of the COVID-19 crisis, understanding endogenous delayed behavior change and economic

incentives is of crucial importance to outbreak response and epidemic management. We antic-

ipate further developments along these lines that could incorporate long incubation periods

and other delays, recognition of asymptomatic transmission, influential heterogeneous drivers,

and meta-population dynamics of simultaneous, connected epidemics.

Supporting information

S1 Appendix. Local stability of the endemic equilibrium Î . Conditions are given for various

values of the delay time Δ and the parameters in Table 2.

(PDF)
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S1 Fig. Discrete-time (blue) and continuous-time (orange) versions of the SIR model Eqs

(13)–(15) with different values of Δ. Parameters are the same as in Fig 1. Panels A–F repre-

sent shorter times and G–L longer times. For Δ = 3, 4, 5, the discrete-time trajectories are

stopped at I = 0, as they go off to −1. The continuous-time cases all converge to zero infec-

teds.

(TIF)

S2 Fig. SIR version of the SIS model in Fig 2 with Δ = 2 and different values for I0. Discrete-

time (blue) and continuous-time (orange) trajectories are similar to the SIS graphs. Parameters

as in Fig 2. Panels A–D represent shorter time and E–H longer times.

(TIF)

S3 Fig. SIR version of the SIS model in Fig 3 with different values of b0. Discrete-time

(blue) and continuous-time (orange) trajectories are similar to the SIS graphs in Fig 3. Parame-

ters as in Fig 3. Panels A–F represent shorter times and G–L longer times.

(TIF)

S4 Fig. Effect of removal rate γ on discrete-time (blue) and continuous-time (orange)

versions of the SIR model. Note the compression of the cycles seen in Fig 4 and the earlier

decline to zero infecteds. Panels A–E represent shorter times and F–J longer times. Parameters

as in Fig 4.

(TIF)

S5 Fig. Bifurcation diagram with varying ĉ as in Table 1 on the x-axis and its correspond-

ing reproduction number R0. The dotted horizontal line delineates the total population size

(N = 250). Dynamics exhibit convergence to the endemic equilibrium (including monotonic,

overshooting, and damped oscillation) and period doubling to chaos, followed by passage to

negative infinity.

(TIF)

S6 Fig. Bifurcation diagrams of time delay Δ = 0, 1, 2 as in Table 2 with varying target con-

tact rate ĉ. Dynamics progress from convergence to chaos to negative infinity. As Δ increases,

transitions between dynamic regimes begin at smaller values of ĉ.

(TIF)

S7 Fig. Dynamics with delay Δ = 2 and initial number of infecteds I0 = 1 in the SIS model

(same as Fig 2A). (A): Return map showing more than one It+1 value for each value of It. (B):

Comparing the “elliptical” dynamics in part (A) with continuous-time damped oscillation

(orange) to equilibrium Î ¼ 35:72. Other parameters as in Fig 2. This figure is the same as

Fig 2A.

(TIF)

S8 Fig. SIR versions of discrete-time (blue) and continuous-time (orange) versions of the

SIS model in Fig 2A. Note the apparent approach to Î in panels A and B. Both discrete-time

and continuous-time trajectories eventually approach R = N for longer times as in panel C.

(TIF)

S9 Fig. SIS model (recursion (11)) with N decreasing over time. This uses the same parame-

ters as in Fig 2 but sets N = N(t) = exp(−zt), where z ¼ 50gb0ĉ with γ = 0.08, b0 = 0.05,

ĉ ¼ 0:0015. Note the similarity to S8 Fig, panels A and B.

(TIF)
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