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ABSTRACT Escherichia coli is both a commensal and a pathogen in humans and
other animals. Here, we describe the isolation of E. coli strain 4s bacteriophage Paul.
The complete 79,429-bp genome was annotated and demonstrates similarity with
phieco32viruses, as does its prolate podophage morphology.

Escherichia coli is a commensal bacterial inhabitant of the intestines, with pathogenic
groups that cause human disease (1). E. coli strain 4s is a commensal isolate

collected from horse feces and has an O-antigen component of the lipopolysaccharide
known to affect susceptibility to phage (2). Here, we present the complete, annotated
genome sequence of the E. coli 4s prolate podophage Paul.

Bacteriophage Paul was isolated from a filtered (0.2-�m-pore-size) water sample
collected at Wolf Pen Creek in College Station, TX. The phage was propagated on E. coli
4s aerobically at 37°C in Luria-Bertani broth (BD Difco) using the soft-agar overlay
methods described by Adams (3). DNA was purified with the modified Promega Wizard
DNA clean-up system shotgun library preparation protocol (4), prepared as Illumina
TruSeq Nano low-throughput libraries, and sequenced on an Illumina MiSeq platform
with paired-end 250-bp reads using V2 500-cycle chemistry. The 2,820,474 reads in the
phage index were quality controlled using FastQC (https://www.bioinformatics.babraham
.ac.uk/projects/fastqc/). Sequence reads were then trimmed using the FASTX-Toolkit
v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). The genome was assembled into a
single contig with 1,429.4-fold coverage using SPAdes v3.5.0, with default parameters,
and was confirmed to be complete by Sanger sequencing of a PCR product amplified
off the raw contig ends (forward primer, 5=-CGTCGGCAATATCGTCTACTTT-3=, and re-
verse primer, 5=-AACAGCCTTACAATCCCTTACTG-3=) (5). Structural annotations were
performed with GLIMMER v3.0 and MetaGeneAnnotator v1.0, and tRNA sequences
were detected with ARAGORN v2.36 (6–8). Rho-independent termination sites were
annotated using TransTermHP v2.09 (9). Gene functions were predicted using Inter-
ProScan v5.33-72, BLAST v2.2.31, and TMHMM v2.0, with default settings (10–12). BLAST
searches were executed against the NCBI nonredundant and UniProtKB Swiss-Prot/
TrEMBL databases with a 0.001 maximum expectation value (13). Structural predictions
were done with the HHSuite v3.0 tool HHpred (multiple-sequence alignment [MSA]
generation with HHblits using the ummiclus30_2018_08 database and modeling with
the PDB_mmCIF70 database) (14). Genome-wide DNA sequence similarity was calcu-
lated by progressiveMauve v2.4.0, with default parameters (15). The annotation tools
were accessed in the Galaxy and Web Apollo tools hosted by the Center for Phage
Technology (https://cpt.tamu.edu/galaxy-pub) (16, 17) and run with default parameters
(unless otherwise stated). The morphology of phage Paul was determined from samples
negatively stained with 2% (wt/vol) uranyl acetate and viewed by transmission electron
microscopy at the Texas A&M Microscopy and Imaging Center (18).

Paul is a 79,429-bp prolate podophage with 42.0% G�C content and 91.4% coding
density. Structural annotations yielded 133 predicted protein-coding genes and a single
tRNA gene. By BLASTp, Paul shares 113 proteins similar to those of enterobacteria
phage phiEco32 (GenBank accession number EU330206), a 77-kb prolate podophage
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isolated against E. coli from cattle with acute mastitis (19). At the nucleotide level, Paul
is most similar to other Phieco32virus members, including phage vB_EcoP_SU10
(82.24%, KM044272), phiEco32 (82.03%, EU330206), enterobacteria phage NJ01
(81.67%, JX867715), and Escherichia phage 172-1 (80.63%, KP308307). PhageTerm
predicted 193-bp direct terminal repeats, and the assembled genome was reopened at
the left terminal repeat boundary, syntenic with phiEco32 (20).

Data availability. The genome sequence and associated data for phage Paul
were deposited under GenBank accession number MN045231, BioProject number
PRJNA222858, SRA number SRR8892204, and BioSample number SAMN11411459.
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