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Abstract

The developmental origins of health and disease hypothesis states that adverse early life exposures 

can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking 

during pregnancy is associated with morbidity and mortality in offspring, including increased risks 

for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, 

and other conditions. Maternal cigarette smoking during pregnancy interferes with placental 

growth and functioning, and it has been proposed that this may occur through the disruption of 

normal and necessary placental epigenetic patterns. Epigenome-wide association studies have 

identified a number of differentially methylated placental genes that are associated with maternal 

smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The 

placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant 

outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses 

have also found maternal smoking-associated placental methylation differences in the NR3C1, 

CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. 

The differential methylation patterns of several genes have been confirmed to also exhibit altered 

gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental 

methylation patterns associated with maternal smoking during pregnancy may be largely gene-

specific and tissue-specific and, to a lesser degree, involve global changes. It is important for 

future research to investigate the mechanistic roles that these differentially methylated genes may 

play in mediating the association between maternal smoking during pregnancy and disease in later 

life, as well as to elucidate the potential influence of emerging tobacco product use during 

pregnancy, including the use of electronic cigarettes, on placental epigenetics.
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Introduction

According to the developmental origins of health and disease hypothesis, in utero 

environmental exposures may alter fetal programming and influence the risk of disease in 

later life,1–4 including risk for cardiovascular disease, diabetes, asthma, cancer, and other 

conditions.5–10 Despite the significant offspring morbidity and mortality associated with 

maternal cigarette smoking during pregnancy (MCSDP),11–20 10%–12% of US women 

smoke cigarettes during pregnancy.21,22 This can allow toxicants, including nicotine, to 

cross the placenta and disrupt placental functioning,23,24 which may result in fetal 

programming of later-life disease risk via alterations to normal placental epigenetic 

mechanisms, whereby changes in gene expression occur without direct changes to the DNA 

sequence.25–27

Four main modes of epigenetic regulation are known, ie, non-coding RNA-mediated 

regulation, histone modifications, imprinting, and DNA methylation,26 with DNA 

methylation being the most extensively studied. When a methyl group is added to the 5′ 

position of cytosine, DNA takes on a stable, transcriptionally less active and potentially 

inactive conformation that can repress or silence gene expression, particularly when 

methylation occurs within gene promoter regions.28–33 These methylation marks are often 

found in clusters of cytosine–guanine dinucleotide pairs called CpG islands.34 Normal 

methylation patterns are critical to many cellular functions, particularly in the placenta 

where correct cellular functioning is crucial to fetal development.35

It has been theorized that the placenta may act as a functional record of in utero 

environmental quality.35 Nicotine, for example, crosses the placenta,11 and some MCSDP-

associated perturbations to normal placental epigenetic patterns are also associated with 

adverse infant health outcomes,36–42 including preterm birth,42 birth weight,43 and 

neurobehavioral outcomes.44 MCSDP-associated methylation patterns have also been found 

in tissues other than the placenta.36

This review summarizes what is known about the influence of MCSDP on placental 

methylation patterns, which may be associated with fetal programming of disease risk in 

later life.

Cigarette smoking in pregnancy: known risks to fetal health and 

development

Cigarette smoking is detrimental to health and linked to adverse health outcomes, including 

lung and other cancers,45–47 asthma,48 chronic obstructive pulmonary disease,48 

autoimmune diseases,49 and adverse fertility outcomes in women50 and men,51 both in 

smokers themselves and those exposed to secondhand smoke. Cigarette smoking is 

associated with deleterious effects on ovarian steroidogenesis and gametogenesis, oocyte 

maturity, ovulation, fertilization, and implantation.52 Animal models of nicotine exposure 

have revealed associated oocyte apoptosis53 and reduced sperm quality.54 MCSDP has also 

been linked to increased risk of stillbirth55 and miscarriage.56 These associations may be 
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biologically explained by the ability of cigarette smoke components to interfere with 

placental development.

MCSDP negatively affects the processes of trophoblast migration and invasion, which are 

primarily accomplished by extravillous trophoblast cells57 and allow the placenta to anchor 

in the uterine wall.58 By negatively impacting the function of these placental cell types, 

MCSDP can increase the risk of placenta previa, placental abruption,59 and other 

reproductive problems. MCSDP is associated with detriments to infant 

neurobehavior15,16,60–64 and the development of autoimmune diseases.65–67 Both 

active68–73 and passive71,73–75 MCSDP are linked to small-for-gestational-age infants.

These disruptions to normal placental growth and development can be devastating to fetal 

growth. The placenta plays a crucial role in providing the fetus with oxygen and nutrients, 

allowing gas and waste exchange, and producing important hormones and other compounds 

necessary for fetal development.35,76–79 The metabolic activity of the placenta also protects 

the fetus from many potentially harmful environmental toxicants,76–79 but certain heavy 

metals,80,81 cocaine,82 and nicotine11 cross this selectively permeable membrane. Changes 

that affect placental gene expression, such as epigenetic alterations, may have harmful 

downstream effects not only on placental functioning, but on the health of the developing 

infant.35

Overview of altered DNA methylation patterns associated with MCSDP

DNA methylation patterns are established de novo early in pregnancy following a post-

fertilization wave of demethylation in the early embryo.28,83 DNA methylation involves the 

addition of a methyl group via a covalent bond to the 5′ position of cytosine, which occurs 

almost exclusively in the context of CpG dinucleotides.35 Methylated CpGs, which mostly 

occur in clusters known as CpG islands, cannot be effectively bound by transcription factors, 

leading to reduction or silencing of gene expression.84 This process often occurs in gene 

promoter regions, where precise control of gene expression is necessary for cellular growth, 

differentiation, and functioning.39 Thus, pregnancy and, in particular, the first trimester, is a 

critical window during which environmental toxicant exposures may elicit detrimental 

effects on normal DNA methylation and gene expression patterns in multiple tissues. These 

exposures can have consequences for the developing fetus, which may continue throughout 

the life course.

Due to the stability of the covalent bond linking methyl groups to cytosine residues, aberrant 

DNA methylation patterns established early in life may persist into postnatal and adult life. 

Contrastingly, these aberrant DNA methylation patterns may also comprise an array of 

biomarkers for adverse early life exposures and serve to identify at-risk infants exposed to 

MCSDP.42

Placental DNA methylation patterns may serve as mechanistic links between in utero 

exposures and adverse infant health outcomes.8,37,42,84–87 Epigenome-wide association 

studies (EWAS) have observed associations between MCSDP and placental methylation 

patterns in multiple genomic regions,37,41,42 although one study found associations between 

MCSDP and methylation in cord blood only.88 EWAS studies have also observed loci 
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associated with both MCSDP and known smoking-associated adverse infant health 

outcomes, including birth weight37,41 and pre-term birth.42 These studies may provide 

mechanistic insight into the links between MCSDP and pre-term birth or low birth 

weight.12,14

Genetic pathways associated with MCSDP

Table 1 describes placental methylation patterns associated with exposure to nicotine or 

MCSDP.

EWAS findings have elucidated potentially relevant genes and pathways that may mediate 

prenatal exposure to MCSDP and disease risk in later life. Many studies have employed the 

Illumina Infinium HumanMethylation27 BeadArray,89 which assesses the methylation status 

of >27,000 CpG loci following DNA bisulfite modification. This method allows for 

detection of methylated cytosine residues by treating DNA with bisulfite, which converts 

unmethylated cytosines to uracil; methylation is protective against conversion to uracil. 

Once converted, DNA samples are hybridized to array probes, and percent methylation at 

>27,000 loci is measured in beta values ranging from 0 (absence of methylation) to 1 

(complete methylation). The advent of the more comprehensive Infinium 

HumanMethylation450 BeadArray, which interrogates >450,000 CpG loci,90 has allowed 

more extensive epigenomewide coverage. One such study91 found placental methylation 

patterns associated with nicotine exposure during pregnancy in the GTF2H2C and 

GTF2H2D genes (see Table 1).

MCSDP-associated genes discovered via the Illumina HumanMethylation27 and 450 

BeadArrays include RUNX3,42 PURA,41 GTF2H2,41,91 GCA, GPR135, and HKR141 (Table 

1). Although the placental function of RUNX3 has not been elucidated, RUNX3 is important 

for cellular differentiation and development in neuronal cells, T-cells, macrophages, and 

dendritic cells.92–99 As a tumor suppressor gene, RUNX3 interacts with β-catenin and 

increases p27, Rb, and TIMP-1 expression when upregulated.100–102 RUNX3 is associated 

with numerous cancers,98,101,103–108 including bladder cancer in smokers.109 A potential 

role also exists for RUNX3 to mediate the relationship between MCSDP and asthma and 

airway hyperresponsiveness,42,110–116 as has been observed in murine models.117,118

Suter et al41 found MCSDP-associated methylation alterations in a number of genes 

regulating DNA replication, excision repair, cellular membrane fusion, G-protein coupled 

receptor activity, and transcriptional regulation, potentially highlighting the placental 

genomic damage incurred by exposure to MCSDP. The array-based findings in both studies 

were validated by gold-standard bisulfite pyrosequencing.41,42

The findings of differential GTF2H2 methylation by Suter et al were confirmed in 2014 by 

Chhabra et al91 (see Table 1), who observed differential GTF2H2C and GTF2H2D 

methylation associated with in utero nicotine exposure.91

Candidate gene studies have also elucidated links between MCSDP and altered placental 

methylation patterns. Most studies have utilized bisulfite pyrosequencing to interrogate the 

methylation status of candidate gene regions of interest. Candidate genes of potential interest 
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that have been associated with MCSDP include NR3C1,119 CYP1A1,40 HTR2A,120 and 

HSD11B.121 NR3C1, better known as the glucocorticoid receptor gene, and HSD11B2, the 

11β-hydroxysteroid dehydrogenase type 2 (11-β-HSD2) gene, play important roles in stress 

response.122 Placental methylation status of NR3C1 has been previously associated with 

infant birth weight43 and neurobehavior,123,124 and placental methylation status of 11-β-

HSD has been associated with infant growth125 and neurobehavior.124,125 The 11-β-HSD2 

enzyme catalyzes the conversion of active cortisol into inactive cortisone, thus regulating the 

availability of glucocorticoids to the glucocorticoid receptor.122 Placental cortisol is also 

associated with postnatal weight gain,126 underscoring the potential for this pathway as a 

marker of infant health outcomes. The relationship between placental NR3C1 methylation, 

MCSDP, and birth weight41,43,127 is likely a complex one and birth weight may be a proxy 

measure for multiple interplaying in utero factors that can influence fetal growth and 

development.

CYP1A1 is a xenobiotic-processing enzyme known to be involved in the phase I metabolism 

of potentially carcinogenic compounds found in cigarette smoke, including polycyclic 

aromatic hydrocarbons.40 Suter et al40 found that CYP1A1 expression is upregulated by 

MCSDP via a mechanism of placental CYP1A1 promoter hypomethylation, suggesting 

important roles for placental methylation alterations in the physiological response to this 

exposure.

HTR2A, or the serotonin receptor gene, is expressed in placental tissue and is regulated by 

DNA methylation.120,128 Although its functional role in placental tissue has yet to be fully 

elucidated, Paquette et al120 recently observed MCSDP-associated placental HTR2A 

methylation, adding to a growing literature linking placental HTR2A to placental 

implantation129 and neurodevelopment.130,131

In addition to these candidate gene studies, Wilhelm-Benartzi et al37 observed associations 

between MCSDP and methylation of the repetitive elements LINE-1 and AluYb8 (see Table 

1). This partly confirmed findings by Moore et al,132 who showed that cytosine methylation 

levels differ according to smoking status. The methylation levels of these repetitive elements 

were, in turn, associated with epigenome-wide placental methylation patterns as measured 

by the 27K array platform.37 Methylation of repetitive elements, which comprise roughly 

50% of the human genome, is important for the maintenance of genomic stability.133,134 

These findings suggest that placental methylation may be an indicator of underlying 

functional alterations to normal placental development that can be perturbed by 

environmental toxicant exposures, such as exposure to MCSDP.

Functional consequences: changes in gene expression and implications 

for future disease risk

Several studies40,43,120,123,135 have found MCSDP-associated placental gene expression 

patterns, and these findings are supported by studies of placental methylation changes 

occurring concomitantly with changes in expression of relevant genes. In particular, one 

study found 241 genes to be differentially expressed in the placentas of infants born to 

smoking mothers, many of which were related to xenobiotic metabolism, collagen, 
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coagulation and thrombosis.135 Another genome-wide study found 174 genes to be 

differentially expressed in the placenta, including CYP1A1 and CYP19A1, perhaps 

indicating a response to the oxidative stress induced by MCSDP.136 A third study137 found 

329 genes to be differentially expressed in the placentas of infants exposed to MCSDP, 

including the additional cytochrome P450 family gene CYP1B1. These findings are 

consistent not only with other studies linking active and passive MCSDP with oxidative 

stress138–141 and the induction of the hypoxia-sensitive protein HIF1α,142 but also with the 

findings of Suter et al,40,41 who noted that placental methylation and expression changes 

occurred within gene regions related to xenobiotic processing, oxidative stress response, and 

hypoxia.

Other groups have also demonstrated MCSDP-related changes in gene expression associated 

with alterations in placental methylation. One study120 observed both placental methylation 

and expression alterations in the HTR2A gene, while Stroud et al119 found NR3C1 placental 

methylation alterations associated with MCSDP and altered cortisol levels. Additional work 

has suggested that NR3C1 methylation status is correlated with glucocorticoid receptor 

expression.43,123 Taken together, these studies suggest that methylation alterations in these 

genes within placental tissue may have functional consequences for important placental 

pathways.

MCSDP is associated with a host of diseases and disorders in infancy, childhood, and later 

life.11–19,22 These include pre-term birth,11,12 fetal growth retardation and intrauterine 

growth restriction,13,14 adverse neurobehavioral outcomes,15,16 obesity,17–19 and 

asthma.10,84,110–116 In fact, even grand-maternal smoke exposure has been associated with 

an increased risk of asthma in grandchildren,10 although a recent study of children from the 

Avon Longitudinal Study of Parents and Children did not reveal such an association.143 

Nonetheless, epigenetic mechanisms have been implicated in the relationship between 

grand-maternal and maternal smoking during pregnancy and risk of asthma and airway 

hyper-responsiveness in offspring.84,144 EWAS have borne out this finding, showing that 

alterations in placental methylation associated with both MCSDP and adverse infant health 

outcomes, such as pre-term birth, occur in genes associated with asthma and airway hyper-

responsiveness (such as RUNX3).42 These findings suggest that epigenetic mechanisms may 

underlie MCSDP-associated adverse health outcomes.

Conclusion and future directions

Although a growing body of literature exists on MCSDP-associated alterations in placental 

methylation, there is much work yet to be done to elucidate the specific signaling pathways 

and mechanisms involved in mediating the relationship between MCSDP and disease risk in 

later life. Ongoing cohort studies may help to further discern the risks posed by MCSDP to 

infant and child health outcomes, including risks for respiratory disorders,110,111,113,114,116 

adverse neurodevelopmental outcomes,15,16,60,61,64,85,145 and obesity,17–19 all of which 

have been linked to MCSDP.

One such cohort study is the Rhode Island Child Health Study (RICHS), a population-based 

birth cohort enrolling mother-infant pairs at the Women and Infants’ Hospital in Providence, 
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RI, USA.146 RICHS recruits newborn infants and their mothers following delivery and seeks 

to examine how the prenatal environment may influence postnatal health and 

neurobehavioral outcomes. Several important findings describing epigenetic links between 

the prenatal environment and postnatal outcomes have already been published from this 

cohort44,146–150 and work is ongoing to examine additional mechanistic links between 

prenatal exposures and a variety of postnatal outcomes.

The Norwegian Mother and Child Cohort Study has also published several key studies on 

MCSDP and DNA methylation patterns in cord blood,151,152 fetal loss,153 plasma lipid 

levels in adult offspring,154 and infant behavioral outcomes.155 This cohort will likely 

continue to produce important data on MCSDP-associated disease risk in later life in the 

coming years.

Both epigenome-wide and candidate-based studies of placental methylation patterns have 

yielded intriguing results for genes of potential biological interest that should be further 

investigated in future studies, including RUNX3,42 CYP1A1,40 NR3C1,119 HTR2A,120 

HSD11B2,121 PURA,41 GTF2H2,41,91 GCA, GPR135, and HKR1.41 The methylation status 

of genomic repetitive elements, such as LINE-1 and AluYb8, has also shown promise as a 

potential biomarker of MCSDP.37 It is important to note that an additional gene, the aryl 

hydrocarbon receptor repressor (AHRR), has also been recently investigated with respect to 

exposure to MCSDP, but while an association was found within this gene in cord blood 

mononuclear cells, a similar association was not found in placental tissue.156

Cumulatively, these results suggest that MCSDP-associated placental methylation is gene-

specific, and perhaps, to a lesser degree, can also occur epigenome-wide, a conclusion 

previously drawn by Suter and Aagaard.133 These patterns also appear to be tissue-specific, 

as studies investigating MCSDP-associated methylation patterns have observed alterations 

in genes with only partial overlap in various tissues of interest. These genes include 

FRMD4A,157,158 C11orf52,157 AHRR,151,152 CYP1A1, GFI1,152 ATP9A, GALNT2, and 

MEG3.158 Consideration should also be given to the role that additional in utero factors may 

play in placental methylation patterns. The studies described above have largely attempted 

to control for or match samples on potential confounders, including infant 

sex,37,40–42,120,121 maternal age,37,41,42,121 maternal pre-pregnancy body mass 

index,37,41,121 birth weight,42,120 delivery method,42 gestational age or birth weight 

percentile,41,120,121 maternal education,120 race/ethnicity,37,41,121 and other maternal 

factors,37,40 including smoking status for analyses of methylation patterns associated with 

infant health outcomes.37,119,120 Future studies may reveal concordance in genes identified, 

although to date only GTF2H241,91 has been differentially methylated in association with 

MCSDP or nicotine exposure in multiple studies.

Concordance of methylation patterns between tissues and life stages should also be 

investigated. For example, two studies159,160 observed smoking status-associated peripheral 

blood methylation patterns in adults, but these findings have yet to be confirmed in the 

placenta. Investigation of these findings, as well as epigenome-wide analyses of placental 

methylation patterns differing between infants exposed to MCSDP throughout pregnancy 

versus mothers who quit, would help to elucidate whether placental methylation patterns are 
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reversible with smoking cessation. As methylation is known to exhibit a degree of plasticity 

with respect to environmental and stochastic factors,87 demonstration of reversible 

methylation with smoking cessation would have implications for variations in MCSDP-

associated health risks.

It will be important for future studies to focus on the use of emerging tobacco products as 

unique prenatal exposures that may be associated with unique gene-specific and tissue-

specific methylation patterns. Such emerging tobacco products include electronic 

(e-)cigarettes, electronic nicotine delivery devices which, as of February 2015, are under 

consideration for regulation at the federal level by the US Food and Drug Administration.161 

Some types of e-cigarettes are capable of producing nicotine yields at levels comparable 

with those in traditional cigarettes,162 but e-cigarette liquids and vapors contain different 

compounds, such as propylene glycol and specific flavors, not found in traditional 

cigarettes.163–165 E-cigarette flavors may also be formulated with other compounds that are 

not found in traditional cigarettes. The influence of prenatal exposure to e-cigarettes on the 

placenta and developing fetus remains unknown, and it is important to investigate such 

exposures during pregnancy or in in vitro models. It will also be important to investigate 

placental methylation alterations associated with prenatal e-cigarette exposure and, if they 

exist, to compare these e-cigarette exposure-associated placental methylation profiles with 

the placental methylation profiles previously associated with MCSDP.

In conclusion, while a growing literature exists on MCSDP-associated placental 

methylation, work remains to be done to fully investigate the gene-specific and tissue-

specific mechanisms that underlie the relationship between MCSDP and disease in later life. 

This knowledge will help identify at-risk infants exposed to MCSDP and hopefully help to 

formulate effective interventions to improve infant health. Future studies should examine 

placental methylation alterations associated with prenatal exposure to emerging tobacco 

products as well, so that information on potential health effects can be disseminated to 

women who are pregnant or of child-bearing age. Collectively, such efforts will help to 

further understand links between prenatal tobacco exposure and infant and child health 

outcomes, with the goal of better elucidating the greater developmental origins of health and 

disease.
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