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Abstract

Pulmonary hypertension (PH) is a severe medical condition with a number of

treatment options, the majority of which are introduced without consideration

of the underlying mechanisms driving it within an individual and thus a lack

of tailored approach to treatment. The one exception is a patient presenting

with apparent pulmonary arterial hypertension and shown to have vaso‐
responsive disease, whose clinical course and prognosis is significantly

improved by high dose calcium channel blockers. PH is however characterized

by a relative abundance of available data from patient cohorts, ranging from

molecular data characterizing gene and protein expression in different tissues

to physiological data at the organ level and clinical information. Integrating

available data with mechanistic information at the different scales into

computational models suggests an approach to a more personalized treatment

of the disease using model‐based optimization of interventions for individual

patients. That is, constructing digital twins of the disease, customized to a

patient, promises to be a key technology for personalized medicine, with the

aim of optimizing use of existing treatments and developing novel interven-

tions, such as new drugs. This article presents a perspective on this approach

in the context of a review of existing computational models for different

aspects of the disease, and it lays out a roadmap for a path to realizing it.
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INTRODUCTION

Computer simulation of engineered devices and pro-
cesses is a central tool in today's technology world.
In particular, the use of so‐called “digital twins” of

individual pieces of equipment for the purpose of
preventive maintenance and troubleshooting is an
increasingly common approach. It combines mechanistic
mathematical specifications of devices with artificial
intelligence (AI) and machine learning analysis of
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operational data to “evolve” the digital and physical
twins in tandem when additional data are available to
update the physical twin. One of the industrial pioneers
of the concept put digital twin development at the center
of the vision of “No more unplanned downtime!”

Medicine has not yet benefited from the ubiquitous
use of computer simulation in a similar way, and the
analogous vision of “No more unplanned doctor visits” is
unrealized. Human patients are more complex than
plane engines, of course, so mathematical specifications
of medically important human biology are still under
development for the most part. Complicating the matter
is the fact that many human systems require biologically
based specifications, rather than descriptions based on
physics. Biological systems, such as the immune system,
for instance, are less‐well understood than many physical
systems and may require larger amounts and types of
data other than what is currently available. Additionally,
the technological and mathematical tools for the
construction and efficient use of complex multi‐scale
computational models underlying medical digital twins
need further improvement. And model‐based control
theory for models in this context is still in its infancy.

The heterogeneous nature of pulmonary hyper-
tension (PH) is a prime disease example of the
complexity of the “human machine.” PH is defined
clinically as mean pulmonary artery pressure (mPAP)
> 20mmHg with a pulmonary vascular resistance ≥3
Wood units (WU)1 and embodies the shortcoming of a
uniform application of existing therapies to each patient
with this disease without considering patient‐centered
variations in disease response. However, this heteroge-
neity across the patient population also represents an
opportunity in harnessing deep phenotyping data to the
application of personalized medicine for patients with
disease. PH is thus uniquely well‐suited to the digital
twin paradigm, given the large amount of existing data
on a wide range of variables contributing to disease: from
cellular‐molecular signaling to hemodynamic flow pat-
terns, clinical imaging, as well as functional clinical
outcomes. For example, integration of “omics” data
(such as that generated through the PVDOmics consor-
tium2) has great potential to serve as the hypothesis‐
generating base for understanding the variety of mecha-
nisms contributing to disease.3 An illustrative case of this
application in “scaling up” our understanding of disease
translated to pharmacotherapeutic targets, lies in mono-
genic disease due to bone‐morphogenetic protein recep-
tor 2 (BMPR2) dysfunction in familial‐cases of pulmo-
nary arterial hypertension (PAH). Resulting from
decades of research on this TGF‐β super family‐related
receptor's role in pulmonary arterial remodeling,4 the PH
community has a first‐in‐class disease modifying agent

for imminent use in the clinic, sotatercept.5,6 With
eventual development of the digital twin system, one
could imagine rapid development of individualized
treatment based upon these granular databases, in combina-
tion with characteristics of known cellular signaling
networks,7 organ‐level fibrotic and angiogenesis‐based phys-
iologic assessment,8 and even development of in silico
clinical trials to speed up drug development for patients,
given the relatively rare yet complex and deadly nature of the
disease.9

Despite challenges in modeling, there are already
successful examples of medical digital twins in use today.
For example, the company HeartFlow provides sophisti-
cated personalized three‐dimensional images of cardiac
patient blood vessels, which are used for surgical
planning.10 In data‐rich settings, such as cancer genetics,
AI‐based digital twins match patients with “nearest
neighbors” from a reference population to design optimal
treatment approaches.11,12 Following the industrial
paradigm, for a given disease, the first step is to create
a mathematical specification of the relevant biology. For
patients with PH, this would include at a minimum the
lungs, the immune system, the heart, and the pulmonary
circulation. The resulting mathematical model could
consist of a mixture of mechanistic and phenomeno-
logical parts, using data‐driven models where mecha-
nisms are not known or not measurable to a sufficient
level of accuracy. Such a model will need to be
parameterized and validated extensively, using data from
animal models or in vitro experiments. Digital twins of
devices can also be updated with data from monitoring
the real‐world object. This approach relies on streaming
or at least frequently‐collected operational data from the
specific piece of equipment being modeled, together with
an appropriate data analysis pipeline that transforms the
streaming data into a periodically‐updated “personal-
ized” parametrization of the digital twin. In this way, the
software instantiation (the digital twin) of the equipment
evolves in real time together with the physical object that
it represents. Once this is accomplished, the digital twin
can be used for a variety of purposes, such as forecasting
the effect of treatments or the development of novel
treatments through virtual clinical trials.

This perspectives article aims to apply—or at least
propose a methodology by which to apply—this version
of the digital twin paradigm to the study of PH, its
management, prognosis, and mechanistic hypothesis
generation for the development of disease‐modifying
therapies. Explicitly, it is not intended as an exhaustive
review of the literature in the field of cardiovascular
mathematical modeling. Simply put, the goal of this
commentary is to provide a series of carefully discerned
references that highlight—in our opinion—a map of
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where the field may look to move forward over the next
several decades. Like all maps, however, there will be
details that are lost depending upon scale and, in some
cases, perspective. Thus, we propose to explore existing
mathematical models related to PH at three different
scales: intracellular, intercellular, and organismal. Then
we consider models that deal with treatment decisions
such as expected toxicity and efficacy. We also consider
how digital twins can be used for in silico trial
development. Finally, we describe what work needs to
be done to realize a digital twin for PH.

THE PH PATIENT ENGINE

Determinants of PH and its treatment span several scales,
from the molecular to the physiological. To effectively
integrate data characterizing the different scales and to
use them for the personalized optimal treatment of
PH patients, multiscale computational models are

indispensable. Mechanistic models are best suited for this
purpose since they allow the simulation of the effect of
different treatments over time. In the following sections
we will describe some available computational models at
each of the scales and those that cut across scales. The
purpose is not an exhaustive review of the literature, but
to make an inventory of what part of the human biology
relative to PH has been encoded in selected computational
models, and what is still needed for a PH digital twin, that
is, a PH model that can be personalized to an individual
patient and used over time to optimize treatment (refer to
conceptual model illustrated in Figure 1).

A. intracellular modeling

Case: A 30‐year‐old woman presents to her
primary care physician with fatigue, light‐
headedness, and shortness of breath with
exertion. An echocardiogram is concerning

FIGURE 1 Conceptual personalized pulmonary hypertension model. A computational PH model that can be personalized to an
individual patient, similar to the concept of engine turbine digital twin. Patient data over time serves as input for personalized and optimized
treatment. PH, pulmonary hypertension.
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for elevated right ventricular systolic pressure
(RVSP), and the patient is referred to a PH
center where a diagnosis of precapillary PH
with high‐risk features is made by right heart
catheterization (RHC). She is initiated on
triple therapy for severe decompensated right
heart failure, including a phosphodiesterase
type 5 (PDE5) inhibitor, an endothelin recep-
tor antagonist, and a parenteral prostacyclin
analogue. After genetic testing she is found to
have a nonsense mutation of BMPR2, the most
commonly described heritable cause of
PH.13 She is negative for other genetic muta-
tions indicated as possible causes of PAH,
including BMP9, SOX17, and TBX4.14,15 In
addition to questions regarding screening of
family members for BMPR2 mutation, the
patient requests input into how the mutation
itself could potentially inform individualized
treatment?

The use of genomic data has great potential in
predicting outcomes of individual patients, such as the
patient in the clinical vignette, and currently there are
already multiple examples of work in this area that could
be applied to creation of a PH digital twin. As mentioned
above, specifically the use of omics will be helpful in the
case of PH due to monogenic mutations. Already, novel
analyses of transcriptomic data have allowed the discov-
ery of many dysfunctional genes in the progression of
PH.16 With the continued improvements in high‐
throughput technology, there is a massive influx of data
with the potential hope of finding pathways to target for
treating PH.2 Commensurate with interest in the field,
there are many published reviews focusing on use of ‐
omics data to find mechanisms that will help understand
the progression of PH, diagnosing the phenotype, and
eventually personalized treatment.17–22 Much of the
current research includes analysis to explicitly determine
upregulated or downregulated genes or pathways,
through single interactions between variables. Therefore,
the logical next step in the application of these data is to
study dynamic changes in the homeostatic regulation of
cellular health due to perturbations of gene‐
levelnetworking within the cell. A common method of
using intracellular data is to build dynamic mathematical
models of regulatory networks, using either systems of
ordinary differential equations or Boolean networks. The
former is based on a view of the regulatory network as a
biochemical reaction network, while the latter views it as
a decision process based on logical rules. Boolean
networks are typically easier to construct since they do
not require rate constants for parametrization. For

Boolean networks, a data‐driven top‐down approach
can be applied through binarization of high‐throughput
data (e.g., gene expression patterns in PH), allowing for
reconstruction algorithms to predict regulatory rules
within the cell.23 In the creation of a digital twin
paradigm for patients with PH, such networks for
different cell types could serve as the basis for the
intracellular scale of a PH digital twin.

An instance of this approach is based upon phospho-
proteomics data.24 Relevant to PH biology, endothelin
signaling has been extensively studied and is known to
signal through two receptors, A and B. Schafer and
colleagues thus considered the study of endothelin
biology in a single melanoma cell line that only expresses
endothelin B receptor (EDNRB), making it ideal to study
the effects without the interaction of both receptors. The
group then used experimentally described, as well as
predicted, kinase‐substrate relationships and protein‐
protein interactions to construct binary relationships
between these molecules. Using an algorithmic approach
(PHONEMeS),25 they then optimized the pathways from
EDNRB to target sites. From known interactions they
finally constructed a Boolean network model that
showed pathways of interest from EDNRB and was
consistent with their data. (Note that in Boolean models
the status of each gene or molecule is either “on” or “off”
(binary) along with the elements they interact with,
forming something akin to a logical decision model
characterizing the dynamics of the network.) In this
example, the group found five main pathways related to
relevant signaling: arrestin‐MAPK cascade, AMPK‐
CAMKII‐CaMKK2, PI3K‐PDK1‐AKT, PKC, and PKA in
EDNRB signaling. From these initial experiments, they
then validated the phosphorylation of 11 out of 12 central
nodes from the model with stimulation via endothelin.
This study, and studies like it, thus provide a roadmap for
crafting a comprehensive model of the signaling pathway
influencing endothelin‐induced cell‐specific migration.24

The same techniques could then be applied to other well‐
defined PH‐relevant signaling pathways of interest to
develop a comprehensive model, taking into account
even novel molecular signals, for testable hypothesis
generation.

Similar to this broad exploration of endothelin
manipulation, cell‐specific metabolic pathways are
known to play an important role in PH.26 To this end,
many mathematical modeling studies have investigated
various aspects of intracellular metabolism.27 One such
study considered arginine catabolism,28 an important
source of nitric oxide in vaso‐reactive diseases such as
PH.29 With their model they were able to replicate
experimentally determined values, ascertaining how
much each element (enzyme or transporter) affects the
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flux of arginine, labeled flux control coefficients. They
found that while ornithine decarboxylase and nitric oxide
synthase are key enzymes, this did not strongly control
the flux through the arginine catabolic pathway. Instead,
they discovered that low affinity arginine transporter and
arginase had the most control over the flux.28 Similar
insight into amino acid utilization in PH could reveal
novel chokepoints for NO‐production, the foundation of
traditional vasodilator‐based therapies.

Finally, related to vasodilatory biological pathway
regulation, the role for hypoxic signaling in PH is well
described across tissue types and cells,30 although
mathematical modeling of intracellular signaling models
related to hypoxia has yet to be incorporated into models
of PH. This represents an unfortunate knowledge gap, as
hypoxia‐inducible factor (HIF) signaling is intimately
linked to pulmonary vascular remodeling with ongoing
preclinical and clinical studies examining outcomes
related to pathway inhibition on disease outcomes.31 To
this end, the relationship between duration of hypoxic
exposure and cell growth and stabilization of HIF
through a variety of synergistic pathways is of potential
interest to the field at large. Exploration of these pathway
interactions lends itself to a network modeling
approach.32 For example, such modeling techniques
can help our understanding of hypoxic effects seen
within PH‐relevant vascular endothelial cells. One
potential application is the utilization of computational
models to predict microRNA‐mediated control of HIF‐
regulated VEGF.33 Likewise, in another intracellular
computational model focusing on the role of endothelial
cells in angiogenesis, a total of 143 molecules were
examined in the full model, including signaling related to
shear stress and oxygen effects and ANG/TIE, Notch,
TGF, AKT/SRC, VEGF, fibroblast growth factor (FGF),
CyclinD1, RAS/PLCg, WNT, and NO pathways.34 This
report stratified molecules by relevance and impact to
endothelial cell sprouting, narrowing down candidates
for empiric testing to 64 molecules relevant to the
microenvironment for different stages of novel vessel
growth. A similar method of hierarchy could be utilized
to narrow unwieldy lists of candidates for testing in high
and medium throughput assay analysis, or even priori-
tizing clinical trial development, directed at treatment of
PH. To illustrate this final point, an intracellular network
model based specifically on pulmonary arterial adventi-
tial fibroblasts with signals particular to the development
of PAH was subjected to hypoxia and mechanical
overload. Using results from 20 publications to validate
their model, the group found it to accurately predict
experimental outcomes with 80% accuracy. Model
analysis revealed the most influential molecules in
mechanical overloading, which included targets such

as αSMA, cGMP, ET1, syndecan4, and the Hippo
pathway,15 as well as novel targets for analysis. Broader
application of this type of computational modeling could
thus yield novel insights into the pathogenesis of disease
progression. Once calibrated to an individual patient, this
intracellular component will contribute to model fore-
casting of a patient trajectory in a digital twin paradigm,
including the young female patient in the case
presentation.

B. Intercellular modeling

Case: A 76‐year‐old man with untreated
obstructive sleep apnea (OSA) and idiopathic
pulmonary fibrosis (IPF) diagnosed 6 months
ago, currently stable on nintedanib, presents
with worsening dyspnea on exertion over
8 weeks, bilateral lower extremity edema,
and increasing oxygen requirement from 3 to
6 liters nasal cannula. A surface echo-
cardiogram demonstrates concern for right‐
ventricular strain with an estimated RVSP of
70−80mmHg and grade II diastolic dys-
function with preserved left‐ventricular ejec-
tion fraction. RHC concerning for the follow-
ing consistent with diagnosis of PH: mPAP
48mmHg, a pulmonary artery occlusion
pressure (PAOP) of 12 mmHg, with a PVR of
6 WU. A combination of loop diuretic, PDE5
inihibitor, and inhaled prostacyclin analogue
are initiated, along with encouragement of
continuous positive airway pressure (CPAP)
adherence for underlying OSA. A referral is
placed to the Lung Transplant Clinic. The
patient, overwhelmed, messages the health‐
care team regarding interactions of the
currently prescribed medications with each
other, and how he can best approach the two
diseases: lung scarring in combination with
blood vessel narrowing?

Many patients—such as the one described above—
have questions about how drug classes act on different
aspects of the lung, amounting to how presumably cell‐
specific targets interact within the complex environment
of the pulmonary vasculature. Often drugs target
signaling changes at the intracellular level, but the way
an individual cell behaves does not completely explain
the impact of changes complicated by interactions of
many cell types. Logically, the next scale of mathematical
modeling relevant to the formation of a digital twin is at
this intercellular level. Fortunately, there are many
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mathematical models at this scale, including—for
example—interactive endothelial cells during angiogene-
sis, influencing one another in a predictive model that
mimics the process of forming new blood vessels.35–37 To
predict this process, computational models must account
for how endothelial cells behave differently depending on
their location on the new blood vessel and their response
to cytokine levels secreted by neighboring cells, as an
example. Exemplary of this approach, one study con-
sidered how the extracellular environment of VEGF
affects migration capacity of cells through the extra-
cellular matrix (ECM). Noting that VEGF is taken up into
the endothelial cell, the model incorporates intracellular
signaling with extracellular signaling. The linking of
these scales is to signal to the cell to proliferate, migrate,
or undergo apoptosis, endothelial cells in the model
formed correct vessel structures similar to experimental
observations.35 Acknowledging that VEGF is not the sole
signal in angiogenesis, another modeling study compared
how the growth of new vessels changed with FGF
compared to VEGF signaling.36 This study validated the
model against length of endothelial cells induced by FGF
and VEGF, showing that FGF induces greater sprouting
response.

One can extrapolate from application of a similar
model of homeostatic aortic tissue, including endothelial
cells and smooth muscle cells in preserved systemic
vasculature with an intact medial and adventitial layer.
The combined cell populations were then individually
represented to behave autonomously as “agents,” the
basis of so‐called agent‐based modeling.37 The agents or
individual cells are given rules to govern their behavior.
This model was then used to study transient pressure
changes within the system, modeling sequelae of
systemic hypertension. The report went on to present a
method of scoring each rule in the model based on the
type of experiment (e.g., in vivo vs. in vitro) used to
validate each component of the model. An important
focus was on how well the model with increased pressure
replicated in vivo behavior of the aorta in the setting of
systemic hypertension. Such a modeling system could
easily be applied to the lower flow states and unique
cellular make‐up of the pulmonary circulation.

Finally, such modeling could ultimately be utilized to
address the patient's question above regarding interac-
tions of cell populations in the setting of adventitial lung
disease coupled with PH, especially given how lung
fibrosis is considered to be a large part of PH progression
in this setting. Interestingly, at least one model has
shown the capability to replicate lung fibrosis caused by
damage to the epithelium, though without consideration
of the endothelial compartment. In the model, in the
absence of “damage,” the homeostatic lung environment

remained preserved, but by causing a damage response
within the epithelial cells, the model showed how the
ECM is thickened. This stochastic pattern of damage to
the epithelium was due to various concentrations of the
chemokine MCP‐1 leading to heterogeneity in monocyte
recruitment and retention across simulations and leading
to different ECM patterns of late fibrosis stage.38

Coupling a similar model to study vascular deformation,
or rarefaction, in a curated fashion could be used to
speed discovery and translation of therapeutics intro-
duced into the in‐silico system, cutting down the
investment of physical resources and time. Importantly,
one must consider how representative these models are
within the PH‐field, as there are many other important
cellular features that are not currently addressed by the
highlighted models.

C. Organismal modeling: Physics/flow
dynamics

Case: A 59‐year‐old man with history of
unprovoked pulmonary embolisms presents
with chronic thromboembolic PH (CTEPH)
after symptoms of worsening dyspnea on
exertion prompted a ventilation‐perfusion
scan read to have a high probability of
thromboembolic burden. An echocardiogram
was found to have an estimated RVSP of
50−60mmHg. He had earlier been evaluated
for thrombophilia and found to have a
heterozygous mutation for prothrombin
G20210A. RHC is notable for a mPAP of
28 mmHg, a PAOP of 12mmHg, with a PVR
of 4 WU. His current treatment regimen
includes apixaban and riociguat. He is
functionally limited in activities of daily living,
and a 6‐min walk distance is recorded at
450 m. He is referred for pulmonary endarter-
ectomy given proximal nature of clot burden
as evidenced by computed tomography angi-
ography scan. The patient notes anxiety
regarding planned support of cardio-
pulmonary hemodynamics immediately post‐
surgery, and asks what his expected prognosis
is regarding recovery of heart and lung
function over time?

In PH, and especially CTEPH, the right ventricle of
the heart experiences either acute, chronic, or acute‐on‐
chronic alterations in pulmonary pressures that uniquely
stress the cardiovascular circuit, the underlying senti-
ment for the patient's concerns in the vignette.
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Computational modeling represents a unique opportu-
nity for assessing and predicting response of individual
right ventricles to rapid off‐loading, such as in the case
above. In response to this potential, one group—Velez
Rendon et al.—empirically measured RV pressure and
volume, heart contractility, and end‐diastolic elastance in
an animal model creating a mathematical model to
separate morphological and intrinsic contribution to RV
overload. In the acute model, the data demonstrated that
RV pressure increased by the second week as well as
hypertrophy, with the stroke volume and cardiac output
remaining unchanged. Using the mathematical model,
they showed that wall thickening and remodeling by
themselves were unable to account for the increase in the
elastance and contractility of the right ventricle (“intrin-
sic inotropy of RV myocardium”).39 The group then
performed an elegant series of experiments to test the
strain of tissue from PH patients compared to controls, in
a chronic translational manner. The model was able to
replicate the experimental data, later demonstrating that
circumferential stress was higher in the RV of PH
patients, and that the ratio of collagen‐to‐myocardial
physical stress did not change significantly over time
once established.40 The group then expanded upon this
work to show that wall thickening alone is sufficient to
maintain cardiac function for the first 4 weeks, but by
week five there was a significant increase in wall
stiffness. The stiffness was secondary to thickening that
countered any gain in function, similar to canonical left‐
sided diastolic dysfunction or heart failure with pre-
served ejection fraction. The model showed that this
phenomenon could be explained by static myocardial
material stiffness, even without significant fibrosis,
suggesting an independent predictive biomarker for
determining which subjects may respond well to RV
unloading.41

In a similar model focused on RV remodeling in
PAH, a group created a spatial representation of the RV
over time resulting in heart failure. In alignment with
prior data, this model indicated that intrinsic contractil-
ity of myofibers and passive stiffness is the initial
ventricular response to maintain cardiac output. While
individual fibers were found to have increased contrac-
tility upon development of PAH, reorientation of these
myofibers caused the contractions to be less effective,
and thus prone to organ failure.42

To fully integrate such modeling systems into a
digital twin paradigm, it is first necessary to demonstrate
integration of some of the previous cellular modeling
techniques within this larger organ‐based construct. As
an example of this integrated approach, one study
recorded cardiac magnetic resonance imaging to create
an individual 3D geometric model of the right ventricle

for PH patients. The researchers then calculated the
estimated average wall thickness and radius in a spatial
manner using these data to calculate wall stress in a
spatial segment of the RV. The goal was to then integrate
metabolic signals of RV adaptation in the individual PH
models, so they measured 10 known metabolites relevant
to disease and found a strong correlation to wall stress.
The group could then delineate negative and positive
associations between metabolites, with the ultimate goal
of utilizing these data to define functional metabolic
biomarkers for patient risk‐stratification, and hypothesis
generation.43

Relevant to the case described above, to compre-
hend fully the response to alleviating clot burden it is
necessary to understand the RV response to perfusion
as well as anticipated changes in the pulmonary
vascular bed to ventilation mismatch. Relevant to the
study of this concept is the design of a mathematical
model to account for a two‐dimensional pulmonary
vascular network, including fluid and wall mechanics,
that are related functionally to alveolar pressure and
oxygen transport to the blood. In the physiologic
response to hypoxia, the body teleologically tries to
redirect blood flow by constricting pulmonary arteries,
a unique response confined to the lung, termed
hypoxic pulmonary vasoconstriction. A group of
investigators was able to model this response, replicat-
ing native matching of perfusion to ventilation result-
ing in a homeostatic—expected—response to acute
hypoxia exposure.44 Such a model could be applied to
postoperative predictive algorithms of CTEPH patients,
as well as a number of acute lung injury scenarios or
even high‐altitude simulated testing.45 Finally, in
addition to a number of primary articles and reviews
on the topic of modeling gas exchange in the lung,46–49

there is also a physiology “engine” in nascent stages of
production, called Pulse Engine. This includes a
lumped parameter model of respiration, and has
several simulation models that can be run to simulate
a variety of disease states (i.e., bronchial constriction,
pneumothorax, and mechanical ventilation). These
open‐source engines are based on previously published
work using differential equations50,51 and can be
applied to a variety of pulmonary vascular diseases,
and treatment responses.

Prognosis and defining outcomes

Case: A man in his 80 s with PH associated
with myelodysplastic syndrome (MDS; myelo-
fibrosis diagnosed 1 year prior), status‐post
treatment with ruxolitinib, is initiated on
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tadalafil and ambrisentan. The latter is
discontinued due to lower extremity swelling
and chest pain. He has a past surgical history
notable for traumatic splenectomy. He has
OSA on CPAP and nocturnal oxygen, in
addition to continuous ambulatory 2−3 L
oxygen. Additionally, he is undergoing evalua-
tion for extramedullary hematopoiesis within
the lung, gives concern for progressive paren-
chymal changes in setting of his MDS. Before
leaving the office to pick up his latest
prescription, he asks, “with all of my prob-
lems, how on earth do you all figure out how
to treat me, which of the drugs are working,
and how much longer I've got?”

To answer our patient's question, as clinicians we
must first figure out which combinations of drugs to treat
with, an exponentially complex task, requiring us to take
into account the expected toxicity and efficacy of
individual agents. To determine whether a treatment is
not harming excessively (e.g., having too much toxicity)
and is actually helping (e.g., having efficacy), we need
metrics for toxicity and efficacy. Experimental and
clinical data have traditionally been used to screen drugs
for toxicity.52 However, mechanistic mathematical mod-
els, such as those in DILIsym,53 have been used in recent
decades to predict liver toxicity for a variety of
compounds in advance, just using in vitro data.
Mechanistic models have been developed for other
potentially toxic effects relevant for mechanisms of
toxicity of PH drugs. For example, models of platelet
activation signaling are relevant for the PH treatment
iloprost.54,55 Models also exist for absorption processes
and a general intracellular signaling response of sildena-
fil,56,57 and for hepatic uptake and metabolism of
bosentan.58

Efficacy has been more challenging to model, due to
the issue of determining a suitable metric for efficacy.
For example, the 6‐min walk test (6MWT), as a measure
of exercise capacity, has been used as a primary
endpoint metric for multiple therapies for PAH patients.
It is considered an easy‐to‐measure, quantitative surro-
gate marker for longer‐term outcomes: a therapy that
increases the 6MWT distance (6MWD) by 70 yards not
only achieves that specific benefit, but is also expected
to result in longer‐term improved outcomes. Although
increased survival is the metric that is really preferred,
surrogate markers such as the 6MWD have been used to
shorten clinical trials. However, increase in baseline
6MWD does not always correlate with long‐term
outcomes in PAH,59–61 raising questions about its
suitability as a surrogate metric of efficacy. There are

confounding factors that can cause a patient's 6MWD to
not increase after starting a new therapy, such as frailty,
hospital stays, or comorbidities, and a ceiling effect for
those who perform well at baseline.60 Increasing
complexity in the treatment of PAH and the use of
vasodilators have also decreased the predictive capacity
of increased 6MWD.61 In place of change in 6MWD,
morbidity and mortality events are being used by some
as primary clinical endpoints for PAH therapies.
Increase in 6MWD can still be useful in clinical trials
that cannot be run long enough to analyze events, and it
can be useful in short‐term management of PAH
patients. However, a decrease in 6MWD, declining
functional class, or worsening cardiac function as
determined by metrics such as brain natriuretic peptide
(BNP) and N‐terminal pro‐BNP, were predictive of
longer‐term complications or death in PAH pa-
tients.59,62,63 Further, risk calculators such as the
registry to evaluate early and long‐term PAH disease
management (REVEAL) 2.0 are prognostic for long‐
term morbidity and mortality outcomes.64 If a mecha-
nistic model was created that included the confounding
factors for an individual, it might be able to differentiate
the cases when a change in 6MWD is impactful. A
digital twin would theoretically be able to be updated to
incorporate new treatment.

As an alternative to such empirical predictive scores
and correlation methods, mechanistic models are well‐
suited for determining drug combinations to use and for
making prognostic predictions of outcomes. Although
there is little work directly linking treatment with PH
progression in a mechanistic model, there are multiple
models for related conditions such as right ventricular
failure and fibrosis. One model of right ventricular
failure due to pressure overload incorporated A61603
(A6), a selective α1A‐adrenergic receptor agonist. This
model predicted that A6 preserves ejection fraction of the
RV and cardiac output. It inhibits RV failure by restoring
myocyte maximum force generation but did not change
the pressure overload.65 A model that can be individual-
ized by CT images for CTEPH patients was created that
predicts the best targets for balloon pulmonary angio-
plasty therapy.66 There is also a model which considers
how to non‐invasively diagnose PH by using a model
with pressure flow and volume of the body's vasculature
system.67 There is more work related to symptoms of PH,
such as pulmonary fibrosis. Warsinske et al. looked at
combination strategies to treat the effects of fibrosis.
Their model predicted that targeting both fibroblast
regulation and epithelial cell survival at the same time
were needed to successfully treat fibrosis.68 A mathemat-
ical model of IPF tested several drugs and found that
pirfenidone was the drug that could stop the progression
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of fibrosis.69 There is also work studying the impact of
using a left ventricular assistance device for support after
the right ventricular failure has also been explored.70

While most of these models are not directly related to
PH, they represent the beginning work that could be
assimilated into a digital twin.

In silico clinical trials

Case: A 73‐year‐old obese woman with long‐
standing systolic heart failure presents in
referral from a cardiology clinic for evaluation
of PH. She had previously been initiated on
sildenafil, with resultant worsening shortness
of breath for which the drug was discontinued.
She is wheelchair bound due to dyspnea and
fatigue. Her current treatment regimen
includes a beta‐blocker, angiotensin‐receptor
blocker, and combination of loop and thiazide
diuretics. She has diabetes mellitus and was
recently started on an SGLT2 inhibitor. A
serum BNP is obtained in clinic (1380 pg/mL;
normal less than 100 pg/mL). Echo-
cardiogram is significant for a left atrium
size of 4.9 cm, a left‐ventricular ejection
fraction of 30%, and an estimated RVSP of
50−60 mmHg. RHC is significant for elevated
pulmonary pressures, with a PAOP of
23mmHg, with a significantly depressed
cardiac output and mixed venous gas oxygen
saturation. Her son accompanies her today in
clinic and inquires as to the utility of a new
PH drug he read about, sotatercept, in
patients like his mother.

For many decades, there has been strong interest in
conducting clinical trials virtually (in silico) to make the
process of drug development more efficient, including in
cardiovascular research and PH. Early clinical trial
simulations were based on empirical models of drug
concentrations and drug effects.71,72 These models used
nonlinear mixed‐effects modeling and fit lognormal
distributions to clinical data, incorporating covariates
such as age, weight, and renal function. Such in silico
clinical trial simulations were first used to design
subsequent clinical trials, after early trial data became
available.73 They were later run based on distribution
data available from preclinical in vivo studies, with
allometric scaling used to adapt the models to simulate
human subjects.

The use of mechanistic mathematical models was a
major step forward to ensure better simulations of

interpolated populations and to finally allow for simula-
tion of extrapolated populations. Such models are called
quantitative systems pharmacology (QSP) models by the
biotechnology/pharmaceutical (biopharma) industry.
QSP models have been used extensively in drug discovery
programs to suggest potential drug targets. More recently
they have been used to make internal decisions in
clinical drug development programs. A mathematical
model of an anti‐PCSK9 therapy was used for in silico
clinical trial simulation to test whether there would be
patient benefit if it was added to a statin.74 The model
predicted the therapy would not significantly benefit a
certain subpopulation of patients. This prediction was
later validated clinically when another company tested
their own anti‐PCSK9 therapy and found that adding it to
statins did not significantly help this same sub-
population. In silico clinical trial simulation with a QSP
model for COVID‐19 viral dynamics was also used to test
different starting days for the antiviral therapy Paxlovid.
The simulations predicted that the risk of hospitalization
or death was reduced the most when Paxlovid was
initiated no later than 5 days after the onset of COVID‐19
symptoms.75,76 This result was used to design the clinical
trials of Paxlovid, and the data from the clinical trials
validated the simulation predictions. Additionally, simu-
lation of a population of 300 patients with diabetes, based
on a mechanistic mathematical model of glucose‐insulin
dynamics, was accepted by the US Food and Drug
Administration (FDA) in lieu of preclinical animal
testing.77

In a recent breakthrough, trial simulations from a
QSP model of drug mechanism of action and efficacy
were used for the 2022 clinical approvals by the FDA 78

and the European Medicines Agency (EMA) of olipudase
alfa for pediatric patients.79 This is the first citation by
regulatory agencies of mechanistic systems modeling and
simulation of patients as central to a drug approval rather
than just supportive evidence, and serves as proof‐of‐
concept for future studies streamlining the “trial” of PH
novel drugs.

These mechanistic models and many others are used
to generate thousands of virtual patients (VPs) by
sampling from specified parameter distributions. Cohorts
of virtual populations (VPops) are selected from these
VPs by ensuring they match prior clinical patient data.
For example, if patient data include blood pressure and
cell counts at various times, then distributions can be
estimated from the data and simulations that do not lie in
the distributions are discarded. Two major challenges
arise from the greater complexity of the mechanistic
models: (1) the time it takes to simulate each patient is
longer for a more complex model; and (2) the model
parameter space for a more complex model has a higher
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dimension and thus requires more samples to explore it.
Multiple methods have been employed to try to ensure
VPops are as representative of the clinical data as
computationally possible.80–83 Of course, if digital twins
for everyone existed, all could run in silico trials using
the digital twins. This would be the goal for all registered
PH patients, a true precision medicine approach to drug
discovery and testing, one that would both address the
case patient's concerns and provide data before the fact
on suitability of a novel drug for their unique disease
process.

CONCLUSION

The human biology relevant to PH extends across scales,
from the molecular to the organismal. For effective
treatment and the development of novel treatment
modalities, it is essential to leverage our knowledge
about each of these scales through their integration and a
data assimilation process that allows us to capture a
multiscale representation of a given patient. The most
efficient way of accomplishing this is through computa-
tional modeling that provides a principled way to
integrate data at the different scales. In this review, we
have shown that there is considerable computational
modeling work that has been done at each of the relevant
scales (Figure 2). We have also highlighted work that

shows how computational models can be used to develop
novel therapeutic approaches. The first challenge now is
to complete the construction of comprehensive compu-
tational models at each relevant scale. The second
challenge is to integrate the models at the different
scales into a multiscale model of human biology that
controls the processes involved in the development,
progression, and treatment of PH. Multiscale modeling of
biological systems has progressed substantially in the last
two decades, and the computational and theoretical tools
are in place to complete this task. Beyond the technical
aspects, an integration of scales requires that researchers
and clinicians working at the different scales, as well as
in the clinic, collaborate in this effort.

The third, and possibly biggest, challenge is to
personalize the model to an individual patient, alluded
to in the case studies we presented along the way, to
complete the construction of the digital twin of this
patient. One of the characteristics of a digital twin, as
opposed to simply a model, is that this personalized
model can be recalibrated periodically, as the patient's
condition changes, and is up to date in its predictions.
The problem is twofold. One is to transform periodic
measurements of the state variables of the model (gene
expression, concentrations of relative molecules, vital
signs, etc.) and transform them into new values of the
parameters. The other problem is to develop appropriate
forecasting methods. While forecasting is being done in

FIGURE 2 Multiscale computational modeling framework. Existing computational model work done at relevant scales (i.e., molecular
to cellular, cellular to tissue, and tissue to organ) in healthy individuals or PH patients. References above dots represent papers built
at the indicated scale that have been extended to a difference scale. For example, both hemodynamics and vascular remodeling are
considered in CTEPH.66,67 To create a digital twin of PH, multiple scales need to be connected. Future work might connect published
models, such as intracellular hypoxia signaling32 with angiogenesis36 and specify them to PH. CTEPH, chronic thromboembolic
PH; PH, pulmonary hypertension.
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several different settings, such as numerical weather
prediction, the challenges for medical applications tend
to be different.

This review/perspective is intended to frame the
overall challenge and promise of a PH digital twin, and
serve as a blueprint for further development. Here, we
have focused primarily on the use of mechanistic models
as the digital twin engine, as is the case for almost all
digital twins used in industry. Our choice was informed
by the advantage of mechanistic dynamic models of
allowing the simulation of novel therapies or novel
combinations of therapies and their effects over time.
Data‐driven AI or machine learning models do not
generally allow this type of extrapolation beyond existing
data. Furthermore, in many cases, the limited quantity of
data makes it challenging to obtain robust results and
predictions without mechanistic models. We envision
increased use of mechanistic medical digital twins as
essential tools for simulation, hypothesis testing, and
prediction in medicine.

In summary, we believe the digital twin paradigm to
be a viable model for future PH‐directed research,
prognostication, and translational application of novel
drugs or behavioral interventions. The Digital Twin
offers unique insight into not only patient monitoring for
the aspirational “no more unplanned doctor visits,” but
also offers a glimpse into unveiling new innovative
hypotheses for when the system fails to live up to this
explanation. Ostensibly, there are greater opportunities
in figuring out why a theory didn't work, than simply

expecting a perfectly planned outcome. In other words,
the human condition is often unexpectedly messy, and
figuring out why is what drives the research enterprise.

Finally, the approach to complex multivariable
hypothesis testing through use of a digital twin, much
less patient treatment, remains largely a conceptual
model (refer to Table 1 and Figure 2). Therefore, to
facilitate the development of this unique and powerful
tool, we propose the following research and development
priorities:

▪ The jet engine prototype necessitates longitudinal,
and frequently continuous, analysis of variables
relevant to flight: temperature, humidity, and time‐
of‐flight. Similarly, for a digital twin model to be used
to reduce unplanned doctor visits, regular patient
monitoring must be available. While development of
novel invasive monitoring techniques are under-
way,111 these devices carry the contingent risk of
any invasive monitoring device—infection, bleeding,
or embolization. Fortunately, wrist‐actigraphy is a
safe alternative for monitoring activity as well as
heart‐rate variability in this patient population,112 and
likely the workhorse for a successful digital twin
model that includes updates.

▪ Development of learning and validating cohort
databases for refinement of initial cross‐sectional
patient endophenotyping; a starting point for
the digital twin preferably based upon actual
patient data.

TABLE 1 Summary of references available for scale of modeling in application to pulmonary vascular disease and related manuscripts
to specific mathematical models.

Scale Related modeling reviews

Intracellular Omics and image data,84 HIF,85 general intracellular,86 NO,87 metabolism27

Intercellular Angiogenesis,88,89 extracellular matrix remodeling90

Physics/flow
dynamics

Pulmonary circulation (pulmonary hypertension [PH]),91 cardiac hypertrophy,92

neonatal PH,93 ventricular mechanics94

Prognosis Pulmonary system,95 drug combinations cancer,96 nanoparticle drug delivery cancer97

Clinical trials In silico trials,98 drug design99

Mathematical
model

Related manuscripts

Multiscale PH vascular resistance,100 fibrosis,101 precision medicine102

Boolean models System medicine,103 gene regulatory,104 tutorial105

Agent based models Multiscale vascular,106 system biology,107 tutorial108

Differential
equations

Metabolic,109 air flow in lungs110

Abbreviation: HIF, hypoxia‐inducible factor.
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▪ Lastly, we require inference into the model for
stochastic, or unexpected, occurrences such ranging
from unanticipated trauma to more predictable
dietary indiscretion.

AUTHOR CONTRIBUTIONS
Melody Walker, Helen Moore, Reinhard Laubenbacher,
and Andrew J. Bryant wrote and edited the manuscript.
Ann Pham provided illustrations and edited the manu-
script. Ali Ataya and Paul A. Corris edited the manu-
script, and Paul A. Corris, Reinhard Laubenbacher and
Andrew J. Bryant conceived of manuscript.

ACKNOWLEDGMENTS
The authors would like to acknowledge the contribution
of Martin Wilkins in initiation of this manu-
script. US Army ACC‐ APG‐RTP W911NF, NIH 1 R01
HL169974‐01, US DoD DARPA HR00112220038, NIH 1
R011AI135128‐01, NIH 1 R01 HL169974‐01 (R. L.).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

ETHICS STATEMENT
N/A.

ORCID
Ali Ataya http://orcid.org/0000-0001-8505-1680
Andrew J. Bryant http://orcid.org/0000-0001-
9433-3049

REFERENCES
1. Simonneau G, Montani D, Celermajer DS, Denton CP,

Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemo-
dynamic definitions and updated clinical classification of
pulmonary hypertension. Eur Respir J. 2019;53(1):1801913.

2. Hemnes AR, Beck GJ, Newman JH, Abidov A, Aldred MA,
Barnard J, Berman Rosenzweig E, Borlaug BA, Chung WK,
Comhair SAA, Erzurum SC, Frantz RP, Gray MP, Grunig G,
Hassoun PM, Hill NS, Horn EM, Hu B, Lempel JK,
Maron BA, Mathai SC, Olman MA, Rischard FP,
Systrom DM, Tang WHW, Waxman AB, Xiao L, Yuan JXJ,
Leopold JA. PVDOMICS: a multi‐center study to improve
understanding of pulmonary vascular disease through
phenomics. Circ Res. 2017;121(10):1136–9.

3. Johnson S, Sommer N, Cox‐Flaherty K, Weissmann N,
Ventetuolo CE, Maron BA. Pulmonary hypertension: A
contemporary review. Am J Respir Crit Care Med.
2023;208(5):528–48.

4. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N,
Sheares KK, Trembath RC. Altered growth responses of
pulmonary artery smooth muscle cells from patients with
primary pulmonary hypertension to transforming growth
factor‐β1and bone morphogenetic proteins. Circulation.
2001;104(7):790–5.

5. Humbert M, McLaughlin V, Gibbs JSR, Gomberg‐Maitland
M, Hoeper MM, Preston IR, Souza R, Waxman AB,
Ghofrani HA, Escribano Subias P, Feldman J, Meyer G,
Montani D, Olsson KM, Manimaran S, de Oliveira Pena J,
Badesch DB. Sotatercept for the treatment of pulmonary
arterial hypertension: PULSAR open‐label extension. Eur
Respir J. 2023;61(1):2201347.

6. Hoeper MM, Badesch DB, Ghofrani HA, Gibbs JSR, Gomberg‐
Maitland M, McLaughlin VV, Preston IR, Souza R,
Waxman AB, Grünig E, Kopeć G, Meyer G, Olsson KM,
Rosenkranz S, Xu Y, Miller B, Fowler M, Butler J, Koglin J,
de Oliveira Pena J, Humbert M. Phase 3 trial of sotatercept for
treatment of pulmonary arterial hypertension. N Engl J Med.
2023;388(16):1478–90.

7. Gallardo‐Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ,
Greif DM. Vascular pathobiology of pulmonary hyper-
tension. J Heart Lung Transplant. 2023;42(5):544–52.

8. Condon DF, Agarwal S, Chakraborty A, Auer N, Vazquez R,
Patel H, Zamanian RT, de Jesus Perez VA. Novel mecha-
nisms targeted by drug trials in pulmonary arterial hyper-
tension. Chest. 2022;161(4):1060–72.

9. Divers C, Platt D, Wang E, Lin J, Lingohr‐Smith M,
Mathai SC. A review of clinical trial endpoints of patients
with pulmonary arterial hypertension and chronic thrombo-
embolic pulmonary hypertension and how they relate to
patient outcomes in the United States. J Manag Care
Spec Pharm. 2017;23(1):92–104.

10. Driessen RS, Danad I, Stuijfzand WJ, Raijmakers PG,
Schumacher SP, van Diemen PA, Leipsic JA, Knuuti J,
Underwood SR, van de Ven PM, van Rossum AC, Taylor CA,
Knaapen P. Comparison of coronary computed tomography
angiography, fractional flow reserve, and perfusion imaging
for ischemia diagnosis. J Am Coll Cardiol. 2019;73(2):161–73.

11. Hasan ME, Mostafa F, Hossain MS, Loftin J. Machine‐
learning classification models to predict liver cancer with
explainable AI to discover associated genes. AppliedMath.
2023;3(2):417–45.

12. Manogaran G, Vijayakumar V, Varatharajan R,
Malarvizhi Kumar P, Sundarasekar R, Hsu CH. Machine
learning based big data processing framework for cancer
diagnosis using hidden Markov model and GM clustering.
Wireless Pers Commun. 2018;102:2099–116.

13. Ye F, Jiang W, Lin W, Wang Y, Chen H, Zou H, Huang S,
Zhu N, Han S. A novel BMPR2 mutation in a patient with
heritable pulmonary arterial hypertension and suspected
hereditary hemorrhagic telangiectasia: a case report.
Medicine. 2020;99(31):e21342.

14. Taha F, Southgate L. Molecular genetics of pulmonary
hypertension in children. Curr Opin Genet Dev. 2022;
75:101936.

15. Wang A, Cao S, Aboelkassem Y, Valdez‐Jasso D. Quantifica-
tion of uncertainty in a new network model of pulmonary
arterial adventitial fibroblast pro‐fibrotic signalling. Philos
Trans R Soc, A. 2020;378(2173):20190338.

16. Tang S, Liu Y, Liu B. Integrated bioinformatics analysis
reveals marker genes and immune infiltration for pulmonary
arterial hypertension. Sci Rep. 2022;12(1):10154.

17. Adua E. Decoding the mechanism of hypertension through
multiomics profiling. J Hum Hypertens. 2023;37(4):253–64.

12 of 16 | WALKER ET AL.

http://orcid.org/0000-0001-8505-1680
http://orcid.org/0000-0001-9433-3049
http://orcid.org/0000-0001-9433-3049


18. Rhodes CJ, Sweatt AJ, Maron BA. Harnessing big data to
advance treatment and understanding of pulmonary hyper-
tension. Circ Res. 2022;130(9):1423–44.

19. Lopez‐Crisosto C, Arias‐Carrasco R, Sepulveda P, Garrido‐
Olivares L, Maracaja‐Coutinho V, Verdejo HE, Castro PF,
Lavandero S. Novel molecular insights and public omics data
in pulmonary hypertension. Bioch et Biophy Acta.
2021;1867(10):166200.

20. Oldham WM, Hemnes AR, Aldred MA, Barnard J,
Brittain EL, Chan SY, Cheng F, Cho MH, Desai AA,
Garcia JGN, Geraci MW, Ghiassian SD, Hall KT, Horn EM,
Jain M, Kelly RS, Leopold JA, Lindstrom S, Modena BD,
Nichols WC, Rhodes CJ, Sun W, Sweatt AJ, Vanderpool RR,
Wilkins MR, Wilmot B, Zamanian RT, Fessel JP,
Aggarwal NR, Loscalzo J, Xiao L. NHLBI‐CMREF workshop
report on pulmonary vascular disease classification. J Am
Coll Cardiol. 2021;77(16):2040–52.

21. Kedzierski P. Precision medicine: the future of diagnostic
approach to pulmonary hypertension? Anato J Cardiol.
2019;22(4):168.

22. Hemnes AR. Using omics to understand and treat pulmonary
vascular disease. Front Med. 2018;5:157A.

23. Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA.
Concepts in Boolean network modeling: what do they all
mean? Comput Struct Biotechnol J. 2020;18:571–82.

24. Schäfer A, Gjerga E, Welford RW, Renz I, Lehembre F,
Groenen PM, Saez‐Rodriguez J, Aebersold R, Gstaiger M.
Elucidating essential kinases of endothelin signalling by logic
modelling of phosphoproteomics data. Mol Syst Biol.
2019;15(8):e8828.

25. Terfve CDA, Wilkes EH, Casado P, Cutillas PR, Saez‐
Rodriguez J. Large‐scale models of signal propagation in
human cells derived from discovery phosphoproteomic data.
Nat Commun. 2015;6(1):8033.

26. Xu W, Janocha AJ, Erzurum SC. Metabolism in pulmonary
hypertension. Annu Rev Physiol. 2021;83:551–76.

27. Watson E, Yilmaz LS, Walhout AJM. Understanding
metabolic regulation at a systems level: metabolite sensing,
mathematical predictions, and model organisms. Annu Rev
Genet. 2015;49(1):553–75.

28. Montañez R, Rodríguez‐Caso C, Sánchez‐Jiménez F,
Medina MÁ. In silico analysis of arginine catabolism as a
source of nitric oxide or polyamines in endothelial cells.
Amino Acids. 2008;34:223–9.

29. Bueno M, Wang J, Mora AL, Gladwin MT. Nitrite signaling
in pulmonary hypertension: mechanisms of bioactivation,
signaling, and therapeutics. Anti Redox Signa. 2013;18(14):
1797–809.

30. Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W,
Savai R. Hypoxia‐inducible factor signaling in pulmonary
hypertension. J Clin Invest. 2020;130(11):5638–51.

31. Dai Z, Zhu MM, Peng Y, Machireddy N, Evans CE,
Machado R, Zhang X, Zhao YY. Therapeutic targeting of
vascular remodeling and right heart failure in pulmonary
arterial hypertension with a HIF‐2α inhibitor. Am J Respir
Crit Care Med. 2018;198(11):1423–34.

32. Qutub AA, Popel AS. Reactive oxygen species regulate
hypoxia‐inducible factor 1α differentially in cancer and
ischemia. Mol Cell Biol. 2008;28(16):5106–19.

33. Zhao C, Popel AS. Computational model of microRNA
control of HIF‐VEGF pathway: insights into the patho-
physiology of ischemic vascular disease and cancer. PLoS
Comput Biol. 2015;11(11):e1004612.

34. Weinstein N, Mendoza L, Gitler I, Klapp J. A network model
to explore the effect of the micro‐environment on endothelial
cell behavior during angiogenesis. Front Physiol. 2017;8:960.

35. Salavati H, Soltani M. The impact of endothelial cells
proliferation in a multiscale realistic reproduction of
angiogenesis. Biochem Eng J. 2019;142:74–83.

36. Song M, Finley SD. Mechanistic characterization of en-
dothelial sprouting mediated by pro‐angiogenic signaling.
Microcirculation. 2022;29(2):e12744.

37. Thorne BC, Hayenga HN, Humphrey JD, Peirce SM. Toward
a multi‐scale computational model of arterial adaptation in
hypertension: verification of a multi‐cell agent based model.
Front Physiol. 2011;2:20.

38. Cogno N, Bauer R, Durante M. A 3D Agent‐Based model of
lung fibrosis. Symmetry. 2022;14(1):90.

39. Vélez‐Rendón D, Zhang X, Gerringer J. Compensated
right ventricular function of the onset of pulmonary
hypertension in a rat model depends on chamber remodeling
and contractile augmentation. Pulm Circ. 2018;8(4):
2045894018800439.

40. Vélez‐Rendón D, Pursell ER, Shieh J, Valdez‐Jasso D.
Relative contributions of matrix and myocytes to biaxial
mechanics of the right ventricle in pulmonary arterial
hypertension. J Biomech Eng. 2019;141(9):091011.

41. Kwan ED, Vélez‐Rendón D, Zhang X, Mu H, Patel M,
Pursell E, Stowe J, Valdez‐Jasso D. Distinct time courses and
mechanics of right ventricular hypertrophy and diastolic
stiffening in a male rat model of pulmonary arterial
hypertension. American J Physiol Heart Circ Physiol.
2021;321(4):H702–15.

42. Avazmohammadi R, Mendiola EA, Li DS, Vanderslice P,
Dixon RAF, Sacks MS. Interactions between structural
remodeling and hypertrophy in the right ventricle in
response to pulmonary arterial hypertension. J Biomech
Eng. 2019;141(9):091016.

43. Attard MI, Dawes TJW, de Marvao A, Biffi C, Shi W,
Wharton J, Rhodes CJ, Ghataorhe P, Gibbs JSR,
Howard LSGE, Rueckert D, Wilkins MR, O'Regan DP.
Metabolic pathways associated with right ventricular adapta-
tion to pulmonary hypertension: 3D analysis of cardiac
magnetic resonance imaging. Euro Heart J Cardiovas Imag.
2019;20(6):668–76.

44. Marquis AD, Jezek F, Pinsky DJ, Beard DA. Hypoxic
pulmonary vasoconstriction as a regulator of alveolar‐
capillary oxygen flux: a computational model of ventilation‐
perfusion matching. PLoS Comput Biol. 2021;17(5):e1008861.

45. Georges T, Menu P, Le Blanc C. Contribution of hypoxic
exercise testing to predict high‐altitude pathology: a system-
atic review. Life Basel Switz. 2022;12(3):377.

46. Ben‐Tal A. Simplified models for gas exchange in the human
lungs. J Theor Biol. 2006;238(2):474–95.

47. Jiang S, Fu Z, Li P, Shen Y, Su Q, Cai G, Ning G. A model of
the pulmonary acinar circulatory system with gas exchange
function to explore the influence of alveolar diameter. Respir
Physiol Neurobiol. 2022;300:103883.

PULMONARY CIRCULATION | 13 of 16



48. Reynolds A, Bard Ermentrout G, Clermont G. A mathemati-
cal model of pulmonary gas exchange under inflammatory
stress. J Theor Biol. 2010;264(2):161–73.

49. Neelakantan S, Xin Y, Gaver DP, Cereda M, Rizi R, Smith BJ,
Avazmohammadi R. Computational lung modelling in
respiratory medicine. J R Soc Interface. 2022;19(191):
20220062.

50. Fukui Y, Smith NT. Interactions among ventilation, the
circulation and the uptake and distribution of Halothane—
use of a hybrid computer multiple model. Anesthesiology.
1981;54(2):107–18.

51. Clipp R, Scott G. Humansim: a physiology engine for the
simulation of anesthesia/anaphylaxis. Military Health
Research Symposium. 2012.

52. S. P. Toxicological screening. J Pharmacol Pharmacothera.
2011;2(2):74–9.

53. DILIsym®. DILIsym [Internet]. [cited 2023 Nov 16]. Available
from: https://www.simulations-plus.com/software/dilisym/

54. Mischnik M, Hubertus K, Geiger J, Dandekar T, Timmer J.
Dynamical modelling of prostaglandin signalling in platelets
reveals individual receptor contributions and feedback
properties. Mol BioSyst. 2013;9(10):2520–9

55. Wangorsch G, Butt E, Mark R, Hubertus K, Geiger J,
Dandekar T, Dittrich M. Time‐resolved in silico modeling of
fine‐tuned cAMP signaling in platelets: feedback loops,
titrated phosphorylations and pharmacological modulation.
BMC Syst Biol. 2011;5:178.

56. Garmaroudi FS, Handy DE, Liu YY, Loscalzo J. Systems
pharmacology and rational polypharmacy: nitric oxide−
cyclic GMP signaling pathway as an illustrative example
and derivation of the general case. PLoS Comput Biol.
2016;12(3):e1004822.

57. Kim TH, Shin S, Jeong SW, Lee JB, Shin BS. Physiologically
relevant in vitro‐in vivo correlation (ivivc) approach for
sildenafil with site‐dependent dissolution. Pharmaceutics.
2019;11(6):251.

58. Sato M, Toshimoto K, Tomaru A, Yoshikado T, Tanaka Y,
Hisaka A, Lee W, Sugiyama Y. Physiologically based
pharmacokinetic modeling of bosentan identifies the satura-
ble hepatic uptake as a major contributor to its nonlinear
pharmacokinetics. Drug Metab Dispos. 2018;46(5):740–8

59. Farber HW, Miller DP, McGoon MD, Frost AE, Benton WW,
Benza RL. Predicting outcomes in pulmonary arterial
hypertension based on the 6‐minute walk distance. J Heart
Lung Transplant. 2015;34(3):362–8.

60. Gaine S, Simonneau G. The need to move from 6‐minute
walk distance to outcome trials in pulmonary arterial
hypertension. Eur Respir Rev. 2013;22(130):487–94.

61. Waxman AB, Farber HW. Using clinical trial end points to
risk stratify patients with pulmonary arterial hypertension.
Circulation. 2015;132(22):2152–61.

62. Chin KM, Rubin LJ, Channick R, Di Scala L, Gaine S,
Galiè N, Ghofrani HA, Hoeper MM, Lang IM,
McLaughlin VV, Preiss R, Simonneau G, Sitbon O,
Tapson VF. Association of N‐Terminal pro brain natriuretic
peptide and Long‐Term outcome in patients with pulmonary
arterial hypertension. Circulation. 2019;139(21):2440–50

63. Wronski SL, Mordin M, Kelley K, Anguiano RH, Classi P,
Shen E, Manaker S. The role of noninvasive endpoints in

predicting long‐term outcomes in pulmonary arterial hyper-
tension. Lung. 2020;198(1):65–86.

64. Sitbon O, Chin KM, Channick RN, Benza RL, Di Scala L,
Gaine S, Ghofrani HA, Lang IM, McLaughlin VV, Preiss R,
Rubin LJ, Simonneau G, Tapson VF, Galiè N, Hoeper MM.
Risk assessment in pulmonary arterial hypertension: insights
from the GRIPHON study. J Heart Lung Transplant.
2020;39(4):300–9.

65. Philip JL, Pewowaruk RJ, Chen CS, Tabima DM, Beard DA,
Baker AJ, Chesler NC. Impaired myofilament contraction
drives right ventricular failure secondary to pressure over-
load: model simulations, experimental validation, and
treatment predictions. Front Physiol. 2018;9:731.

66. Colebank MJ, Qureshi MU, Rajagopal S, Krasuski RA,
Olufsen MS. A multiscale model of vascular function in
chronic thromboembolic pulmonary hypertension. American
J Physiol Heart Circ Physiol. 2021;321(2):H318–38.

67. Colunga AL, Colebank MJ, Olufsen MS. Parameter inference
in a computational model of haemodynamics in pulmonary
hypertension. J R Soc Interface. 2023;20(200):20220735.

68. Warsinske HC, Wheaton AK, Kim KK, Linderman JJ,
Moore BB, Kirschner DE. Computational modeling predicts
simultaneous targeting of fibroblasts and epithelial cells is
necessary for treatment of pulmonary fibrosis. Front
Pharmacol. 2016;7:183

69. Hao W, Marsh C, Friedman A. A mathematical model of
idiopathic pulmonary fibrosis. PLoS One. 2015;10(9):e0135097.

70. Sack KL, Dabiri Y, Franz T, Solomon SD, Burkhoff D,
Guccione JM. Investigating the role of interventricular
interdependence in development of right heart dysfunction
during LVAD support: a patient‐specific methods‐based
approach. Front Physiol. 2018;9:520

71. Holford N, Ma SC, Ploeger BA. Clinical trial simulation: a
review. Clin Pharm Ther. 2010;88(2):166–82.

72. Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico
clinical trials: concepts and early adoptions. Brief. Bioinform.
2019;20(5):1699–708.

73. Aarons L, Karlsson MO, Mentré F, Rombout F, Steimer JL,
van Peer A. Role of modelling and simulation in Phase I drug
development. Eur J Pharm Sci. 2001;13(2):115–22.

74. Gadkar K, Budha N, Baruch A, Davis JD, Fielder P,
Ramanujan S. A mechanistic systems pharmacology model
for prediction of LDL cholesterol lowering by PCSK9
antagonism in human dyslipidemic Populations. CPT.
2014;3(11):e149

75. Dai W, Rao R, Sher A, Tania N, Musante CJ, Allen R. A
prototype QSP model of the immune response to SARS‐CoV‐
2 for community development. CPT. 2021;10(1):18–29.

76. Rao R, Musante CJ, Allen R. A quantitative systems
pharmacology model of the pathophysiology and treatment
of COVID‐19 predicts optimal timing of pharmacological
interventions. NPJ Syst Biol Appl. 2023;9(1):13

77. Kovatchev BP, Breton M, Dalla Man C. In silico preclinical
trials: a proof of concept in closed‐loop control of type 1
diabetes. Los Angeles, CA: SAGE Publications Sage
CA; 2009.

78. Hon C, Patel M, Doan J. Integrated review: Xenpozyme
[Internet]. Silver Spring. 2022. https://www.accessdata.fda.gov/
drugsatfda_docs/nda/2022/761261Orig1s000IntegratedR.pdf

14 of 16 | WALKER ET AL.

https://www.simulations-plus.com/software/dilisym/
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761261Orig1s000IntegratedR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761261Orig1s000IntegratedR.pdf


79. European Medicines Agency (NL). Assessment report:
Xenpozyme [Internet]. Amsterdam (NL): European Medi-
cines Agency. 2022. [cited 2023 Nov 15]. Available from
https://www.ema.europa.eu/en/documents/assessment-
report/xenpozyme-epar-public-assessment-report_en.pdf

80. Allen R, Rieger T, Musante C. Efficient generation and
selection of virtual populations in quantitative systems
pharmacology models. CPT. 2016;5(3):140–6.

81. Cheng Y, Thalhauser CJ, Smithline S, Pagidala J,
Miladinov M, Vezina HE, Gupta M, Leil TA, Schmidt BJ.
QSP toolbox: computational implementation of integrated
workflow components for deploying multi‐scale mechanistic
models. AAPS J. 2017;19:1002–16.

82. Rieger TR, Allen RJ, Bystricky L, Chen Y, Colopy GW, Cui Y,
Gonzalez A, Liu Y, White RD, Everett RA, Banks HT,
Musante CJ. Improving the generation and selection of
virtual populations in quantitative systems pharmacology
models. Prog Biophys Mol Biol. 2018;139:15–22.

83. Sinisi S, Alimguzhin V, Mancini T. Complete populations of
virtual patients for in silico clinical trials. Bioinformatics.
2020;36(22–23):5465–72.

84. Tang Y, Hoffmann A. Quantifying information of intra-
cellular signaling: progress with machine learning. Rep Prog
Phys. 2022;85(8):086602. https://doi.org/10.1088/1361-6633/
ac7a4a

85. Cavadas MA, Nguyen LK, Cheong A. Hypoxia‐inducible
factor (HIF) network: insights from mathematical models.
Cell Commun Signaling. 2013;11(1):42.

86. Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathemati-
cal modeling of regulatory networks of intracellular
processes—aims and selected methods. Comput Struct
Biotechnol J. 2023;21:1523–32.

87. Buerk DG. Can we model nitric oxide biotransport? A survey
of mathematical models for a simple diatomic molecule with
surprisingly complex biological activities. Annu Rev Biomed
Eng. 2001;3(1):109–43.

88. Crawshaw JR, Flegg JA, Bernabeu MO, Osborne JM.
Mathematical models of developmental vascular remodel-
ling: a review. PLoS Comput Biol. 2023;19(8):e1011130.

89. Stepanova D, Byrne HM, Maini PK, Alarcón T. Computa-
tional modeling of angiogenesis: the importance of cell
rearrangements during vascular growth. WIREs Mech Dis.
2024;16(2):e1634.

90. Hastings JF, Skhinas JN, Fey D, Croucher DR, Cox TR. The
extracellular matrix as a key regulator of intracellular
signalling networks. Br J Pharmacol. 2019;176(1):82–92.

91. Kheyfets VO, O'Dell W, Smith T. Considerations for
numerical modeling of the pulmonary circulation—a review
with a focus on pulmonary hypertension. J Biomech Eng.
2013;135(6):061011. https://doi.org/10.1115/1.4024141

92. Yoshida K, Holmes JW. Computational models of cardiac
hypertrophy. Prog Biophys Mol Biol. 2021;159:75–85.

93. Jones CB, Crossland DS. The interplay between pressure,
flow, and resistance in neonatal pulmonary hypertension.
Sem Fetal and Neo Med. 2022;27(4):101371.

94. Odeigah OO, Valdez‐Jasso D, Wall ST. Computational
models of ventricular mechanics and adaptation in response
to right‐ventricular pressure overload. Front Physiol.

2022;13:948936. https://www.frontiersin.org/journals/
physiology/articles/10.3389/fphys.2022.948936

95. Beni HM, Mortazavi H, Islam MS. Biomedical and bio-
physical limits to mathematical modeling of pulmonary
system mechanics: a scoping review on aerosol and drug
delivery. Biomech Model Mechanobiol. 2022;21(1):79–87.

96. Duarte D, Vale N. Evaluation of synergism in drug
combinations and reference models for future orientations
in oncology. Curr Res Pharmacol Drug Dis. 2022;3:100110.

97. Sahai N, Gogoi M, Ahmad N. Mathematical modeling and
simulations for developing nanoparticle‐based cancer drug
delivery systems: a review. Curr Pathobiol Rep. 2021;9(1):
1–8.

98. Jose J, S. S, Mathew B, Parambi DGT. In silico trial approach
for biomedical products: a regulatory perspective. Comb
Chem High Through Screen. 2022;25(12):1991–2000.

99. Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR,
Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B.
Application of mathematical modeling and computational
tools in the modern drug design and development process.
Molecules. 2022;27(13):4169.

100. Vélez‐Rendón D, Valdez‐Jasso D. Multiscale modeling of
ventricular–vascular dysfunction in pulmonary arterial
hypertension. Curr Opin Biomed Engine. 2019;11:68–75.

101. Leonard‐Duke J, Evans S, Hannan RT, Barker TH,
Bates JHT, Bonham CA, Moore BB, Kirschner DE,
Peirce SM. Multi‐scale models of lung fibrosis. Matrix Biol.
2020;91–92:35–50.

102. Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A,
Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M,
Van Steen K, Schmidt HHHW. Mechanistic modeling and
multiscale applications for precision Medicine: theory and
practice. Net Syst Med. 2020;3(1):36–56.

103. Hemedan AA, Niarakis A, Schneider R, Ostaszewski M.
Boolean modelling as a logic‐based dynamic approach in
systems medicine. Comput Struct Biotechnol J. 2022;20:
3161–72.

104. Barbuti R, Gori R, Milazzo P, Nasti L. A survey of gene
regulatory networks modelling methods: from differential
equations, to Boolean and qualitative bioinspired models.
J Memb Comput. 2020;2(3):207–26.

105. Saadatpour A, Albert R. Boolean modeling of biological
regulatory networks: a methodology tutorial. Methods.
2013;62(1):3–12.

106. Corti A, Colombo M, Migliavacca F. Multiscale computa-
tional modeling of vascular adaptation: a systems biology
approach using agent‐based models. Front Bioeng
Biotechnol. 2021;9:744560. https://www.frontiersin.org/
articles/10.3389/fbioe.2021.744560

107. Soheilypour M, Mofrad MRK. Agent‐based modeling in
molecular systems biology. BioEssays. 2018;40(7):1800020.

108. Macal C, North M. Introductory tutorial: agent‐based
modeling and simulation. Proceedings of the Winter Simula-
tion Conference 2014, Savannah, GA, USA. 2014:6–20.
https://ieeexplore.ieee.org/abstract/document/7019874

109. Smallbone K, Mendes P. Large‐scale metabolic models: from
reconstruction to differential equations. Ind Biotechnol.
2013;9(4):179–84.

PULMONARY CIRCULATION | 15 of 16

https://www.ema.europa.eu/en/documents/assessment-report/xenpozyme-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/xenpozyme-epar-public-assessment-report_en.pdf
https://doi.org/10.1088/1361-6633/ac7a4a
https://doi.org/10.1088/1361-6633/ac7a4a
https://doi.org/10.1115/1.4024141
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.948936
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.948936
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560
https://www.frontiersin.org/articles/10.3389/fbioe.2021.744560
https://ieeexplore.ieee.org/abstract/document/7019874


110. Faizal WM, Ghazali NNN, Khor CY, Badruddin IA,
Zainon MZ, Yazid AA, Ibrahim NB, Razi RM. Computational
fluid dynamics modelling of human upper airway: a review.
Comput Meth Prog Biom. 2020;196:105627.

111. Kanelidis AJ, Raikhelkar J, Kim G, Sayer G, Bishop MR,
Polonsky TS, Uriel N. CardioMEMS‐Guided CAR T cell
therapy for lymphoma in a patient with Anthracycline‐
Induced cardiomyopathy. JACC: CardioOncology. 2020;2(3):
515–8.

112. Howard LS, Rosenkranz S, Frantz RP, Hemnes AR,
Pfister T, Hsu Schmitz SF, Skåra H, Humbert M,
Preston IR. Assessing daily life physical activity by
actigraphy in pulmonary arterial hypertension: insights

from the randomized controlled study with selexipag
(TRACE). Chest. 2023;163(2):407–18.

How to cite this article: Walker M, Moore H,
Ataya A, Pham A, Corris PA, Laubenbacher R,
Bryant AJ. A perfectly imperfect engine: utilizing
the digital twin paradigm in pulmonary
hypertension. Pulm Circ. 2024;14:e12392.
https://doi.org/10.1002/pul2.12392

16 of 16 | WALKER ET AL.

https://doi.org/10.1002/pul2.12392

	A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension
	INTRODUCTION
	THE PH PATIENT ENGINE
	A. intracellular modeling
	B. Intercellular modeling
	C. Organismal modeling: Physics/flow dynamics
	Prognosis and defining outcomes
	In silico clinical trials

	CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	ETHICS STATEMENT
	ORCID
	REFERENCES




